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On Estimation and Inference in Latent
Structure Random Graphs
Avanti Athreya, Minh Tang, Youngser Park and Carey E. Priebe

Abstract. We define a latent structure random graph as a random dot prod-
uct graph (RDPG) in which the latent position distribution incorporates both
probabilistic and geometric constraints, delineated by a family of underly-

ing distributions on some fixed Euclidean space, and a structural support

submanifold from which are drawn the latent positions for the graph. For a
one-dimensional latent structure model with known structural support, we
extend existing results on the consistency of spectral estimates in RDPGs to
demonstrate that the parameters of the underlying distribution can be effi-
ciently estimated. We describe how to estimate or learn the structural support
in cases where it is unknown, with a focus on graphs with latent positions
along the Hardy–Weinberg curve. Finally, we use the latent structural model
formulation to address a hitherto-open question in neuroscience on the bilat-
eral homology of the Drosophila left and right hemisphere connectome.

Key words and phrases: Latent structure random graphs, manifold learning,
spectral graph inference, efficiency.

1. INTRODUCTION

The last half-century has seen remarkable technical de-
velopments in random graph inference, the result of an
integration across probabilistic combinatorics, classical
statistics and computer science. The ubiquity of graphs
and networks in many applications, from urban planning
to epidemiology to neuroscience, guarantees an endur-
ing supply of real-world problems that rely on accurate
graph inference for their resolution. Of course, a num-
ber of graph inference problems are comfortingly familiar
and not necessarily peculiar to graphs per se: the para-
metric estimation of a common connection probability in
an independent-edge random graph, for example, or the
nonparametric estimation of a degree distribution. Other
inference tasks, such as community detection, are more
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graph-centric, and still others, such as vertex nomination
(Coppersmith, 2014, Fishkind et al., 2015) arise only in
a network context. Nevertheless, even graph-specific in-
ference tasks can frequently be resolved by appropriate
Euclidean embeddings of graph data, and such Euclidean
representations of graphs allow for a suite of classical sta-
tistical methods for Euclidean data, from estimation to
classification to hypothesis testing (Athreya et al., 2018),
to be effectively deployed in graph inference.

Advances in computational capacity now enable us to
feasibly store and manipulate huge networks, but extract-
ing from these data sets meaningful estimates and predic-
tions, or inferring underlying relevant structure, remains
a real challenge; at present, we are often confined to the
realm of exploratory data analysis. We face, therefore,
an ongoing need to synthesize the model-based inference
procedures of twentieth century statistics with the data-
driven, algorithmically-propelled methods of twenty-first
century machine learning. In his landmark polemic on the
two “cultures,” Breiman (2001) described this very divide,
and argued persuasively for the gains that machine learn-
ing can deliver. While we agree, we remain believers in a
theoretical framework for graph inference that begins first
with a compelling graph model. Such a model is useful
not only because it allows us to generate, say, theoreti-
cal bounds for error rates in graph estimation procedures,
but also because it offers a unifying perspective for graph
analysis.
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In this spirit, we present here the latent structure

model (LSM) for random graphs. We demonstrate that
the LSM is tractable and useful, especially for inference
tasks that involve the discovery or exploitation of lower-
dimensional geometric structure. The LSM sits between
two workhorse random graph models, the stochastic block
model (SBM) (Holland, Laskey and Leinhardt, 1983) and
the random dot product graph model (RDPG) (Young and
Scheinerman, 2007). That is, latent structure models im-
pose parametric and geometric requirements on distribu-
tions that are more elaborate than those of a stochastic
block model but more constrained than those of a typical
random dot product graph.

Latent structure random graphs are a special case of la-
tent position random graphs (Diaconis and Janson, 2008,
Hoff, Raftery and Handcock, 2002, Smith, Asta and
Calder, 2019), which are a type of inhomogeneous Erdős–
Rényi random graph (Bollobás, Janson and Riordan,
2007) in which edges between any pairs of vertices arise
independently of one another. Every vertex in a latent
position random graph has associated to it a (typically
unobserved) latent position, itself an object belonging
to some (often Euclidean) space X . Probabilities of an
edge between two vertices i and j , pij , are then a func-
tion κ(·, ·) : X × X → [0,1] (known as the link func-

tion) of their associated latent positions (xi, xj ). Thus
pij = κ(xi, xj ), and as mentioned previously, edges be-
tween vertices arise independently of one another. Given
these probabilities, the entries Aij of the adjacency ma-
trix A are conditionally independent Bernoulli random
variables with success probabilities pij . We consolidate
these probabilities into a matrix P = (pij ), and we write
A ∼ P to denote this relationship.

In a d-dimensional random dot product graph, the la-
tent space is an appropriately-constrained subspace of Rd ,
and the link function is simply the dot product of the
two latent d-dimensional vectors. A quintessential infer-
ence problem in an RDPG setting is the estimation of
latent positions from a single observation of a suitably
large graph. The linear algebraic foundation for an RDPG
makes such an inference problem especially amenable to
spectral methods, such as singular value decompositions,
of adjacency or Laplacian matrices. Indeed, these spec-
tral decompositions have been the basis for a suite of ap-
proaches to graph estimation, community detection and
hypothesis testing for random dot product graphs. (For a
comprehensive summary of these techniques, see Athreya
et al., 2018.) Because of the invariance of the inner prod-
uct to orthogonal transformations, however, the RDPG ex-
hibits a clear nonidentifiability: latent positions can be es-
timated only up to an orthogonal transformation. Note that
the popular stochastic blockmodel (SBM) can be regarded
as a random dot product graph. In a SBM, there are a finite
number of possible latent positions for each vertex—one

for each block—and the latent position exactly determines
the block assignment for that vertex.

Random dot product graphs are often divided into two
types: those in which the latent positions are fixed, and
those in which the latent positions are themselves random.
Specifically, we consider the case in which the latent posi-
tion Xi ∈ R

d for vertex i is drawn from some distribution
F on R

d , and we further assume that the latent positions
for each vertex are drawn independently and identically
from this distribution F . A common graph inference task
is to infer properties of F from an observation of the graph
alone. For example, in a stochastic block model, in which
the distribution F is discretely supported, we may wish
to estimate the point masses in the support of F . In the
graph inference setting, however, there are two sources
of randomness that culminate in the generation of the ac-
tual graph: first, the randomness in the latent positions,
and second, given these latent positions, the conditional
randomness in the existence of edges between vertices.
As such, the task of inferring properties of the underlying
distribution F from a mere observation of the adjacency
matrix A is more complicated than the classical problem
of inferring properties of F directly from the Xi’s, the lat-
ter of which of course represent an i.i.d. sample from F .
This is because these latent positions Xi are not observed

in the first place. The key to such inference is the initial
step of consistently estimating the unobserved Xi’s from
A, and then using these estimates, denoted X̂i , to infer
properties of F .

Now, an RDPG with i.i.d. latent positions allows for a
wide range of possible distributions F , and by contrast,
the SBM imposes the constraint of a discrete support for
F . A natural midpoint between these two is to constrain
F to belong to a parametric family of distributions on
some space S : that is, F ∈ {Fθ , θ ∈ R

l}, suppF ⊂ S .
A useful example to keep in mind is F ∼ Beta(a, b), with
suppF = [0,1], the unit interval, and l, the dimension of
the parameter space, given by l = 2. Here, the latent po-
sitions are random points in the unit interval, so the as-
sociated RDPG has a one-dimensional latent space, and
an inference task of interest is to estimate or test hypothe-
ses about the parameters a and b. We remark that the Beta
distribution for latent positions provides a nice illustration
of the fact that the dimension of the random dot product
graph may be different than the number of unknown pa-
rameters. In the case of the Beta distribution, the support
S of F is known, but in other cases, inferring the geom-
etry of the support of the distribution may be part of our
larger task.

Because constraints on F impose additional structure—
structure that can be both geometric, such as prescrip-
tions on the parameter space or the support, and func-
tional, such as limitations on the class of distributions
themselves—we call graphs of this type latent structure
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model (LSM) graphs (see Definition 6 in Section 2). Much
of the rest of this manuscript is devoted to demonstrating
that (a) statistical methodology for RDPGs can be suc-
cessfully applied to yield estimates for model parame-
ters and to conduct broader inference tasks in LSMs and
(b) the structure within LSMs can be leveraged to obtain
sharp rates of convergence for such estimates. In short,
the latent structure model is flexible, amenable to a suite
of existing techniques for inference on RDPGs, and a use-
ful starting point for models with more intricate geometric
structure.

As we have already emphasized, our approach to infer-
ence for a latent structure model is first to treat LSMs as
RDPGs and use the considerable literature on the consis-
tency and asymptotic normality of spectral estimates for
latent positions in RDPGs (Athreya et al., 2016, Lyzinski
et al., 2014, 2017, Sussman et al., 2012, Tang et al., 2017).
More precisely, if the latent space dimension d of an
RDPG is known, Lyzinski et al. (2014, 2017) shows that
a rank d singular value decomposition of the adjacency
matrix A gives a consistent estimate, denoted X̂, for the
matrix of latent positions X. In addition, Athreya et al.
(2016) demonstrates that as the number of vertices n of
the graph increases, the rows of X̂ have an asymptoti-
cally normal distribution about the true latent positions.
Further, Tang et al. (2017) establishes that the underly-
ing distribution F can be consistently recovered via kernel
density estimation with these spectral estimates of the true
latent positions. Most critically, Tang et al. (2017) ensures
the convergence of an empirical process of the spectrally-
estimated latent positions. This functional central limit
theorem allows us to prove that in the latent structure
model, when the latent position distribution belongs to a
parametric family, one can effectively use these spectral
estimates as “data” to construct a M-estimate (essentially
a quasi-maximum likelihood estimate) of the underlying
parameter θ , and, surprisingly, still obtain a parametric

rate of convergence of such a quasi-MLE to its true value.
That the introduction of spectral estimates in place of the
true latent positions does not change the asymptotic rate
of convergence of this estimator is a testament to how ac-
curate and valuable are the spectral estimates themselves,
not only for recovering the true latent positions but for a
variety of subsequent graph inference tasks.

As an illustration of our result, we consider inference
when the latent positions are distributed as points along
the 1-dimensional Hardy–Weinberg curve in the simplex,
defined as the image of

r : [0,1] → R
3; r(t) =

(

t2,2t (1 − t), (1 − t)2)

.

Suppose that ti ∈ [0,1] are drawn independently from
a common Gθ = Beta(θ = (a, b)) distribution, and con-
sider a RDPG with latent positions Xi = r(ti) that lie on

the Hardy–Weinberg curve. We note that the latent posi-
tions are points in the ambient space R

3, which is the di-
mension of the resulting RDPG. But in fact, of course, the
latent positions lie on the two-dimensional unit simplex

(x1, x2, x3) :
∑

i

xi = 1, 0 ≤ xi ≤ 1

and more precisely still, they lie on the one-dimensional
submanifold that is the Hardy–Weinberg curve.

If we observe only the adjacency matrix A for a ran-
dom dot product graph with these latent positions X, how
might we estimate or conduct tests about the parameters
a or b of this underlying distribution G? One approach is
to spectrally embed A to obtain the point cloud of esti-
mated latent positions (organized, as before, as rows of a
matrix X̂) in R

3; rotate this point cloud appropriately (due
to the nonidentifiability of the RDPG); project these esti-
mated points onto the Hardy–Weinberg curve; pull these
projected points back into the unit interval through p−1,
and use these projected, pulled-back points in the unit
interval, denoted Ŷi , as “data” in the estimation of the
parameters of G. See Figure 1, below, for a representa-
tion of the estimated latent positions of this LSM graph
around the Hardy–Weinberg curve. That is, we might plug
these points Ŷi in the unit interval—which, we stress, are
neither independent nor identically distributed—into the
estimating equations that define familiar maximum like-
lihood estimates for (a, b). Though this procedure may
be straightforward to write, it poses computational and
mathematical pitfalls, even in the case when the geometric
structure of the Hardy–Weinberg curve is known a priori.
Also, while each step of this procedure is sensible, there
are many sources of error. Given the cumulative impact of
noise and dependence in the latent position estimates and
bias from the projections and pullbacks, one might rea-
sonably view this recipe as little more than a principled

FIG. 1. Estimated latent positions, with n = 1000, in a tubular

neighborhood about the Hardy–Weinberg curve when underlying dis-

tribution Gθ is Beta(a = 1, b = 1).
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hack. As it happens, however, in the case of a parametric
latent structure model with known support, this quasi-M-
estimation delivers both consistency and efficiency.

In more complicated latent structure models, the family
of distributions F may have support S that is unknown,
and must also be inferred. This is a significantly more
intricate problem, one for which our methodology cur-
rently admits fewer guarantees. To unify latent structure
model estimation and inference over different levels of
model complexity, we devote our next section to eluci-
dating the different types of latent structure models, from
models with known or parametric distributions on known
support to models with nonparametrically-specified dis-
tributions over unknown support.

We organize the paper as follows. In Section 2, we de-
fine the latent structure model and relate it to stochastic
block models and random dot product graphs. In Sec-
tion 3, we summarize key theoretical results for random
dot product graphs, including consistency and normality,
as well as a Donsker-class functional central limit the-
orem, for spectral estimates of latent positions. In Sec-
tion 4, we demonstrate how these results can be exploited
to give a parametric rate of convergence for estimates of
LSM parameters. In Section 5, we consider examples of
estimation in specific latent structure models, including
models with known support and models with parametric
support that must be learned or estimated from the data.
We conclude with an analysis of the right and left hem-
sipheres of the Drosophila larval connectome, which we
view as a nonparametric latent structure model with un-
known support. The framework of an LSM permits us
to resolve, as a statistical test of hypothesis, the neuro-
scientific question of bilateral homology—that is, struc-
tural similarity across hemispheres—of the Drosophila

connectome. Finally, in Section 6, we close with a dis-
cussion of the relevance of the LSM and associated open
problems.

2. DEFINITIONS, NOTATION, AND BACKGROUND

In our notation, we will use boldface H to represent a
matrix, and we use Hi to represent the ith row of this ma-
trix. We use | · | to represent Euclidean distance, with the
dimension being clear from context. We use ⊤ to repre-
sent transpose, and ⊥ to denote the orthogonal comple-
ment. We use P to denote probability and E to denote
expectation.

To begin, we define a graph G to be an ordered pair of
(V ,E) where V is the vertex or node set, and E, the set of
edges, is a subset of the Cartesian product of V × V . In a
graph whose vertex set has cardinality n, we will usually
represent V as V = {1,2, . . . , n}, and we say there is an

edge between i and j if (i, j) ∈ E. The adjacency matrix
A provides a compact representation of such a graph:

Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise.

Where there is no danger of confusion, we will often refer
to a graph G and its adjacency matrix A interchangeably.

2.1 Models

Since our focus is on latent structure models and we
wish to exploit lower-dimensional geometric structure,
we first clarify the notation of the smallest appropriate di-
mension for a latent structure model.

DEFINITION 1 (Minimal subspace dimension). Let
γ̃ : [0,1] → R

k be a smooth (twice continuously differen-
tiable) map and let C = Image(γ̃ ) be the curve that is the
image of this map. We say that C has minimal subspace

dimension d , denoted md(C) = d , if

min
{

dim(S) : S ⊂ R
k a subspace,C ⊂ S

}

= d.

We stress that this linear subspace requirement is
crucial—the Hardy–Weinberg curve lies in the simplex,
which is a two-dimensional surface, but this plane does
not pass through the origin; the simplex is not a linear
subspace. Hence the minimum subspace dimension of the
Hardy–Weinberg curve is 3, not 2.

Next, since we frame our latent structure models as spe-
cial cases of random dot product graphs, we define inner
product distributions and inner product curves.

DEFINITION 2 (d-dimensional inner product distribu-
tion and inner product curve). Let F be a probability
distribution whose support is given by suppF = Xd ⊂
R

d . We say that F is a d-dimensional inner product dis-

tribution on R
d if for all x, y ∈ Xd = suppF , we have

x⊤y ∈ [0,1]. Next, let C be a smooth (twice continu-
ously differentiable) curve defined as C = Im(γ̃ ) where
γ̃ : [0,1] → R

k is smooth. Suppose md(C) = d , and de-
fine γ by

γ : [0,1] → R
d; γ = πk,C ◦ γ̃ ,

where πk,C is the projection map from R
k onto C. We say

that C is a nonself-intersecting, d-dimensional inner prod-

uct curve if (i) γ is injective and has smooth inverse γ −1

and (ii) for all x, y ∈ C, x⊤y ∈ [0,1].
The definition of inner product curves and distributions

on suitable subsets of Euclidean space is a building block
to the construction of a random dot product graphs and la-
tent structure random graphs. We start with a random dot
product graph, which we define as an independent-edge
random graph for which the edge probabilities are given
by the dot products of the latent positions associated to the
vertices. The latent positions are necessarily constrained
to have inner-product distributions. We restrict our atten-
tion here to graphs that are undirected and loop-free.

DEFINITION 3 (Random dot product graphs (Young
and Scheinerman, 2007)). Let F be a d-dimensional in-
ner product distribution with X1,X2, . . . ,Xn

i.i.d.∼ F , col-
lected in the rows of the matrix

X = [X1,X2, . . . ,Xn]⊤ ∈ R
n×d .
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(Note that each Xi is a column vector in R
d , and in the

matrix X, these column vectors are transposed and orga-
nized as rows.) Suppose A is a symmetric, hollow ran-
dom adjacency matrix whose above diagonal entries are
distributed as follows:

(1) P [A|X] =
∏

i<j

(

X⊤
i Xj

)Aij
(

1 − X⊤
i Xj

)1−Aij .

That is, conditional on the latent positions X, the above-
diagonal entries Aij are independent Bernoulli random
variables with P(Aij = 1) = X⊤

i Xj . To denote this, we
write (A,X) ∼ RDPG(F,n) and say that A is the ad-
jacency matrix of a random dot product graph (RDPG)

of dimension or rank at most d and with latent positions

given by the rows of X. If XX
⊤ is, in fact, a rank d matrix,

we say A is the adjacency matrix of a rank d random dot
product graph.

If, instead, the latent positions are given by a fixed ma-
trix X and, given this matrix, the graph is generated ac-
cording to equation (1), we say that A is a realization of a
random dot product graph with latent positions X, and we
write A ∼ RDPG(X).

Finally, let ρn be a sequence of positive real numbers
less than one, and suppose X1, . . . ,Xn ∼ F be indepen-
dent random variables with F an inner-product distribu-
tion. We say that (X,A) ∼ RDPG(F ) with sparsity fac-

tor ρn if A is symmetric, hollow and consists of inde-
pendent above-diagonal entries Aij distributed as Aij ∼
Bernoulli(ρnX

⊤
i Xj ).

REMARK 1 (Nonidentifiability). Given a graph dis-
tributed as an RDPG, the natural task is to recover the la-
tent positions X that gave rise to the observed graph. How-
ever, the RDPG model has an inherent nonidentifiability:
let X ∈ R

n×d be a matrix of latent positions and let W ∈
R

d×d be a unitary matrix. Since XX
⊤ = (XW)(XW)⊤,

it is clear that the latent positions X and XW give rise
to the same distribution over graphs in equation (1). Note
that most latent position models, as defined below, also
suffer from similar types of nonidentifiability as edge-
probabilities may be invariant to various transformations.

Random dot product graphs are special cases of more
general latent-position random graphs, which are inde-
pendent-edge random graphs in which each vertex has
a latent position and for which connection probabilities
are given by appropriate functions of these latent posi-
tions. Conversely, while latent position models general-
ize the random dot product graph, RDPGs, in turn, are a
generalization of the more limited stochastic blockmodel

(SBM) graph (Holland, Laskey and Leinhardt, 1983) and
its variants such as the degree-corrected SBM (Karrer
and Newman, 2011) and the mixed membership SBM
(Airoldi et al., 2008). The stochastic block model is an
independent-edge random graph whose vertex set is par-
titioned into K groups, called blocks, and the stochastic

blockmodel is typically parameterized by (1) a K × K

matrix of probabilities B of adjacencies between vertices
in each of the blocks, and (2) a block-assignment vector

τ : [n] → [K] which assigns each vertex to its block. That
is, for any two vertices i, j , the probability of their con-
nection is

Pij = Bτ(i),τ (j),

and we typically write A ∼ SBM(B, τ ). Here, we present
an alternative definition in terms of the RDPG model.

DEFINITION 4 (Positive semidefinite k-block SBM).
We say an RDPG with latent positions X is a SBM with K

blocks if the number of distinct rows in X is K , denoted
X(1), . . . ,X(K) In this case, we define the block member-
ship function τ : [n] 
→ [K] to be a function such that
τ(i) = τ(j) if and only if Xi = Xj . We then write

A ∼ SBM
(

τ, {X(i)}Ki=1
)

.

In addition, we also consider the case of a stochas-
tic block model in which the block membership of
each vertex is randomly assigned. More precisely, let
π ∈ (0,1)K with

∑n
k=1 πk = 1 and suppose that τ(1),

τ(2), . . . , τ (n) are now i.i.d. random variables with dis-
tribution Categorical(π); that is, Pr(τ (i) = k) = πk for all
k. Then we say A is an SBM with i.i.d. block memberships,
and we write

A ∼ SBM
(

π, {X(i)}
)

.

With RDPGs and SBMs defined, we now define la-

tent structure random graphs or latent structure mod-

els (LSMs) as, in effect, random dot product graphs of
dimension d whose latent position distributions are de-
termined by a family of distributions on some appro-
priate, potentially lower-dimensional submanifold, which
we call the support S of the distribution. Our definition
begins with the simplest such models, in which the sup-
port S of F is known and the knowledge of the parame-
ters uniquely identifies the distribution within a family, to
increasingly more complex cases in which the support of
the latent position distribution may itself be unknown. La-
tent structure models have two critical components: one,
a known or estimable curve or manifold, the structural

support, on which the latent position distribution F is
supported; and two, a further so-called underlying distri-
bution G on some other fixed subset of Euclidean space
(in our one-dimensional setting, this is the unit interval).
Therefore, they naturally bifurcate along these two axes:
first, whether the structural support is known, can be con-
strained to belong to a certain family of submanifolds, or
is (mostly) unconstrained; second, whether the underly-
ing distribution G in Euclidean space is known, paramet-
rically specified, or nonparametric. We consolidate these
hierarchical notions in Definition 6 below.
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For simplicity and clarity, in this paper we define
and focus on one-dimensional latent structure models, in
which the structural support S is a curve C. Given a fi-
nite length inner product curve C with minimal subspace
dimension d , let TC(R) be a tubular neighborhood (see
Lee, 2013) of radius R about C. To avoid pathologies, we
restrict ourselves to structural support curves that satisfy
certain regularity conditions.

DEFINITION 5. A smooth, finite length inner prod-
uct curve C of minimal subspace dimension d is said to
be a LSM-regular structural support curve if there exists
a tubular neighborhood of positive radius R > 0 about
C on which the projection map πC : Rd 
→ C satisfying
πC(x) = arg miny∈C |x − y| is well-defined and twice-
continuously differentiable.

DEFINITION 6 (One-dimensional latent structure
model). Let C be an LSM-regular curve of minimal
subspace dimension d . Let p(t) : [0,1] → C denote the
arclength reparameterization of C. Let G be a family of
distributions {G : G ∈ G} on [0,1] with associated dis-
tribution measures {μG : G ∈ G}. Let F denote the fam-
ily of associated induced distributions on C; that is, for
each F in F , the distribution measure μF is given by
μF (B) = μG(p−1(B)) for any Borel set B . We say that
a RDPG with i.i.d. latent position matrix X is a para-

metric latent structure random graph with known uni-

variate support C and underlying distribution G if the
latent position vectors Xi are distributed according to
F = G(p−1) where G belongs to some regular paramet-
ric family G� = {Gθ ; θ ∈ � ⊂ R

l} on [0,1] and p and C

are known. We write

Xi ∼ F = Gθ

(

p−1)

, θ ∈ �; suppF = C.

We say that an RDPG with i.i.d. latent position matrix
X is a nonparametric latent structure random graph with

known univariate support C if p and C are both known,
and F = G(p−1), where G ∈ G with G a family of distri-
butions on [0,1] that is not a subset of any regular para-
metric family of distributions on [0,1].

Next, we say that an RDPG with i.i.d. latent position
matrix X is a parametric latent structure random graph

with parametrically determined univariate support and

underlying distribution G if, first, the rows Xi of X are
given by the distribution F on C, where F = G(p−1) and
G belongs to a parametric family of distributions {Gθ :
θ ∈ � ⊂ R

l} on [0,1]; and second, the map p : [0,1] → C

is uniquely determined (up to orientation; see Remark 2)
by a vector η ∈ R

q . We say that an RDPG with i.i.d. la-
tent position matrix X is a nonparametric latent structure

random graph with parametrically determined univariate

support if p : [0,1] → C is uniquely determined (up to
orientation) by a vector η ∈ R

q and F = G(p−1), where
G ∈ G with G a family of distributions on [0,1] that is not

a subset of any regular parametric family of distributions
on [0,1].

Finally, we say that an RDPG with i.i.d. latent posi-
tion matrix X is a parametric latent structure random

graph with nonparametric univariate support and under-

lying distribution G if the rows Xi of X are given by dis-
tribution F = G(p−1), where G belongs to a parametric
family of distributions {Gθ : θ ∈ � ⊂ R

l} on [0,1] and p

is not constrained to be uniquely determined (up to ori-
entation) by a fixed vector η ∈ R

q . We say that an RDPG
with i.i.d. latent positions matrix X is a nonparametric la-

tent structure random graph with nonparametric univari-

ate support if the rows Xi of X are given by distribution
F = G(p−1), where G ∈ G with G a family of distribu-
tions on [0,1] that is not a subset of any regular parametric
family of distributions on [0,1], and p is not constrained
to be uniquely determined up to orientation by any fixed,
finite-dimensional vector.

REMARK 2 (Arc length and nonidentifiability up to ori-
entation). Because F is defined as an induced distribu-
tion on the curve C, the specification of the arc length
parameterization p is necessary to avoid nonidentifiabil-
ity. We remark that the arc length parameterization is
unique up to orientation; that is, up to the transformation
t 
→ 1 − t . Thus, our latent structure models are identifi-
able only up to an orientation. Hence latent structure mod-
els have two distinct sources of nonidentifiability. The
first is a nonidentifiability inherited directly from the ran-
dom dot product graph, namely invariance of the inner
product to orthogonal transformation. The second is the
parametrization nonidentifiability that governs how the
map p : [0,1] 
→ C is written, or equivalently, the loca-
tion of p(0) on C.

Figure 2 depicts precisely such a latent structure model.
Here, the underlying distribution G on [0,1] is a mix-
ture of two Beta distributions, shown in panel (a), and
the curve is the Hardy-Weinberg curve. On this curve, in
panel (b), we see the distribution of the latent positions
on the Hardy–Weinberg curve; this is a representation, on
the Hardy–Weinberg curve, of the transformed mixture of
Beta densities in the unit interval. Panel (c) of Figure 2
shows the random dot product graph generated from and
i.i.d. sample of latent positions on the Hardy–Weinberg
curve.

REMARK 3 (Stochastic block models as LSMs). We
emphasize that latent-structure models with one-dimen-
sional structural support can encompass stochastic block
models with fixed block probability vectors, because such
stochastic block models have a latent position distribution
F that is a discrete mixture. More precisely, let the sup-
port of F be given by k distinct points {x1, . . . , xk} in R

d

with weights {a1, . . . , ak}, respectively. Suppose these k

distinct points lie on a smooth, nonself-intersecting curve
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FIG. 2. (a): Unobserved density of a Beta mixture distribution on [0,1]. (b): Unobserved latent position distribution on Hardy–Weinberg curve

(c): Observed realization of a random dot product graph generated from latent positions on the Hardy–Weinberg curve.

C, with p : [0,1] → C its arc length parameterization. Let
G be a distribution on [0,1] supported on the set of points
p−1(xi) with weights {a1, . . . , ak}. Then F = G(p−1).
Note that C need not be unique. If the estimation task is
that of determining these point masses and their weights,
the particular choice of C is immaterial. For more on ef-
ficient estimation of weights in a stochastic block model,
we refer the reader to Tang, Cape and Priebe (2017).

3. INFERENCE ON LATENT STRUCTURE MODELS:

SUMMARY OF SPECTRAL METHODS FOR RDPGS

Since a latent structure random graph is necessarily a
random dot product graph, our program for inference on
a latent structure models is to follow an algorithm that
leverages the accuracy of spectral embeddings for latent
position estimation in random dot product graphs. First,
we embed the adjacency matrix of the LSM into the cor-
rect embedding dimension d (the rank of the RDPG) or
we embed it into a suitable estimate d̂ of this dimension.
This yields a collection of estimates X̂i of the true latent
positions Xi . Second, we consider rotating (due to non-
identifiability) and projecting (due to the noise inherent
in these estimates) the X̂i estimates on to the curve C.
Denote these rotated and projected estimated latent posi-
tions by X̆i ; by construction, they lie on C. Third, since
the true latent positions Xi are independent and identi-
cally distributed with distribution Fθ , under suitable reg-
ularity conditions, classical maximum likelihood estima-
tion using the Xi points yields efficient estimation of θ

with a variance of order 1/n. But because the rotated and
projected estimated latent positions X̆i are sufficiently
“close” to the true latent positions, we next treat these
estimates as the actual “data”—that is, we regard the X̆i

as appropriate substitutes for the actual Xi points, even
though the latter are i.i.d. from the distribution F , and
the former are decidedly not. Finally, we conduct M-
estimation of parameters of F using the X̆i , and when
considering a one-dimensional latent structure model in
which G = p−1(F ) belongs to some parametric or non-
parametric family in [0,1], we apply classical parametric

or nonparametric estimation techniques to Ŷi = p−1(X̆i).
Note that the Ŷi points are not independent. They are
not unnoisy. They are pullbacks of rotations of projec-
tions. Despite these limitations, under reasonable regu-
larity conditions on a parametric one-dimensional latent
structure model, M-estimation for the parameters θ of G

using the points Yi has the same parametric rate of con-
vergence to the true value θ0 as we might obtain with the
pullbacks of the true latent positions Xi .

As we noted earlier, this parametric rate of convergence
is somewhat surprising, and is part of a larger wish list
for spectral estimates. Our prior work demonstrates that
the spectrally-estimated latent positions are consistent and
asymptotically normal, and we prove here that these latent
position estimates can generate parametric M-estimators
that are asymptotically efficient.

We begin by defining the adjacency spectral embedding
of a random dot product graph.

DEFINITION 7 (Adjacency spectral embedding (ASE)).
Given a positive integer d ≥ 1, the adjacency spectral em-

bedding (ASE) of A into R
d is given by X̂ = UAS

1/2
A

where

|A| =
[

UA|U⊥
A

][

SA ⊕ S
⊥
A

][

UA|U⊥
A

]⊤

is the spectral decomposition of |A| = (A⊤
A)1/2 and SA

is the diagonal matrix of the d largest eigenvalues of |A|
and UA is the n × d matrix whose columns are the corre-
sponding eigenvectors.

We now describe a consistency result in the 2 → ∞
norm that provides uniform control of deviations between
the estimated and true latent positions (Lyzinski et al.,
2017). This uniform control can matter significantly for
the subsequent inference task, as we describe below. Fur-
thermore, an analogous result of this type can and has
been extended to much more general random matrix per-
turbations, including covariance matrix estimation (Cape,
Tang and Priebe, 2019). We state our 2 → ∞ bound here
in a form tailored to the RDPG setting.
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THEOREM 1 (Theorem 5, Lyzinski et al., 2017). Let

An ∼ RDPG(Xn) for n ≥ 1 be a sequence of random dot

product graphs where the Xn is assumed to be of rank

d for all n sufficiently large. Let Pn = XnX
⊤
n and let

δn = maxi

∑

j Pn,ij be the maximum expected degree. De-

note by X̂n the adjacency spectral embedding of An and

let (X̂n)i and (Xn)i be the ith row of X̂n and Xn, respec-

tively. Let En be the event that there exists an orthogonal

transformation Wn ∈ R
d×d such that

max
i

∥

∥(X̂n)i − Wn(Xn)i
∥

∥ ≤ Cd1/2 log2 n

δ
1/2
n

,

where C > 0 is some fixed constant. Then En occurs

asymptotically almost surely; that is, Pr(En) → 1 as n →
∞.

Having established that the estimated latent positions
are consistent in this 2 → ∞ norm, we next point out
that the latent position estimates are asymptotically nor-
mal. Specifically, for a d-dimensional random dot product
graph with i.i.d. latent positions, there exists a sequence
of d × d orthogonal matrices Wn such that for any row
index i,

√
n(Wn(X̂n)i − (Xn)i) converges as n → ∞ to a

mixture of multivariate normals (see Athreya et al., 2016).

THEOREM 2 (Central Limit Theorem for rows of
ASE; Theorem 1, Athreya et al., 2016). Let (An,Xn) ∼
RDPG(F ) be a sequence of adjacency matrices and as-

sociated latent positions of a d-dimensional random dot

product graph according to an inner product distribu-

tion F . Let �(x,�) denote the cdf of a (multivariate)
Gaussian with mean zero and covariance matrix �, eval-

uated at x ∈ R
d . Then there exists a sequence of orthog-

onal d-by-d matrices (Wn)
∞
n=1 such that for all z ∈ R

d

and for any fixed index i,

lim
n→∞P

[

n1/2(X̂nWn − Xn)i ≤ z
]

=
∫

suppF
�

(

z,�(x)
)

dF(x),

where

(2)
�(x) = �−1

E
[(

x
⊤X1 −

(

x
⊤X1

)2)

X1X
⊤
1

]

�−1

with � = E
[

X1X
⊤
1

]

and X1 ∈ R
d has distribution F .

We recall that when F is a mixture of K point masses,
that is,

F =
K

∑

k=1

πkδνk
, π1, . . . , πK > 0,

∑

k

πk = 1,

then (X,A) ∼ RDPG(F ) is a K-block stochastic block-
model graph. Thus, for any fixed index i, the event that Xi

is assigned to block k ∈ {1,2, . . . ,K} has nonzero prob-
ability and hence one can condition on the block assign-
ment of Xi to show that the conditional distribution of√

n(Wn(X̂n)i − (Xn)i) converges to a multivariate nor-
mal. More specifically,

(3) P
{√

n(WnX̂n − Xn)i ≤ z | Xi = νk

}

−→ �(z,�k),

where �k = �(νk) is as defined in equation (2).
Strictly speaking, to prove the efficiency of M-estimates

of underlying parameters in a one-dimensional latent
structure model, the asymptotic normality of the esti-
mated latent positions is not required, but the classical
nature of such a central limit theorem warrants its in-
clusion here. What is required to prove such efficiency,
though, is the following key empirical process result from
Tang et al. (2017), below. This empirical process result
implies the uniform convergence of scaled sums of dif-
ferences of functions of estimated and true latent posi-
tions, provided the functions belong to a sufficiently reg-
ular class. We first recall certain definitions, which we re-
produce from van der Vaart and Wellner (1996). Let Xi ,
1 ≤ i ≤ n be identically distributed random variables on a
measure space (X ,B), and let Pn be their associated em-

pirical measure; that is, Pn is the discrete random measure
defined, for any E ∈ B, by

Pn(E) = 1

n

n
∑

i=1

1E(Xi).

Let P denote the common distribution of the random
variables Xi , and suppose that F is a class of measur-
able, real-valued functions on X . The F -indexed empiri-

cal process Gn is the stochastic process

f 
→Gn(f ) =
√

n(Pn − P)f

= 1√
n

n
∑

i=1

(

f (Xi) −E
[

f (Xi)
])

.

Under certain conditions, the empirical process {Gn(f ) :
f ∈F} can be viewed as a map into ℓ∞(F), the collection
of all uniformly bounded real-valued functionals on F . In
particular, let F be a class of functions for which the em-
pirical process Gn = √

n(Pn − P) converges to a limiting
process G where G is a tight Borel-measurable element
of ℓ∞(F) (more specifically a Brownian bridge). Then F

is said to be a P -Donsker class.

THEOREM 3 (Theorem 4, Tang et al., 2017). Let

(Xn,An) for n = 1,2, . . . , be a sequence of d-dimensional

RDPG(F ). Let F be a collection of (at least) twice con-

tinuously differentiable functions on suppF with

sup
f ∈F,X∈suppF

∥

∥(∂f )(X)
∥

∥ < ∞;

sup
f ∈F,X∈suppF

∥

∥

(

∂2f
)

(X)
∥

∥ < ∞.
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Furthermore, suppose F is such that Gn = √
n(Pn − P)

converges to G, a P -Brownian bridge on ℓ∞(F). Then

there exists a sequence of orthogonal matrices Wn such

that as n → ∞,

(4) sup
f ∈F

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

(

f (WnX̂i) − f (Xi)
)

∣

∣

∣

∣

∣

→ 0,

where {X̂i}ni=1 are the rows of X̂n. Therefore, the F -

indexed empirical process

(5) f ∈ F 
→ Ĝnf = 1√
n

n
∑

i=1

(

f (WnX̂i) −E
[

f (Xi)
])

also converges to G on ℓ∞(F).

Theorem 3 is in essence a functional central limit the-
orem for the estimated latent positions {X̂i} in the RDPG
setting, and we emphasize that for any n, the {X̂i}ni=1 are
not jointly independent random variables, and therefore
Theorem 3 is a functional central limit theorem for de-

pendent data. Due to the nonidentifiability of random dot
product graphs, there is an explicit dependency on a se-
quence of orthogonal matrices Wn. The main technical
result in Theorem 3 is equation (4), which we use to show
the asymptotic normality of M-estimation for the param-
eters of LSMs in Section 4.

4. ASYMPTOTICALLY EFFICIENT M-ESTIMATION IN

LATENT STRUCTURE MODELS

Suppose our parameter space is � ⊂ R
l and assume

this is a open, nonempty, connected set with compact
closure. We denote a particular parameter value by θ =
(θ1, . . . , θj ). Let F be an inner product distribution with
suppF ⊂ B(0,R0) where B(0,R0) is the ball of radius
R0 > 0 about 0 in R

d . We assume that F represents the
cumulative distribution function of a one-dimensional la-
tent structure model with known support C, with C an
LSM-regular curve of minimal subspace dimension d . Let
p : [0,1] → C be the smooth and smoothly invertible arc
length parameterization of C. For the underlying distribu-
tion of our LSM, let Gθ : θ ∈ � be a parametric family of
cumulative distribution functions supported on the unit in-
terval [0,1], and with density g(·, θ). Let π : Rd → C be
the distance-minimizing projection of a point in R

d to C.
Since C is an LSM-regular curve, there exists a tubu-

lar neighborhood TC(R) of radius R > 0 about C for
which the projection π onto C is well defined and suffi-
ciently smooth. Therefore, there exist R > R2 > R1 > 0
for which we can construct a sufficiently smooth function
f (x, θ) :Rd×l →R satisfying

(6) f (x, θ) =
{

logg
(

p−1(

π(x)
)

, θ
)

if x ∈ TC(R1),

0 if x /∈ TC(R2).

Observe that such a function can always be constructed
using mollifiers; that is, we can write

f (x, θ) = logg(p−1(

π(X), θ
)

· h(x),

where h(x) is a mollifier—a smooth function that is iden-
tically equal to 1 on TC(R1) and that vanishes outside of
TC(R2). Now, the first radius, R0, is that of a ball sufficient
to encompass the necessarily compact support of F . Next,
R > 0 is chosen sufficiently small so that the projection
operator π onto the closest point in C is well defined in the
tubular neighborhood TC(R). We stress that R depends
only on C. Finally, R1 and R2, with 0 < R1 < R2 < R,
are defined so that a mollification of log(p−1(π(x)) can
be constructed with the following properties: within the
tubular neighborhood TC(R1), the mollification f is equal
to log(g(p−1(π(x)), θ). Outside of TC(R2), f vanishes.
Observe that f is necessarily compactly supported.

Let fj (x, θ) :Rd×l →R be defined as follows:

fj (x, θ) = ∂f

∂θj

(x, θ).

Because of how f , above, is defined, it is immediate that

fj (x, θ) = ∂ logg(p−1(π(x)), θ)

∂θj

for x ∈ TC(R1), and, as before, fj (x, θ) = 0 for all θ ∈
� and all x outside of TC(R2). We require that fj be
twice continuously differentiable with respect to θj for
j ∈ 1, . . . , l and x1, . . . , xd .

Since we are considering maximum likelihood esti-
mates for θ , which are equivalently expressible as min-
imum contrast estimates (where we minimize the sum of
the negations of the log likelihoods), we assume that θ̂n is
given by

θ̂n = arg min

[

−1

n

n
∑

i=1

f (Xi, θ)

]

.

Suppressing, for notational convenience, the dependence
of θ̂n on n, we assume that θ̂ satisfies

1

n

n
∑

i=1

�(Xi, θ̂ ) = 0,

where

�(X,θ) =
(

∂ logg(p−1(π(X)), θ)

∂θ1
, . . . ,

∂ logg(p−1(π(X)), θ)

∂θl

)

=
(

f1(X, θ), . . . , fl(X, θ)
)

and X is a random draw from the latent structure distri-
bution Fθ . We assume the following standard regularity
conditions on f (x, θ) and fj (x, θ) (see Bickel and Dok-
sum, 2016, p. 304, p. 328, p. 384). We reproduce these
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familiar conditions here to reinforce the fact that, for our
main theorem establishing asymptotic efficiency for M-
estimates of graph parameters using the estimated latent
positions X̂i in place of the true latent positions Xi , the
standard regularity conditions still suffice.

(a) (Uniqueness) For any θ0 ∈ �, the equation

(7)
∫

�(x, θ) dFθ0(x) = 0

for θ ∈ �, has a unique solution at θ = θ0.
(b) (L2 boundedness on partial derivatives, nonsingu-

larity of the Hessian, and uniform convergence of sample
means) If X ∼ Fθ0 = Gθ0(p

−1), then

(8) Eθ0

(
∣

∣�(X,θ0)
∣

∣

2)

< ∞;

and the l × l matrix of second partial derivatives of f de-
noted by

D�(X,θ);
(

D�(X,θ)
)

jk = ∂fj (X, θ)

∂θk

is such that Eθ0 |D�(X,θ0)| < ∞ and Eθ0[D�(X,θ0)]
is invertible. (In our specific case, where f is the log-
likelihood, the negation of this matrix is the familiar
Fisher information.)

Next, if εn is a positive sequence of real numbers con-
verging to zero, then

(9)

Pθ0

(

sup
t

{
∣

∣

∣

∣

∣

1

n

n
∑

i=1

[

D�(Xi, t) − D�(Xi, θ0)
]

∣

∣

∣

∣

∣

:

|t − θ0| < εn

})

→ 0

as n → ∞
(c) (Sufficient conditions for consistency of a mini-

mum contrast estimate) The function Q(θ0, θ) defined by

Q(θ0, θ) = Eθ0

[

−f (X, θ)
]

has a unique minimum at θ0, and

(10) inf
{

Q(θ0, θ) : |θ − θ0| ≥ ε
}

> Q(θ0, θ0) ∀ε > 0,

where ‖ · ‖ denotes the Euclidean norm in R
l . Further-

more, we have the following uniform weak law:

(11)

Pθ0

(

sup

{
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

−f (Xi, θ)
)

− Q(θ0, θ)

∣

∣

∣

∣

∣

: θ ∈ �

})

→ 0,

where Pθ0 connotes the probability computed when θ =
θ0.

Let X1, . . . ,Xn be i.i.d. Fθ0 = Gθ0(p
−1) on C be our

collection of latent positions, organized by rows into
the latent position matrix X. Since Xi are i.i.d. Fθ0 =

Gθ0(p
−1), we observe that the maximum likelihood es-

timate for θ0, denoted θ̂n, is, under the above regular-
ity assumptions, well defined, consistent and asymptot-
ically normal, with a variance given by the inverse of
the Fisher information (again, see Bickel and Doksum,
2016, for a proof of this quintessentially classical result).
Namely, suppose we define (suppressing for notational
convenience a dependence here on sample size n) θ̂ via

(12) θ̂ = arg min

[

−1

n

n
∑

i=1

f (Xi, θ)

]

then θ̂ is consistent for θ0 and, furthermore,

(13)
√

n(θ̂ − θ0) → N
(

0, I−1(θ0)
)

,

where I (θ0) = −Eθ0[D�(X,θ0)] is the Fisher informa-
tion matrix.

Next, suppose A is the adjacency matrix of a random
dot product graph with this latent position matrix X, and
let X̂ be the adjacency spectral embedding of A. Let Wn

be the orthogonal transformation satisfying

(14) min
W∈O(d×d)

‖X̂W − X‖.

Let X̂r = X̂Wn denote the properly rotated latent posi-
tions. For convenience, we will employ a slight abuse of
notation and use X̂ to denote this rotated version of our la-
tent positions, so that in what follows below, X̂ = X̂r . Let
{X̂i}ni=1 be the rows of X̂, and suppose that θ̃ is defined
analogously to the maximum likelihood estimate, except
with the X̂i points in place of the true latent positions:

(15) θ̃ = arg min

[

−1

n

n
∑

i=1

f (X̂i, θ)

]

.

We emphasize that θ̃ is an M-estimate for θ determined
not by the unobserved true latent positions Xi , but rather
their estimates X̂i . Note that θ̃ satisfies

1

n

n
∑

i=1

fj (X̂i, θ̃ ) = 0

for all j .
Our principal result is that a minimum contrast esti-

mate involving the estimated latent positions possesses
the same desirable asymptotic properties as the classical
maximum likelihood estimator θ̂ that is a function of the
true i.i.d. latent positions. In particular, we will show that

√
n(θ̃ − θ0) → N

(

0, I−1(θ0)
)

,

which is the content of Theorem 4 below. The proof of
this result depends on two pieces: first, a consistency re-
sult, which is that θ̂ − θ̃ converges to zero in probability;
and second, an asymptotic normality result under a

√
n

scaling. Under sufficient smoothness conditions for the
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log likelihoods, consistency of the M-estimates follows
from the consistency of the adjacency spectral embedding
for the true latent positions—that is, from the 2 → ∞-
norm result of Theorem 1. The asymptotic normality re-
sult, on the other hand, requires a stronger convergence,
precisely because we need to show that

√
n(θ̃ − θ) has a

limiting normal distribution. Thus the asymptotic normal-
ity is consequence of our Donsker analogue, equation (4),
which gives a uniform convergence to zero of the scaled
sum [ 1√

n

∑n
i=1 f (X̂i) − 1√

n

∑n
i=1 f (Xi)]. To guarantee a

parametric rate for our M-estimates, it is crucial that this
convergence to zero occur even when the scaling is of or-
der 1/

√
n, not 1/n.

We begin with the more straightforward consistency re-
sult.

LEMMA 1. Let θ̂ and θ̃ be as defined in equations

(12) and (15), above. Let c > 0 be any positive constant.
Then

Pθ0

(

‖θ̂ − θ̃‖ > c
)

→ 0.

PROOF. We first impose a certain uniform continu-
ity requirement on the parametric family of distributions
Gθ . That is, suppose that ℓ(x, y) : Rd × R

d → R is such
that any ε > 0, there exists δ > 0 for which ‖x − y‖ < δ

guarantees |ℓ(x, y)| < ε. Letting λ be Lebesgue measure
in R

1, we require that for λ-almost all x, y ∈ [0,1], all
θ ∈ �, and all j ∈ {1, . . . , l},
(16)

∣

∣logg(x, θ) − logg(y, θ)
∣

∣ ≤ ℓ(x, y).

The smoothness of the map p−1 onto the curve C defining
the structural support for the latent structure model then
ensures that this same uniform continuity property holds
for f (x, θ). By Theorem 1, we note that with probability
tending to one as n → ∞,

(17)
∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (Xi, θ) − 1

n

n
∑

i=1

f (X̂i, θ)

∣

∣

∣

∣

∣

≤ max
1≤i≤n

ℓ(X̂i,Xi)

→ 0

because of the 2 → ∞ bound given in Theorem 1. Thus,
the sequence of functions

1

n

n
∑

i=1

f (X̂i, θ) − 1

n

n
∑

i=1

f (Xi, θ)

converges in probability to 0 uniformly in θ . Because of
this, equation (11) guarantees that

1

n

n
∑

i=1

f (X̂i, θ)

converges uniformly in probability to Q(θ, θ0) as well.
With an argument exactly analogous to that in Bickel and
Doksum (2016), Section 5.2, this implies that θ̃ converges
to θ0 in probability as well. �

We remark that many distributions, including the
Beta(a, b) family, vanish at the endpoints of [0,1], and
hence a truncated version of the log-likelihood for these
distributions will satisfy the uniform continuity require-
ment as long as we restrict ourselves to compact parame-
ter spaces.

We will use this to show the stronger result that
√

n(θ̂ − θ̃ )

converges to zero in probability. Once we have proved this
stronger result, we can write

√
n(θ̃ − θ0) =

√
n(θ̃ − θ̂ ) +

√
n(θ̂ − θ0).

As we discussed earlier, classical results on maximum
likelihood estimation ensure that the latter of these two
summands converges to a normal distribution, and we will
show that the first summand converges in probability to
zero. Slutsky’s Theorem then establishes the asymptotic
efficiency of the M-estimate obtained with the estimated
latent positions X̂i , which is stated next.

THEOREM 4. Suppose Xi ∼ i.i.d. Fθ0 are latent po-

sitions of a latent structure model satisfying the regular-

ity assumptions delineated above. Let A be the adjacency

matrix of the random dot product with latent positions X,
and let X̂ be the suitably-rotated adjacency spectral em-

bedding of A. Let θ̂ and θ̃ satisfy

θ̂ = arg min

[

−1

n

n
∑

i=1

f (Xi, θ))

]

,

θ̃ = arg min

[

−1

n

n
∑

i=1

f (X̂i, θ)

]

.

Then
√

n(θ̃ − θ0) → N
(

0, I−1(θ0)
)

where I (θ0)jk = −Eθ0

(

∂2f (X, θ)

∂θj∂θk

∣

∣

∣

∣

θ=θ0

)

denotes the Fisher information matrix.

PROOF. Observe that
√

n(θ̂ − θ0) converges to a nor-
mal distribution with mean zero and variance I−1(θ0)

(see, e.g., Bickel and Doksum, 2016, 6.2.2). Thus, it re-
mains to show that

√
n(θ̂ − θ̃ ) → 0

in probability. To this end, first note that for every
j ∈ 1, . . . , l, fj (·, θ) is a compactly supported, twice-
continuously differentiable function on R

d . Letting F =
{fj (·, θ) : θ ∈ �}, we find that this collection of functions
is a Donsker class (van der Vaart and Wellner, 1996). As
such, equation (4) guarantees that

sup
θ∈�

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

(

fj (X̂i, θ) − fj (Xi, θ)
)

∣

∣

∣

∣

∣

→ 0.



INFERENCE IN LATENT STRUCTURE MODELS 79

(Note that because we assume that the matrix of estimated
latent position has been appropriately rotated, we can sup-
press here the sequence of orthogonal transformations that
are part of Theorem 3.) Therefore, we have that

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

(fj (X̂i, θ̃ ) − fj (Xi, θ̃)

∣

∣

∣

∣

∣

→ 0.

Note that

1√
n

n
∑

i=1

fj (X̂i, θ̃ ) = 0,

and hence

1√
n

n
∑

i=1

fj (Xi, θ̃ )

can be made arbitrarily small, with probability close to
1, for n large. Furthermore, by definition, 1

n

∑n
i=1 fj (Xi,

θ̂ ) = 0. Suppose then that there exists positive constants
c1 and α such that for infintely many n,

Pθ0

(

‖θ̃ − θ̂‖ > c1/
√

n
)

≥ α > 0.

Expanding the function hj (θ) = 1
n

∑n
i=1 fj (Xi, θ) in a

second-order Taylor expansion around θ̂ , we find

hj (θ̃) = hj (θ̂) + ∇h⊤
j (θ̂)(θ̃ − θ̂ )

+ [θ̃ − θ̂ ]⊤H
(

θ∗
j

)

[θ̃ − θ̂ ],
where H is the Hessian matrix of hj evaluated at some
point θ∗

j on the line segment between θ̂ and θ̃ . Our
smoothness assumptions imply that the Hessian is bounded
in spectral norm. From the above equality, we conclude

√
nhj (θ̃) = 0 + ∇h⊤

j (θ̂)
√

n(θ̃ − θ̂ )

+
√

n(θ̃ − θ̂ )⊤H
(

θ∗
j

)

(θ̃ − θ̂ ).

Put

vj (n) =
√

n(θ̃ − θ̂ )⊤H
(

θ∗
j

)

(θ̃ − θ̂ ).

Because of the boundedness of the Hessian and the fact
that θ̃ − θ̂ → 0 in probability, we have

|vj (n)|
‖√n(θ̃ − θ̂ )‖

→ 0

in probability, so that the error term vj is of smaller order
than the norm of

√
n(θ̃ − θ̂ ). Now, consider the vectors

h =
[

h1(θ̃), . . . , hl(θ̃)
]⊤ and v =

[

v1(n), . . . , vl(n)
]⊤

.

Observe that if we define S by

Sbc(X, θ) = −1

n

n
∑

i=1

∂2f (Xi, θ)

∂θb∂θc

,

for b, c ∈ 1,2, . . . , l, then

(18) S
−1(θ̂)

√
nh(θ̃) − S

−1(θ̂)v =
√

n(θ̃ − θ̂ ).

By equation (9) and the consistency of the maximum like-
lihood/minimum contrast estimate, we find that S

−1(θ̂) →
I−1(θ0). By our functional central limit theorem, the
first component on the left-hand side of (18), namely
S

−1(θ̂)
√

nh(θ̃), converges to zero. The norm of the sec-
ond component on the left-hand side of (18), namely
S

−1(θ̂)v, is of asymptotically smaller order than the right-
hand side; that is, of smaller order than

√
n(‖θ̃ − θ̂‖).

Hence if, for infinitely many n,

Pθ0

(√
n
∥

∥(θ̃ − θ̂ )
∥

∥ > c
)

≥ α > 0

we obtain a contradiction. Therefore,
√

n(θ̃ − θ̂ ) con-
verges to zero in probability. The result now follows from
the asymptotic normality of θ̂ , as stated in Eq.(13), and
Slutsky’s theorem. �

REMARK 4. We note that the definition of LSM in-
cludes the sparsity parameter ρn. If we let ρn → 0, so that
the graph densities decrease as n increases, then Theo-
rem 1 and Theorem 2 need to be adjusted accordingly.
For example, if ρn → 0, then the

√
n scaling in Theorem

2 is replaced by a scaling of
√

nρn; that is, the estimation

accuracy of the X̂ decreases as ρn decreases. Theorem 4
then needs to be restated, in that the efficiency of the {X̂i}
is identical to that of a smaller subsample of the {Xi};
more specifically, we subsample ρ

1/2
n of the Xi and use

them to estimate the parameters θ . This is unavoidable,
because sparser graphs contain less signal.

5. EXAMPLES OF EFFICIENT ESTIMATION AND

TESTING FOR LATENT STRUCTURE MODELS

To illustrate the results numerically, we first consider
the parametric latent structure model with known sup-
port, constructed as follows. Let G be the cumulative dis-
tribution function of the Beta(a, b) distribution, and let
r : [0,1] → C be the map r(t) = (t2,2t (1 − t), (1 − t)2).
Then C = Im(r) describes the Hardy–Weinberg (H − W )
curve in the simplex. Let p be the arc length parametriza-
tion of C.

Consider a random dot product graph with latent po-
sition matrix X whose rows are i.i.d. draws from F =
G(p−1) along the Hardy–Weinberg curve. Let A be the
adjacency matrix of this graph, and let X̂i be the ith row
of the corresponding adjacency spectral embedding, suit-

ably rotated. Recall that an appropriate rotation is nec-
essary because of the inherent nonidentifiability in our
model. We note that in the simulations we discuss below,
we generate the true latent positions first, and as such are
able to determine the particular orthogonal transformation
that optimally aligns the estimated latent position with the
true latent positions. When processing real data, of course,
this rotation is unknown. Manifold learning can still be
used for the estimation of a rotation of the curve. In two-
sample testing, this orthogonal nonidentifiability can be
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FIG. 3. (a) Beta(1,2) density (unobserved); (b) latent positions on H-W curve (unobserved); (c) RDPG with these latent positions (observed); (d)
adjacency matrix of RDPG (observed); (e) estimated latent positions around H-W curve; (f) M-estimated Beta density. See also Table 1.

addressed by by determining an optimal Procrustes fit be-
tween pairs of point clouds of estimated positions.

For notational simplicity, we continue to refer to X̂ as
the matrix of suitably rotated latent positions. Consider
Figure 3, which illustrates the components of a latent
structure model with known structural support and also
depicts our methodology for parametric estimation in this
context. In panel (a), we see the density Gθ = Beta(a =
1, b = 2) on the unit interval, and a subsample of points
ti , depicted as a rug plot, chosen from this density; this is
the underlying distribution for our latent structure model.

We do not observe this distribution. Because we are in a
parametric latent structure model, we assume the under-
lying distribution belongs to a parametric family (in this
case the Beta family), but we do not assume knowledge
of any or all of the relevant parameters. In panel (b), we
see the images of these points, p(ti), along the Hardy–
Weinberg curve; these are the true latent positions that
generate our random graph. Once again, we do not ob-
serve these points. In panel (c), we see the random dot
product graph generated from these true latent positions.
This is the network we actually do observe. In the panel
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TABLE 1
Mean-squared error of Beta a = 1, b = 2

parameters in an H-W LSM using true

and estimated latent positions.
Sample size n = 8000

a b

MSE(θ̂) 0.00014 0.00097
MSE(θ̃) 0.00015 0.0012

(d), we see the adjacency matrix for this network. It does
not seem obvious that an observation of the network or its
adjacency matrix would allow us to accurately estimate
the latent positions or the underlying Beta distribution.
And yet, in panel (e), we see the estimated latent posi-
tions given by the rows of the adjacency spectral embed-
ding for the random graph with the previously-specified
true latent positions; these follow the true latent positions
in panel (b). Last, in panel (f), we show the Beta(ã, b̃)

density that arises when computing the M-estimates for
the parameters a, b based on the estimated latent posi-
tions. This final panel shows a striking similarity to panel
(a), the true underlying distribution.

With our Beta parameters θ = (a = 1, b = 2), let θ̂ =
(â, b̂) be the estimates satisfying (12); that is, the max-
imum likelihood estimates based on the true latent po-
sitions, and let θ̃ = (ã, b̃) be the M-estimates satisfy-
ing (15); that is, the quasi-maximum likelihood estimates
based on the estimated latent positions. Table 1 shows the
mean-squared error (MSE) for each of these estimates at
sample size n = 8000, demonstrating that these estimates
yield comparable mean-squared error for n = 8000 (see
Table 3 for the MSE for other parameter values).

This simulation renders plausible our central claim
that in a latent structure model, M-estimation using the
estimated latent positions compares favorably to M-
estimation using the true latent positions.

We next consider the case when the support is un-
known, but parametric. As before, let G be the cumula-
tive distribution function of the Beta(a, b) distribution on
the unit interval, and ti ∈ [0,1] a collection of indepen-
dent, identically G-distributed random variables. Let C

be a curve with minimal subspace dimension d . Suppose
that C is the image of a map q : [0,1] → R

d where each
component qk(·) of q is a polynomial of some fixed de-
gree (e.g., quadratic). Once again, let p represent the arc
length parametrization of Im(q). Consider a latent struc-
ture random graph with adjacency matrix A whose latent
positions are given by Xi ∈ C, where, as before, Xi are
i.i.d. F = G(p−1). In this case, we have two separate es-
timation problems before us: an estimation of the parame-
ters defining each quadratic polynomial qk(t)—or, equiv-
alently, an estimation of the curve C; and second, an esti-
mation for the parameters a, b.

Considered individually, neither of these is insurmount-
able: if we have enough i.i.d. data centered along a poly-
nomial curve, we can estimate the curve. Similarly, given
enough i.i.d. draws of points in the interval, we can esti-
mate the parameters of our Beta distribution. But in our
setting, we have only non-i.i.d. data around an unknown

curve. Thus even if we could reasonably use the estimated
latent positions to recover the structure of the support of
our distribution F , there remains the recovery of parame-
ters in a wholly different space.

The efficiency of M-estimation composed with the ad-
jacency spectral embedding (in particular, as discussed in
Section 4, the consistency result of Theorem 1 and the
uniform convergence result of Theorem 3) allows us to
connect these two inference procedures. In the figures
below, we once again consider simulated data along the
Hardy–Weinberg curve. Instead of assuming knowledge
of the precise map p defining this curve, however, we as-
sume only that it is quadratic, and we attempt to learn
the parameters of this quadratic curve from the estimated
latent positions—that is, from the adjacency spectral em-
bedding of the latent structure random graph.

In particular, consider Figure 4. Each panel in Figure 4
shows a two-dimensional projection (on to the first two
coordinates) of estimated latent positions drawn from the
Hardy–Weinberg curve. That is, we first simulate 8000
points from a Beta distribution with various parameters:
(a = 1, b = 1); (a = 1, b = 2); (a = 2, b = 5) and (a =
5, b = 5). We consider the images of these points under
p : [0,1] → C, where p is the arc length parametriza-
tion of C, the Hardy–Weinberg curve. These are the true
latent positions Xi . We generate a random dot product
graph A with these latent positions, and then spectrally
embed A into d = 3 dimensions. Figure 4 shows scat-
ter plots of the first two coordinates of the estimated la-
tent positions; these are the blue dots around the black
Hardy–Weinberg curve C on which the true latent posi-
tions lie. We use these estimated latent positions to ob-
tain a best-fitting quadratic Bezier curve Ĉ (Gallier, 2000,
Prautzsch, Boehm and Paluszny, 2002) through these po-
sitions, shown in red. The quadratic restriction implies
that estimating the structural support of our latent struc-
ture model reduces to estimating three 3-dimensional pa-
rameters, so that we can reduce a nonparametric prob-
lem of curve-fitting to a parametric problem of the es-
timation of coefficients of a quadratic. Nevertheless, as
Figure 4 shows, the accuracy of the estimation of the
support can depend considerably on the Beta parameters
themselves; in the uniform (a = 1, b = 1) case, the esti-
mated Bezier curve tracks the true Hardy–Weinberg curve
nicely. At (a = 1, b = 2), we retain most of this accuracy.
At both (2,5) and (5,5), we see a marked deviation be-
tween the estimated curve (in black) and the true Hardy–
Weinberg curve (in red). In particular, as the parameters
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FIG. 4. Bezier curve estimates through the estimated latent positions for underlying distributions Beta(1,1) (top left); Beta(1,2) (top right);
Beta(2,5) (bottom left) and Beta(5,5) (bottom right).

(a, b) change, the points of the Beta distribution can clus-
ter around a central mode or, alternatively, tend to drift
further apart, toward the endpoints of the interval. These
alterations in the shape of the underlying distribution can
lead to a poor estimate of the parameters of the best-fitting
quadratic through the estimated points, resulting, in turn,
in a less-accurate estimate of the LSM’s support.

Finally, we consider the projections onto the estimated
Bezier curve Ĉ of each latent position, and then the inverse
images of these projected points p−1(π

Ĉ
(X̂i)) in the unit

interval. To obtain estimates for the Beta parameters, we
consider the M-estimate defined by

(19) â, b̂ = arg max
a,b

n
∑

i=1

logga,b

(

p−1(

π
Ĉ
(X̂i)

))

,

where ga,b is the Beta(a, b) density. Equation (19) is a
single-line summary of our entire methodology. In a la-
tent structure model random graph with unknown but
parametrically-determined support, we observe the adja-
cency matrix of the graph; compute the adjacency spectral
embedding to yield the estimated latent positions X̂i ; use
the consistency of these estimates for the true latent posi-
tions Xi to obtain an accurate estimate Ĉ of the true struc-
tural support C; then use the pullbacks of the projections
π
Ĉ
(X̂i) as inputs into an M-estimate for the parameters of

our underlying distribution Gθ . Because there is now dis-
tortion through curve estimation, projection and pullback,

we conjecture that consistency, at the parametric rate, is
achievable here, but that asymptotic efficiency may well
be lost.

Moreover, there are two particular issues with equa-
tion (19) that bear noting. The first is that any individ-
ual point p−1(π

Ĉ
(X̂i)) may correspond to an endpoint of

the unit interval, at which the underlying density may be
zero (as in the Beta case). To avoid this numerical ar-
tifact, we scale these points slightly, by an infinitesimal
ε > 0. We underscore again that the consistency of the la-
tent position estimates (Lyzinski et al., 2017) implies that,
as the sample size n grows, this adjustment affects an in-
creasingly smaller fraction of estimated latent positions,
and thus does not impact our limiting results. But it does
render necessary certain adjustments in the finite-sample
case. The second issue, as we mentioned earlier, is that the
while the Bezier curve can be accurately estimated in the
limit for any a, b, the finite-sample case is trickier, and the
error inherent in the estimation of the support can have un-
pleasant downstream consequences for the estimation of
the underlying parameters.

Predictably, the deteriorating quality of the Bezier
curve estimate also impacts the mean squared error of
our M-estimates for a and b. In Tables 2 and 3, we
present the MSE of our latent position estimates for (a =
1, b = 1); (a = 1, b = 2); (a = 2, b = 5); (a = 2, b = 2);
(a = 5, b = 5), with the sample sizes of n = 1000 and
n = 8000. Note the sharp contrast of the MSE for the
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TABLE 2
Mean-squared error of Beta parameters in an H-W LSM. Sample size n = 1000

MSE a = 1, b = 1 a = 1, b = 2 a = 2, b = 5

X (0.0061,0.0051) (0.00068,0.0028) (0.0044,0.039)

X̂ (inverse HW) (0.006,0.005) (0.004,0.019) (0.4,2.68)

X̂ (inverse Bezier) (0.019,0.02) (0.08,0.91) (1.1,13.52)

RE(trueX, inverse HW) (1,1) (5.9,6.8) (90,68.7)

RE(trueX, inverse Bezier) (3.1,3.9) (117,6.3) (250,346)

MSE a = 2, b = 2 a = 5, b = 5

X (0.0089,0.011) (0.051,0.051)

X̂ (inverse HW) (0.055,0.033) (1.14,0.99)

X̂ (inverse Bezier) (0.796,0.836) (14.15,14.18)

RE(trueX, inverse HW) (6.2,3) (22.4,19.4)

RE(trueX, inverse Bezier) (89,76) (277,278)

(a = 5, b = 5) case, which reflects the challenge of esti-
mating the support even when it is a parametrically speci-
fied curve. The impact of the parameters of the underlying
distribution Gθ on subsequent inference is a topic of cur-
rent work. Indeed, the distressingly large mean-squared
error for certain values of (a, b) highlights the utility, in
theory and practice, that one could derive from a second-
order Berry–Esseen result describing precisely how ro-
bust this procedure is to values of these parameters.

We have, thus far, focused on numerical estimation for
latent structure models when (i) the support is known and
the underlying distribution is parametric, and (ii) the sup-
port is unknown but parametrically specified, and the un-
derlying distribution is parametric. In Tables 2 and 3, we
see that for Beta(2,5), questionable quality of the Bezier
curve estimate can have negative consequences for sub-
sequent inference. As a transition to the case of nonpara-

metric estimation for the structural support curve, we con-
sider a two-sample test in the Hardy–Weinberg case. Let
A1 and A2 be two independent adjacency matrices for a
pair of latent structure models, both with underlying dis-
tribution Beta(2,5). Let X̂1 and X̂2 be the associated ad-
jacency spectral embeddings. Instead of curve-fitting, we
use isomap (Tenenbaum, de Silva and Langford, 2000)
to estimate interpoint geodesic distances between the pro-
jections of the estimated points X̂1,i (the ith row of X̂, for
1 ≤ i ≤ n) onto the unknown curve, and we scale these in-
terpoint distances to the unit interval. We repeat this pro-
cess with the X̂2,i points. Thus we now have two sets of
points in the unit interval, and we conduct a Kolmogorov–
Smirnov test of equality of distribution. For the alterna-
tive, we consider the case when one of the graphs is gener-
ated by Beta(2,5) and the other by Beta(3,4). Again, we

TABLE 3
Mean-squared error of Beta parameters in an H-W LSM. Sample size n = 8000

MSE a = 1, b = 1 a = 1, b = 2 a = 2, b = 5

X (0.00015,0.000083) (0.00014,0.00097) (0.0013,0.0098)

X̂ (inverse HW) (0.00023,0.000097) (0.00015,0.0012) (0.19,1.04)

X̂ (inverse Bezier) (0.0011,0.0011) (0.01,0.14) (0.61,10.92)

RE(trueX, inverse HW) (1.5,1.1) (1,1.2) (146,106)

RE(trueX, inverse Bezier) (7.3,13.2) (71,144) (469,1114)

MSE a = 2, b = 2 a = 5, b = 5

X (0.0008,0.0007) (0.0062,0.0039)

X̂ (inverse HW) (0.0013,0.0013) (0.19,0.13)

X̂ (inverse Bezier) (0.267,0.267) (11.55,11.48)

RE(trueX, inverse HW) (1.6,1.8) (30.6,33.3)

RE(trueX, inverse Bezier) (333,381) (1862,2943)
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use isomap to estimate the interpoint geodesic distances
between the projections of the estimated latent positions,
and conduct the same Kolmogorov–Smirnov test. We find
that the p-values in the case of the alternative (unequal
distributions) are stochastically smaller than the p-values
under the null. This illustrates that even when parametric
curve estimation goes awry, a nonparametric procedure
can still be feasible for some subsequent inference tasks.

This leads us directly to our last example, notewor-
thy because it provides a statistically principled resolu-
tion to an important open question in neuroscience. This
is an illustration of the utility of the latent structure model
for estimation and subsequent inference, even when the
structural support and underlying distribution are neither
known nor parametrically specified.

To situate this in context, we summarize material de-
scribed in far more extensive detail in Priebe et al. (2017)
(and encapsulated again in Athreya et al., 2018). In par-
ticular, recent developments in neuroscience and imaging
technology have rendered possible the full mapping of
the Mushroom Body connectome of the larval Drosophila

brain (see Eichler et al., 2017), which consists of four dis-
tinct neuron types— Kenyon Cells (KC), Input Neurons
(MBIN), Output Neurons (MBON), Projection Neurons
(PN)—and two distinct hemispheres (right and left). This
connectome can be condensed into a weighted, directed
adjacency matrix, specifying which neurons in the mush-
room body are synaptically connected to which other neu-
rons.

Our spectral embedding procedure can be adapted for
this weighted, directed adjacency matrix, and a suitable
embedding dimension can be estimated from the data
(again, see Priebe et al., 2017 for full details on the
spectral decomposition and dimension estimation herein).
In order to discern potential differences across the right
and left brains, we separately embed the left- and right-
hemisphere subgraphs. Neuroscientists conjecture that the
right and left hemispheres are bilaterally homologous—
that is, “structurally similar.” But prior to the formal elu-
cidation of a latent structure model, it was difficult even
to frame this question as a suitable test of hypothesis, let
alone provide a principled resolution to it.

However, by considering the mushroom body connec-
tome as a latent structure model with nonparametric struc-
tural support and nonparametric underlying distribution,
such a hypothesis test becomes both straightforward to
construct and feasible to implement. We focus on the
estimated latent positions corresponding to the KC neu-
rons and we once again use isomap to learn the struc-
ture of the associated support nonparametrically. As be-
fore, isomap returns interpoint geodesic distances be-
tween projections of the estimated latent positions; we
scale these to yield points Ŷi in the unit interval, and then
feed Ŷi into a Kolmogorov–Smirnov test for equality of
underlying distributions for the right and left KC neurons.

Figure 5 represents this visually. Because isomap es-
timates interpoint distances and not the unknown support
curve in R

d , with d = 6, we provide a two-dimensional
visualization of this estimated curve (shown below in red
and described in detail in Priebe et al., 2017), representing
the structural support of the KC neurons. The top panels
of Figure 5 show the estimated latent positions for both
the left and right hemisphere KC neurons, as well as a
two-dimensional version of the estimated support curve
for the right hemisphere alone, which indicates that the
support curve for the right hemisphere fits well the data
for the left hemisphere. The central panels of Figure 5
show the projections of the estimated latent positions for
each hemisphere onto the appropriate estimated support
curve for that particular hemisphere. Note that these pan-
els are a two-dimensional representation—the actual pro-
jections are in R6, not in R

2. The bottom panels of Fig-
ure 5 supply a kernel density estimate for the underlying
distribution G of the latent structure model for each hemi-
sphere.

We denote by ŶR
i and ŶL

i the two sets of scaled in-
terpoint distances obtained via isomap from the esti-
mated latent positions for the right and left hemisphere
KC neurons, respectively. Using these as inputs for a
Kolmogorov–Smirnov test, we find that we do not reject
the null hypothesis of equality of distribution—in fact, we
obtain a p-value here of 0.68. Moreover, Figure 5 depicts
this evidence in favor of our failure to reject the null: a
pair of quite similar density estimates for the underly-
ing distribution of the latent structure model for right and
left hemispheres. We emphasize, though, that the latent
position distribution is not invariant to a reparametriza-
tion of the structural support curve under the transforma-
tion t 
→ 1 − t of the unit interval. Indeed, if one of the
sets of projected points in the middle panels of Figure 5
were so reparametrized, this structural symmetry would
be destroyed. We find, rather encouragingly, that when
we reparametrize one support curve under this transfor-
mation, our p-value drops to essentially zero. This sen-
sitivity to orientation allows us to rule out the possibility
of an underlying uniform distribution—indeed, any un-
derlying symmetric distribution—for the KC neurons. We
conclude that we do not reject bilateral homology for KC
neurons in the mushroom body, but we do reject the hy-
pothesis of uniformity of underlying distribution.

The implications of this Kolmogorov–Smirnov p-value
merit deeper study. For a known curve, the asymptotic
validity of this p-value follows from our earlier results.
A learnt curve is a different matter, however. Never-
theless, we present in Figure 6 simulation evidence to
suggest that such p-values behave nearly uniformly un-
der the null. For this figure, under the null hypothesis
of equality of underlying distributions for points on the
Hardy–Weinberg curve, we generate a pair of LSM graphs
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FIG. 5. Two-dimensional representation of the estimated structural support, projection onto this estimated support for estimated latent positions

for KC neurons in the Mushroom Body connectome, and density estimates for the underlying distribution.

whose latent positions arise as the images on the Hardy–
Weinberg curve of a collection of n = 500 i.i.d. Beta
(a = 2, b = 5) points in the unit interval. We then use
the adjacency spectral embeddings for each of the two
graphs as inputs into isomap; these interpoint geodesic
distances are scaled to land in the unit interval. We finally
conduct a Kolmogorov–Smirnov test on these two sets of
points. In the alternative, we consider one graph to be gen-

erated with Beta (a = 2, b = 5), and the other with Beta
(a = 3, b = 4). A rigorous analysis of p-value behavior
in this type of Kolmogorov–Smirnov test is the subject of
ongoing investigation.

6. CONCLUSION

In closing, the latent structure model formalizes an intu-
itive premise that many random networks have both prob-
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FIG. 6. p-value distributions for the Kolmogorov–Smirnov test un-

der null (H0) and alternative (HA).

abilistic and geometric structure. Defining latent structure
models within the class of random dot product graphs pro-
vides the advantage of rendering these two components
distinctly. First, we specify the probabilistic component
of a one-dimensional LSM with an underlying distribu-

tion G on the unit interval, and second, we delineate the
geometric structure of the graph by specifying a curve C

as the structural support of the latent position distribution
F of the random dot product graph, where F is defined
by F = μG(p−1) and p : [0,1] 
→ C is the arc length
parametrization of C on the unit interval. The map p is
the connecting thread between points ti generated in [0,1]
according to G and the corresponding images Xi = p(ti)

that are the latent positions for the random graph. Because
one-dimensional latent structure models are random dot
product graphs that also depend on the parametrization
p of the structural support curve C, they have two non-
identifiabilities. One is an immediate consequence of the
invariance of the random dot product graph to orthogonal
transformations of the latent positions. The second non-
identifiability arises from the fact that the map p can be
orientation-reversed by considering t 
→ 1 − t .

Framed as random dot product graphs with structural
constraints, latent structure models provide an interme-
diate point between simple stochastic block models and
more general, unconstrained random dot product graphs.
Furthermore, by separating the probabilistic and geomet-
ric sources of network regularity, we can construct latent
structure models according to natural demarcations of in-
creasing probabilistic or geometric complexity: the under-
lying distributions on the unit interval can be known, para-
metrically specified, or nonparametric; and similarly the
structural support curves C can be known, parametrically
specified, or nonparametric.

Our main result here is that, to perform efficient esti-
mation of the parameters of a parametric latent structure

model with known support, one needs only the estimated
latent positions X̂i arising from a spectral decomposition
of an adjacency matrix generated by the true latent po-
sitions Xi . One does not need to observe the true latent
positions themselves. The efficiency of M-estimation via
the adjacency spectral embedding is part of a broader pro-
gram in which spectral decompositions of adjacency ma-
trices are proven to be consistent and asymptotically nor-
mal, as well as to satisfy a Donsker-class functional cen-
tral limit theorem. Furthermore, the power of the adja-
cency spectral embedding extends beyond this efficiency.
Specifically, because the adjacency spectral embedding
accurately estimates the true latent positions of a latent
structure model, it can be simultaneously deployed in two
directions: for classical estimation of the underlying dis-
tribution G, whether parametric or nonparametric, as well
as for manifold learning or curve-fitting of the structural
support C.

We provide numerical simulations in the case of a
latent structure model with underlying distributions be-
longing to the parametric Beta(a, b) family on the unit
interval, with structural support C the Hardy–Weinberg
curve in the simplex. For estimating the underlying pa-
rameters (a, b), we exhibit mean-squared error of a com-
parable order whether using parametric M-estimates of
(a, b) from the true or the estimated latent positions.
Moreover, even if we do not assume full knowledge of
this Hardy–Weinberg curve but merely constrain the es-
timate to be quadratic, we generate best-fitting Bezier
curves through the point cloud of estimated latent posi-
tions, thus producing an estimate Ĉ for the structural sup-
port. Thereafter, we perform M-estimation with the points
Ŷi = p−1(π

Ĉ
(X̂i)) in the unit interval (recall that π is the

projection map). We show that M-estimation for (a, b)

using the points Ŷi , which are pullbacks of projections of
X̂i onto the estimated curve Ĉ, also compares favorably
with M-estimation for (a, b) using the original, true latent
positions Xi . We reiterate, though, that the accuracy of
these classical statistical estimates for (a, b) is impacted
by the accuracy of the estimation for the support C. On-
going work includes the development of a Berry–Esseen
result that characterizes finite-sample performance of this
M-estimation procedure and its dependence on the under-
lying distribution G.

When the structural support is neither known nor para-
metrically specified, manifold learning procedures can
be successfully exploited for subsequent inference. We
demonstrate how the latent structure model provides the-
oretical underpinning for testing a hitherto-open neuro-
scientific question on bilateral homology in the right and
left hemispheres of the larval Drosophila connectome. We
model this connectome as a latent structure graph and fo-
cus on a specific type of neural cell, the Kenyon cell; we
illustrate the use the estimated latent positions to learn
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the structural support for the Kenyon cells in the right
and left Drosophila hemispheres. In practice, we leverage
isomap to yield scaled, interpoint geodesic distances be-
tween estimated latent positions. We extract from this two
sets of points in the unit interval, one for each hemisphere.
A classical Kolmogorov–Smirnov test results in a failure
to reject the null hypothesis that the right and left hemi-
sphere subgraphs have the same underlying distributions.
However, if we reorient the estimated curve for one hemi-
sphere but not the other, by considering t 
→ 1 − t in the
map p̂ : [0,1] 
→ Ĉ for one hemisphere, we find that we do

reject the null hypothesis of equality of underlying distri-
bution. From the point of view of geometric structure, this
lack of symmetry is reassuring, and moreover it allows us
to reject the hypothesis that the underlying distribution is
uniform.

Current research concerns theoretical justification of
efficiency when the support is unknown and must be
learned, an analysis of kernel density estimation and
testing for the nonparametric case, as well as the for-
mal development of latent structure models with higher-
dimensional support. The simplicity and approximability
of latent structure models is an argument for their use in
representing network phenomena, and the efficiency of
spectrally-derived M-estimates for LSM parameters is a
useful dividend. The latent structure model harmonizes
classical statistics, geometry and manifold learning, and
as such is an elegant platform for network inference.
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