

On Estimating the Size and Confidence of a Statistical Audit

Javed A. Aslam College of Computer and Information Science Northeastern University Raluca A. Popa and Ronald L. Rivest Computer Science and Artificial Intelligence Laboratory M.I.T.

$$u = \left\lceil (n - \frac{b - 1}{2}) \cdot (1 - (1 - c)^{1/b}) \right\rceil$$

Electronic Voting Technology 2007

August 6, 2007

Outline

Motivation

Background

- How Do We Audit?
- The Problem
- Analysis
 - Model
 - Sample Size
 - Bounds
- Conclusions

Motivation

- There have been cases of electoral fraud (Gumbel's *Steal This Vote*, Nation Books, 2005)
- Would like to ensure confidence in elections
- Auditing = comparing statistical sample of paper ballots to electronic tally
- Provides confidence in a software independent manner

How Do We Audit?

- Proposed Legislation: *Holt Bill (2007)*
 - Voter-verified paper ballots
 - Manual auditing
- Granularity: Machine, Precinct, County
- Procedure
 - Determine *u*, *#* precincts to audit, from margin of victory
 - Sample *u* precincts randomly
 - Compare hand count of paper ballots to electronic tally in sampled precincts
 - If all are sufficiently close, declare electronic result final
 - If any are significantly different, investigate!

How Do We Audit?

- Proposed Legislation: Holt Bill (2007)
 - Voter-verified paper ballots
 - Manual auditing
- Granularity: Machine, Precinct, County
- Procedure
 - Determine *u*, # precincts to audit, from margin of victory
 - Sample *u* precincts randomly
 - Compare hand count of paper ballots to electronic tally in sampled precincts
- Our formulas are independent of the auditing procedure

August 6, 2007

The Problem

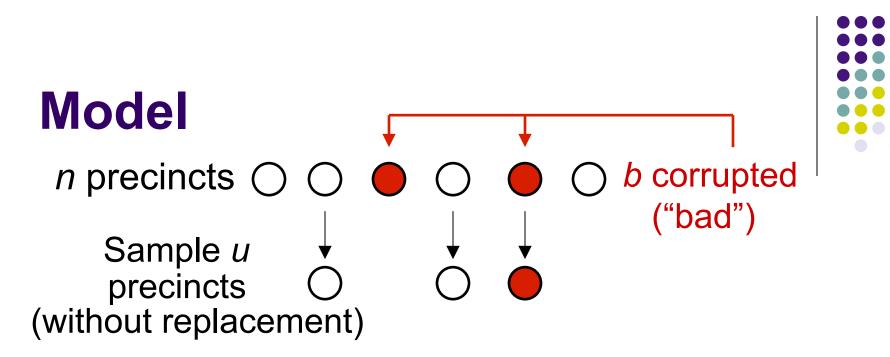
How many precincts should one audit to ensure high confidence in an election result?

Previous Work

- Saltman (1975): The first to study auditing by sampling without replacement
- Dopp and Stenger (2006): Choosing appropriate audit sizes
- Alvarez et al. (2005): Study of real case auditing of punch-card machines

Hypothesis Testing

- Null hypothesis: The reported election outcome is incorrect (electronic tally indicates different winner than paper ballots)
- Want to reject the null hypothesis
 - Need to sample enough precincts to ensure that, if no fraud is detected, the election outcome is correct with high confidence



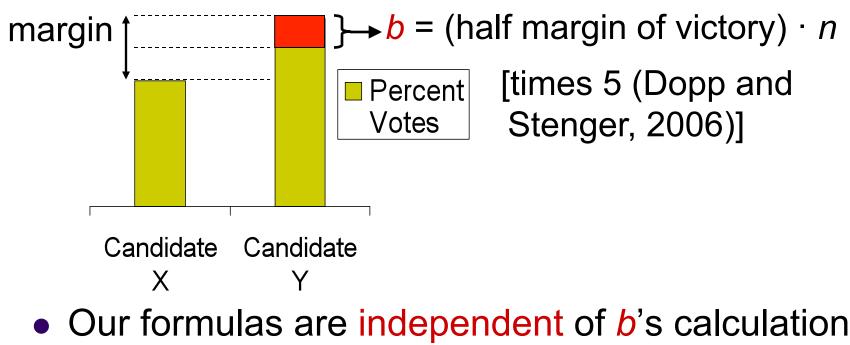
- *c* = desired confidence
- Want: If there are $\geq b$ corrupted precincts, then sample contains at least one with probability $\geq c$
- Equivalently: If the sample contains no corrupted precincts, then the election outcome is correct with probability ≥ c
- Typical values: n = 400, b = 50, c = 95%

August 6, 2007

What is **b**?

 Minimum # of precincts adversary must corrupt to change election outcome

Derived from margin of victory



August 6, 2007

Rule of Three

- If we draw a sample of size ≥ 3n/b with replacement, then:
 - Expect to see at least **three corrupted** precincts
 - Will see at least one corrupted precinct with c ≥ 95%
- In practice, we sample *without replacement* (no repeated precincts)

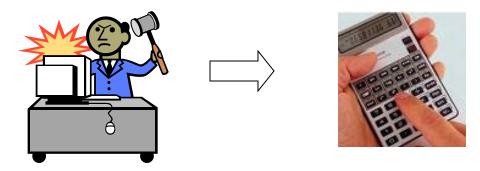
Sample Size

• Probability that no corrupted precinct is detected:

$$Pr = \binom{n-b}{u} / \binom{n}{u}$$

• Optimal Sample Size: Minimum *u* such that $Pr \leq 1 - c$

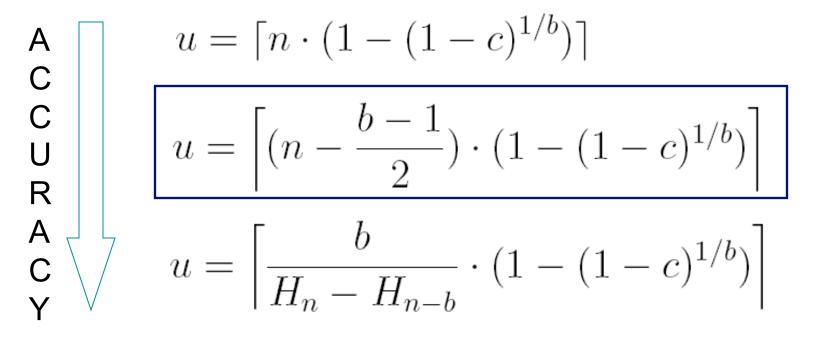
Problem: Need a computer



• Goal: Derive a simple and accurate upper bound that an election official can compute on a hand-held calculator

Our Bounds

- Intuition: How many different precincts are sampled by the Rule of Three?
- Our without replacement upper bounds:



August 6, 2007

Our Bounds

- Intuition: How many different precincts are sampled by the Rule of Three?
- Our *without replacement* upper bounds:

$$u = \lceil n \cdot (1 - (1 - c)^{1/b}) \rceil$$
$$u = \left\lceil (n - \frac{b - 1}{2}) \cdot (1 - (1 - c)^{1/b}) \rceil$$

• Example: *n* = 400, *b* = 50 (margin=5%), *c* = 95%

$$u = \left\lceil (400 - \frac{50 - 1}{2}) \cdot (1 - (1 - 0.95)^{1/50}) \right\rceil = \lceil 21.84 \rceil = 22$$

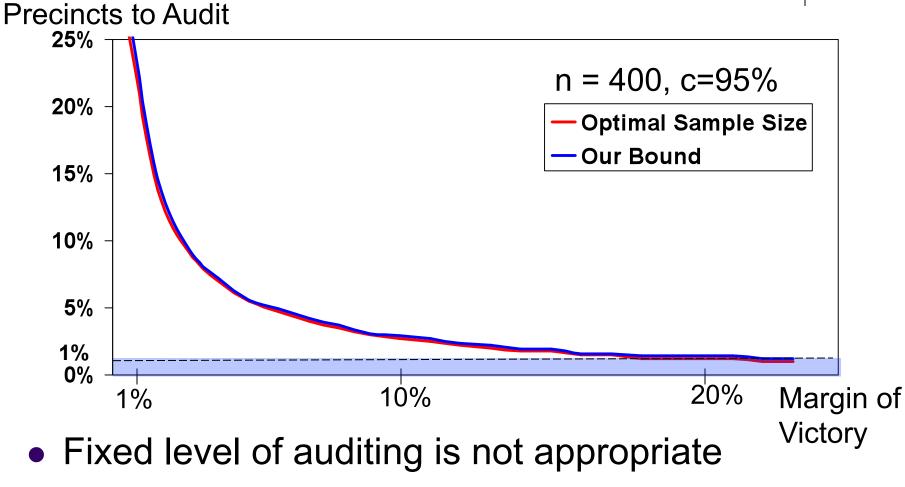
August 6, 2007

Our Bound

$$u = \left[(n - \frac{b - 1}{2}) \cdot (1 - (1 - c)^{1/b}) \right]$$
$$(1 - c)^{1/b} = e^{\ln(1 - c)/b}$$

- Conservative: provably an upper bound
- Accurate:
 - For *n* ≤10,000, *b* ≤ *n*/2, c ≤ 0.99 (steps of 0.01):
 - 99% is exact, 1% overestimates by 1 precinct
 - Analytically, it overestimates by at most –ln(1-c)/2, e.g. three precincts for c < 0.9975
- Can be computed on a hand-held calculator

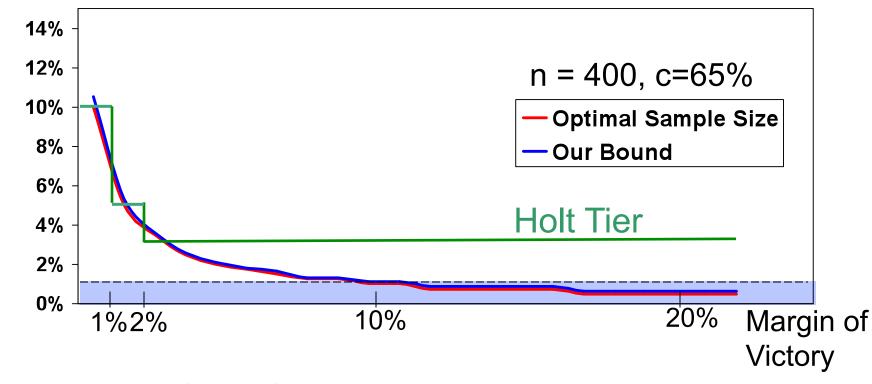
Observations



August 6, 2007

Observations (cont'd)

Precincts to Audit



• Holt Bill (2007): Tiered auditing

Related Problems

- Inverse questions
 - Estimate confidence level c from u, b, and n
 - Estimate detectable fraud level b from u, c, and n
- Auditing with constraints
 - Holt Bill (2007): Audit at least one precinct in each county
- Future work
 - Handling precincts of variable sizes (Stanislevic, 2006)

Conclusions

• We develop a formula for the sample size:

$$u = \left[(n - \frac{b - 1}{2}) \cdot (1 - (1 - c)^{1/b}) \right]$$

that is:

- Conservative (an upper bound)
- Accurate
- Simple, easy to compute on a pocket calculator
- Applicable to different other settings

Thank you!

• Questions?