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Abstract

When analyzing the productivity of �rms� one may want to compare how the �rms
transform a set of inputs x �typically labor� energy or capital� into an output y �typically
a quantity of goods produced�� The economic e�ciency of a �rm is then de�ned in terms
of its ability of operating close to or on the production frontier which is the boundary of
the production set� The frontier function gives the maximal level of output attainable by a
�rm for a given combination of its inputs� The e�ciency of a �rm may then be estimated
via the distance between the attained production level and the optimal level given by the
frontier function� From a statistical point of view� the frontier function may be viewed as the
upper boundary of the support of the population of �rms density in the input and output
space� It is often reasonable to assume that the production frontier is a concave monotone
function� Then� a famous estimator� in the univariate input and output case� is the data
envelopment analysis �DEA� estimator which is the lowest concave monotone increasing
function covering all sample points� This estimator is biased downwards since it never exceeds
the true production frontier� In this paper we derive the asymptotic distribution of the DEA
estimator� which enables us to assess the asymptotic bias and hence to propose an improved
bias corrected estimator� This bias corrected estimator involves consistent estimation of the
density function as well as of the second derivative of the production frontier� We also discuss
brie	y the construction of asymptotic con�dence intervals� The �nite sample performance
of the bias corrected estimator is investigated via a simulation study and the procedure is
illustrated for a real data example�
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� Introduction

Suppose �X�� Y��� � � � � �Xn� Yn� are i�i�d� with a density f in IR�� The support of f is assumed

to be of the following form�

� � f�x� y� j f�x� y� � �g � f�x� y� j y � g�x�g

where g is concave� and monotone increasing� The function g is the upper boundary of

the support of the density f � We are interested in estimating g based on the sample

�X�� Y��� � � � � �Xn� Yn��

The problem of estimating a concave and monotone boundary g appears naturally in the

context of productivity analysis� When analyzing the productivity of �rms� one may compare

how the �rms transform a set of inputs x �e�g� labor� energy or capital� into an output y

�e�g� a quantity of goods produced�� In this paper� we restrict to the case where inputs are

characterized by a scalar measure x� In this context� � is the attainable production set and

g��� is the production frontier function� it is the geometric locus of the optimal production�

For a �rm operating with input x�� g�x�� is the maximal level of output attainable� The

economic e�ciency of a �rm is then de�ned in terms of its ability of operating close to this

optimal level g�x��� if its production level is y�� its e�ciency may be calculated via g�x���y��
With this measure� �rms can be compared to detect the most e�cient �or ine�cient� ones�

In practice� � and its frontier g are unknown� So our prior interest is the estimation of this

frontier from a set of observed �rms �xi� yi�� i � �� � � � � n� From a statistical point of view� the

frontier function g may be viewed as the upper boundary of �� the support of the population

of �rms density in the input and output space� Generally� the attainable set � is supposed

to be convex which implies the concavity of the production frontier g� The monotonicity

of g is justi�ed by the free disposability of inputs and outputs� See for example Shephard

������ and F�are� Grosskopf and Lovell �������

In the econometrics literature� a lot of e�orts have been devoted to using a parametric

model for the frontier function which generally belongs to the class of linear models� such

as Cobb�Douglas or translog models � see Berndt and Christensen �������� See also Greene

������� for a nice survey of parametric approaches� For instance� in Section ������ Figure �

shows the estimation of two parametric models for a data set of ��� American electric utility

companies� described in Section ���� Both parametric �ts appear as not very appropriate� In

situations like this one prefers to avoid the speci�cation of a particular parametric form for
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g� and has to �nd a nonparametric estimator of the frontier function which has to be concave

and monotone� This estimator is presented in the next section� Other approaches could be

proposed� for instance the upper con�dence band of the support of � could be worthwhile to

investigate� In this paper we concentrate on a popular nonparametric estimator of a frontier

function used in the econometrics literature�

Farrell ������ introduced the so called data envelopment analysis �DEA� estimator b�
of �� which is the convex hull of �X�� Y��� � � � � �Xn� Yn�� It is the set under the �lowest�

concave monotone increasing function covering all the sample points �Xi� Yi�� The DEA

estimator of g at x� is then de�ned by the maximum of y such that �x�� y� belongs to b��

The DEA estimator has been extensively used since Charnes� Cooper and Rhodes ������

popularized it by introducing linear programming techniques� Today the estimator is used

as a standard for ranking �rms according to their relative performance with respect to

the obtained frontier� See Charnes� Cooper� Lewin and Seiford ������ for an exhaustive

description of the DEA technique� This technique has been used in many �elds of application�

analysis of the performance of public services� banks� hospitals� etc� See Seiford ����
� for

a recent survey of the DEA estimator� including a lot of references� Until recently however�

no attention was devoted to the statistical properties of the DEA estimator� For recent

work on statistical aspects see Grosskopf ����
� and Simar ����
�� Consistency issues of the

estimation procedure were addressed by Banker ������� Korostelev� Simar and Tsybakov

�����a� b� and Kneip� Park and Simar ����
�� A bootstrap technique for simulating sampling

variation of the estimator has recently been proposed by Simar and Wilson ����
��

In this paper� we derive the asymptotic distribution of the DEA estimator of g� This

motivates us to propose a �blown�up� version� Obviously� the DEA estimator is downward

biased since it never exceeds g� The asymptotic distribution quanti�es the downward bias�

and by correcting this one can improve the DEA estimator� The bias correction involves

estimation of the density at the boundary point �x� g�x�� and also estimation of the second

derivative of g� In this paper� we propose simple and easy to implement estimation procedures

for those quantities� In particular� our estimation procedure of g�� preserves the concavity

of g� i�e�� it guarantees that the estimator of g�� be always negative� We show that the

estimator of the bias is consistent� The bias corrected estimator is therefore asymptotically

unbiased and it has the same �rst order asymptotic variance as the DEA estimator� Also�

we investigate the e�ect of the bias correction for �nite samples through a simulation study�
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This paper is related to Kneip� Park and Simar ����
� where the convergence rate of the

DEA estimator is derived� From that paper it can be seen that the rate of convergence is

n���� if the frontier g is twice continuously di�erentiable� There are some other recent re�

lated works� especially H�ardle� Park and Tsybakov ������� Korostelev� Simar and Tsybakov

�����a� b�� and Mammen and Tsybakov ������� Those papers focus on estimation of the

density support rather than the boundary function� and consider only the rates of conver�

gence� �Except for the paper of Korostelev� Simar and Tsybakov �����a� which provides the

exact constant too for the minimax risk�� Other related work is concerned with the convex

hull of i�i�d� samples in higher dimensions� Groeneboom ������ and Cabo and Groeneboom

������ derive the asymptotics for the number of vertices� the boundary length and the area

of the convex hull of a uniform sample from the interior of a convex polygon� For other

related probabilistic work in this direction see also the references cited in these both papers

and Hueter ������� We are not aware of any previous results on the asymptotic distributions

of estimators of the boundary function� Parametric approaches restricting the function g

to be linear have been considered by Park and Simar ������� and Park� Sickles and Simar

�������

Note that the DEA structure is also well�de�ned in a more general multi input � multi

output setup� Although consistency and rate of convergence have been derived in this general

setup in Kneip� Park and Simar ����
�� it should be mentioned that the results in the present

paper are only valid for a single input � single output variable case� It is not clear yet how

to derive an asymptotic distribution result for the general multi input � multi output case�

if even possible at all�

The main results of this paper� the asymptotic distribution of the DEA estimator� the

proposed bias corrected estimation and the construction of approximate con�dence intervals�

are given in Section �� The simulation study investigating the �nite sample performance of

the DEA estimator is presented in Section �� We illustrate the bias corrected estimation

procedure using the American electric utility data published in Christensen and Greene

����
� and discussed further in Greene ������� among others� Section � contains the proofs

of the theoretical results�
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� The Main Results

��� Asymptotic distribution of the DEA estimator

Based on the i�i�d� random variables �X�� Y��� � � � � �Xn� Yn�� the DEA estimator of � is

formally de�ned by

b� � f�x� y� j y � Pn
i�� �iYi x �

Pn
i�� �iXi for some ���� � � � � �n�

such that
Pn

i�� �i � � �i � �� i � �� � � � � ng�

Let x� be an interior point in the support of the marginal density of X� Then� the DEA

estimator of g at x� is de�ned by

�g�x�� � supfy j �x�� y� � b�g�
The estimator �g� as a function� is piecewise linear with knots depending on the sample� and

is concave and monotone increasing� Note that �g�x�� is well�de�ned whenever there exists

an Xi such that Xi � x� and this happens with probability tending to one�

We assume that the frontier function g is twice continuously di�erentiable at x� and

g���x�� � �� We call this �A��� To obtain a proper asymptotic distribution we ask that near

the point �x�� g�x��� there be enough data and the density f be smooth� Speci�cally� we

assume that the density function f is bounded away from zero and is continuous on the set

U � � � f�x� y� j k �x� y�� �x�� g�x��� k� �g

for a positive number �� We call this �A���

From Kneip� Park and Simar ����
�� it can be seen that �g�x�� converges to g�x�� at the

rate n���� under the assumptions �A�� and �A��� This convergence rate generalizes to the

rate n������p� in the case of p�variate X� as was also shown in the same paper� Although the

rate n���� is very good its optimality properties have not been studied so far� We describe

below the limiting distribution of n�����g�x�� � g�x���� For this� let b�� b� and b� denote

respectively f�x�� g�x���� g
��x�� and �g���x�����

Theorem � Assume �A�� and �A��� Then for all z � � we have

Pfn�����g�x��� g�x��� � zg �
Z �

�
h�v� z�dv � o��� �����

where h�v� z� � �����b��b�v
� � z� expf����
�b�b

��
� v���b�v

� � z��g�
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By transforming v �
q
�z�b� � u for the integral of ����� and by a simple algebraic

manipulation we get the following corollary to Theorem ��

Corollary � Under the assumptions of Theorem � and for z � � we have

Pfn����b���b�������g�x��� g�x��� � zg �
Z �

�
��u� z�du� o��� �����

where ��u� z� � �������z������ � u�� expf����
���z�����u� u����g�

The limiting distribution in Corollary � is depicted as a thin solid line in Figure �� The

integral has been calculated via numerical integration� We also illustrate the appropriate�

ness of the limiting distribution as an approximation to the �nite sample distribution via

a simulation study� For a given model �Model � of Section ���� we simulated ��� samples

of size n � ��� and calculated for each sample n����b��b�������g����� � g������� Based on

the resulting ��� values we obtained a histogram estimator from which an estimator for the

cumulative distribution function on the right�hand side of ����� was derived� This estimated

�nite sample distribution is presented as a thick solid line in Figure �� Note that even for a

small sample of size ��� the �nite sample distribution and the limiting distibution are pretty

close� The closeness between the two improves with sample size �simulations have been done

for other sample sizes but are for brevity not presented here��

If we denote the integral of ����� by G�z�� then the �rst and second asymptotic moments

of n����b���b��
�����g�x��� g�x��� are given respectively by � R�� G��z�dz and �

R�
� zG��z�dz�

Hence� the asymptotic bias and variance of �g�x�� are given by

asymp�bias of �g�x�� � �n�����b��b������c�� asymp�var� of �g�x�� � n�����b��b
�
��

���c�

where c� �
R�
�

R�
� ��u��z�dudz and c� � �

R�
�

R�
� z��u��z�dudz � c��� This gives the

asymptotic mean squared error of �g�x�� as follows�

asymp� MSE of �g�x�� � n�����b��b
�
��

����c�� � c���

Straightforward calculations show that the constants c� and c� are given by c� � � �

����������� � ���������
 and c� � � � 
������������ � c�� � ��������
�� respectively�

If we recall that b� � f�x�� g�x��� and b� � �g���x����� we can see that the asymptotic

mean squared error of the DEA estimator is larger� as is expected� when the density at

�x�� g�x��� is lower or the frontier function g has more curvature at x��

�



-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
0

0.2

0.4

0.6

0.8

1

1.2

Figure �� The asymptotic distribution of n����b���b��
�����g�x��� g�x��� �thin solid line� given

in ����� together with an estimate for the �nite sample distribution based on ��� samples of
size n � ��� from Model � of Section ��� �thick solid line��

Remark � In some instances� we may be interested in estimating g���y�� �� inffx j �x� y�� �
�g for a given y�� This is particularly the case when one wants to measure the e�ciency of

a production unit with output level y� in input�oriented way� In this case� for a �rm working

at the level �x� y��� the feasible reduction of input for being e�cient is given by x� g���y���

If we de�ne bg���y�� � inffx j �x� y�� � b�g� then by parallel arguments leading to Theorem

� we get� for t � �� Pfn����bg���y��� g���y��� � tg �
R�
� h�v��b�t�dv� o���� where we take

x� � g���y�� in the de�nitions of b�� b� and b�� This is intuitively clear if we observe that

b��bg���y��� x�� � y� � �g�x��� For� then n����bg���y�� � x�� � t is asymptotically equivalent

to n�����g�x��� y�� � �b�t�

Remark � Estimates for the distribution of bg�x���g�x�� can be constructed using bootstrap






methods� However� the naive bootstrap method� based on drawing with replacement from

the sample �X�� Y��� � � � � �Xn� Yn�� does not work here� This follows e�g� from the fact that

with positive probability the naive bootstrap estimate bg��x�� coincides with bg�x��� This

can be seen as follows� Note �rst that bg�x�� is a broken line� With probability � � ��� �
�
n
�n � �� � �

n
�n � � � �e�� � e�� the bootstrap resample contains both break points of

bg�x�� that are neighbored to x�� Then bg��x�� � bg�x��� Therefore a more re�ned bootstrap

approach is required� We propose to draw i�i�d� bootstrap resamples from a density �f that

has support with concave monotone boundary function �g� If the functions �g and �f are

such that �f�x�� �g�x��� � f�x�� g�x��� and �g���x�� � g���x��� in probability� then it can be

shown that the bootstrap estimate� i� e� the �conditional� distribution of bg��x�� � �g�x���

is a consistent estimate of the distribution of bg�x�� � g�x��� Such bootstrap approaches

serve asymptotic valid bias corrections of bg�x�� and con�dence intervals for g�x��� The next

two subsections present another approach for bias correction and construction of con�dence

intervals� This is based on the asymptotic formula of Theorem � using estimates of g���x��

and f�x�� g�x���� These estimates could also be used for constructions of �f and �g that let

the �re�ned� bootstrap work�

��� A bias corrected estimator

Let B�x� denote f�g���x����f��x� g�x���g���� Then� from the discussion following Corollary

�� the asymptotic bias of �g�x�� is �n����c�B�x��� A modi�cation of the DEA estimator now

has the following form�

�g�x�� � �g�x�� � n����c� bB�x��

where bB�x�� denotes a proper estimator of B�x��� Below we propose a simple estimator of

B�x���

First� consider the intervalK��� � �x������ x������ for some positive �� Let S����	 IR��

denote K���
 IR� For the estimation of b�� the density at �x�� g�x���� let D � S��� � b� �
f�x� y� j y � �g�x��� ���g� A simple estimator of b� is

�b� � f� of �Xi� Yi� � Dg�fn	�D�g

where 	 denotes the Lebesgue measure�

Now� for the estimation of b�� take h � �� One may think of �tting the second order

polynomial passing through �x�� h��� �g�x�� h����� �x�� �g�x��� and �x� � h��� �g�x� � h�����
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and then take its second derivative to estimate b�� However� this would yield a zero estimate

when the three points sit on the same line� and this may happen frequently in practice�

Instead� we propose the following estimation procedure� For a given w� let 
Lw denote the line

segment joining �x�� �g�x��� and �x�� h��� w�� Likewise� 
Rw denotes the line segment joining

�x�� �g�x��� and �x� � h��� w�� De�ne

Z� � maxfw j there exists �Xi� Yi� � 
Lw for some � � i � ng

whenever it can be de�ned� This means that� whenever it is de�ned� there are one or more

sample points sitting on 
LZ� but no points beyond that in the stripe �x��h��� x��
IR� De�ne

Z� likewise with 
Rw� We take Z�� � minfZ�� �g�x��h���g and Z�
� � minfZ�� �g�x��h���g�

When the stripe �x� � h��� x�� 
 IR is empty� in which case Z� is not de�ned� we take

Z�� � �g�x� � h���� We do the same thing for Z�
� � Now� �t the second order polynomial

passing through the three points� �x� � h��� Z�� �� �x�� �g�x��� and �x� � h��� Z�
� �� Call it  g�

We take

�b� � � g���x�����

Note that the points �x� � h��� Z�� � and �x� � h��� Z�
� � are always below �g� Hence  g is

concave by concavity of the estimator �g� The estimator �b� is therefore always positive as it

should be� except the case when �x� � h��� Z�� �� �x� � h��� Z�
� � and �x�� �g�x��� lie on the

same line� but this can happen only with probability tending to zero�

The estimator of B�x�� is given by bB�x�� � ��b���b���
����

Theorem � Under the assumptions of Theorem �	 and if h � n������� and � � n������� for

some � � �� � ��� and � � �� � ���	 then �b� and �b� are consistent estimators of b� and b��

According to the above theorem� the modi�ed estimator is asymptotically unbiased but

with the same �rst order asymptotic variance as the DEA estimator� In Section �� we

investigate the e�ect of this modi�cation for �nite samples�

It is important to note that in our estimation procedure we only require consistency of

the estimators of b� and b�� and hence of B�x��� Further� it should be mentioned that the

proposed estimators �b� and �b� are quite sensitive to the choices of the respective smooth�

ing parameters � and h� The e�ect of choosing the smoothing parameters is however less

noticeable in the bias corrected estimator� Further research is needed to develop automatic

choices of the local smoothing parameters � and h�
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Improvement of the estimators for b� and b�� and hence of the bias correction n����c�B�x��

would of course result in an improvement of the bias corrected estimator� It is outside the

scope of this paper however to elaborate further on this point�

��� Construction of con�dence intervals

Theorem � and its corollary can be used also to construct asymptotic con�dence intervals

for g�x�� from the DEA estimator or from the bias corrected estimator� Suppose we want to

construct a ��� 
 �� � ��! con�dence interval for g�x��� Then we will search for quantiles

z��� and z����� such that

lim
n��

Pfn����b���b�������g�x��� g�x��� � z���g �
�

�

lim
n��

Pfn����b���b�������g�x��� g�x��� � z�����g � � � �

�
�

or equivalently

lim
n��

Pf�g�x��� n�����b��b
�
��

���z����� � g�x�� � �g�x��� n�����b��b
�
��

���z���g � �� ��

Using Theorem �� i�e� the consistency of the estimated bias correction� this then implies

lim
n��

Pf�g�x��� n���� �B�x��z����� � g�x�� � �g�x��� n���� �B�x��z���g � �� �� �����

and also

lim
n��

Pf�g�x��� n���� �B�x���z����� � c�� � g�x�� � �g�x��� n���� �B�x���z��� � c��g � � � ��

�����

Hence� for �xed sample size n� an approximate ���
 ��� ��! con�dence interval for g�x��

is given by

h
�g�x��� n���� �B�x���z����� � c��� �g�x��� n���� �B�x���z��� � c��

i
� �����

with z��� and z����� determined from

G�z���� �
�

�
and G�z������ � � � �

�
���
�

respectively� using for example numerical integration techniques� Note that the quantiles

z��� and z����� are independent of x��
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For � � ���� we found the following approximated values for the �����th quantile and

the �����th quantile respectively

z����	 � �����
� with precision G������
�� �

�Z
�

��u������
��du � �������


z��
�	 � ������� with precision G��������� �

�Z
�

��u���������du � ���������

�����

The above calculated approximate critical values could also be used in testing procedures

concerning the production frontier� Testing problems are so far an unexploited area� and

this would be a very interesting direction for future research�

As pointed out in the introduction� in econometric applications one wants to analyze

for a particular observed �rm whether it is economically e�cient or not� For a production

situation �x�� y��� with x� representing the input and y� the output� this e�ciency can be

measured via the distance g�x�� � y�� Note that a pointwise con�dence interval for g�x��

can serve to build a con�dence interval for this e�ciency�

It would be of interest to derive a con�dence band for the entire production frontier g����
This could be an issue in testing nonparametric versus parametric models �see for example

Section ������� The construction of a con�dence band for g��� would �rst of all involve a

study of the limiting distribution of sup
z
j�g�z�� g�z�j� suitably normalized� But even with

such a result it is not always clear how to construct good con�dence bands� See for example

Eubank and Speckman ������� Note further that we can consider working in a regression

type setup� with a model of the form Y � g�X��U where the random variable U � �� It is

not clear to us how to proceed in case of such a regression model� where we have a constraint

involving the response variable Y and the predictor variable X� This situation is quite

di�erent from the one considered in for example Naiman ������ who proposed a method for

constructing simultaneous con�dence bands in multiple regression in case of constraints on

the predictor variables� The construction of a con�dence band for the entire function g��� is
an interesting open problem�

� Finite Sample Performance

In this section we investigate the �nite sample performance of the bias corrected estimation

procedure proposed in Section � via some simulation studies and the analysis of the American
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electric utility data given in Christensen and Greene ����
��

��� Simulation Study

We investigate the �nite sample performance of the DEA estimator and its bias corrected

version for two simulation models�

Model ��

X � U"�� �# Y � g�X� expf�V g� g�x� � x����

V � Exp���� independent of X�

Note that E�expf�V g� � ���� The stochastic scenario adapted here� i�e� an ex�

ponential distribution for the logarithm of the ine�ciencies and a global average

of ine�ciency of ����� is reasonable with respect to many applications found in

the econometrics literature�

Model ��

Similar to Model � but with V � Exp���� so that expf�V g is uniformly dis�

tributed on "�� �#� and E�expf�V g� � ���� This situation is clearly less favorable

than the one described in Model �� since it is expected to observe less points near

the true frontier function� Hence the estimation task here is a bit more di�cult�

For each simulation model we consider samples of size ���� ��� and ����� and estimate

the production function g��� in three di�erent points in the interior of the support of the

marginal density of X� namely x� � ����� ���� and �����

Recall that estimation of b�� respectively b�� involves a smoothing parameter �� respec�

tively h� In all simulations we took � � �n���� and h � �n����� keeping in mind the

conditions on these smoothing parameters imposed in Theorem ��

The number of simulations in each estimation situation is N � ���� and a table sum�

marizes� for each sample size� on a �rst line the average �centered� values $�g�x��� g�x�� and

$�g�x��� g�x�� with

$�g�x�� �
�

N

NX
s��

�g�s��x�� and $�g�x�� �
�

N

NX
s��

�g�s��x��� �����

��
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Figure �� A typical simulated data set of sample size ��� from Model �� The solid line
represents the true frontier function g�

where �g�s��x�� and �g�s��x�� denote the DEA and the bias corrected estimator for a particular

simulation� In the tables we also present on the �rst line �between brackets� the corre�

sponding standard errors of the bias estimator $�g�x�� � g�x��� among the ��� simulations�

i�e�

�p
N

vuut �

N � �

NX
s��

�
�g�s��x��� $�g�x��

��
� �����

and similarly for the bias corrected estimator �g�x��� For each sample size we list� on a second

line� the estimated mean squared error �MSE� calculated from the ��� simulations�

Figure � depicts a typical simulated data set for a sample of size n � ��� from Model

�� together with the true frontier function g� The simulation results for this model are

presented in Table �� showing clearly that the bias corrected estimator �g�x�� performs much

��



better than the DEA estimator� The standard errors between brackets indicate that the bias

corrected estimator is more variable� which is intuitively clear since this estimator involves

extra estimation tasks� namely estimation of b� and b��

Table �� Simulation results for Model �� Estimated Bias �
����� with the corresponding

standard error �
����� between brackets and	 on a second line	 the estimated MSE

�
������

x� � ���	 x� � ��	� x� � ���	

n DEA Bias Corrected DEA Bias Corrected DEA Bias Corrected
���	�� ������� ����� ������ � �����
 ��

��� ����� ��
���� �����	 ���
�
� �		�� �������

���
���	� ����� �
�	� ����� ����� �����

������ �����
� ���	�� ������� ����

 ������� ����� �����	� ����	� ���	��� ����� �������
	��

����� ��
�
 ����� ��
�
 ����� �����
���
	� ���	��� ���	� ���	
�� ���	�� ����
�� ����	 �����	� �����	 ������� ��	
� �������

����
����� ����� ���	� ����� ����	 �����

To get an idea about the �nite sample distribution of the DEA and the bias cor�

rected estimator we present in Figure � kernel density estimates for �g����� � g����� and

�g����� � g������ based on the ��� simulations� The kernel density estimates were calcu�

lated using the Gaussian kernel and the normal reference bandwidth h � ���
�n���	� with

� � minfsample standard deviation� �sample interquartile range�������g� See for example

Silverman ����
��

In comparing the distributions of �g����� � g����� and �g����� � g����� we see that the

latter one is shifted to the right illustrating clearly the improvement of the bias corrected

estimator� Note further that the distribution of the bias corrected estimator is slightly more

variable �due to the extra estimation tasks involved�� By looking at Figure � and focusing on

the sample sizes we nicely see the asymptotic e�ect getting into action� the density estimates

become spikier when n increases�

For each simulation we also calculated� from ������ the ��! con�dence interval for g������

using the values z����	 � �����
� and z��
�	 � ������� as calculated in Section ���� Based

on the ��� simulations this led� for sample size n � ���� to the empirical coverage prob�

ability of ����! which should be compared with the theoretical ��!� For other points of

the production frontier and other sample sizes we got similar results� Given the fact that

the bias correction has been estimated in a quite elementary way �only consistency of the

��
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Figure �� Kernel density estimates for the DEA estimator and the bias corrected estimator
evaluated at the point ��� and centered around the true value g����� of the frontier function�
The kernel density estimates are based on ��� simulations of samples of sizes n � ���	 ���
and ���� �less spiky to spikier curves�� Solid lines
 kernel density estimates for the bias
corrected estimator� Dashed lines
 kernel density estimates for the DEA estimator�

estimator was required� the obtained empirical coverage probabilities are quite satisfactory�

It is worthwhile mentioning here that improvement of the estimators for b� and b� would

very likely lead to an improvement of the achieved coverage probability�

As mentioned above� estimation of the frontier function is slightly more di�cult in Model

� since fewer points will be observed along the true frontier� See the simulation results for

this model presented in Table �� Again there is a considerable improvement obtained with

the bias corrected estimator� The improvement is most remarkable for the point x� � ����

since the frontier function is more curved there� leading to a bigger bias correction term�

��



Table �� Simulation results for Model �� Estimated Bias �
����� with the corresponding

standard error �
����� between brackets and	 on a second line	 the estimated MSE

�
������

x� � ���	 x� � ��	� x� � ���	

n DEA Bias Corrected DEA Bias Corrected DEA Bias Corrected
������ ������� ����� �

	��� ��	��
 ������� ��	�� �
���	� ������ �
	���� ��	�� �������

���
����	 	���� ���
� 	���� ���
� �����

��
��� ��	���� ����� �����	� ������ ������� ���
� ���
��� ����	� ���
	�� �	��	 �������
	��

����� �		�� �
��� �	��
 �
��� �
���
����	
 ��	���� ����� �����
� ��	��� ������� ����� ������� ��			� ������� ��
�� �������

����
�	�	� ���	� ����	 ����� ����� ���	�

Simulations for models with other frontier functions g��� have also been carried out�

leading to similar conclusions� For example� for the above models with g�x� � � � e��x we

found an even better improvement of the bias corrected estimator �g���� This is as to be

expected since this function g is more concave than the function g�x� � x��� considered in

Tables � and �� and hence the bias is larger here� For V � Exp���� sample size n � ��� and at

x� � ��� we �nd for �g����� an estimated bias of ������� 
���� with corresponding standard

error ������ 
���� and estimated MSE ������ 
����� For the bias corrected estimator

�g����� the estimated bias was ������ 
���� with corresponding standard error 
���
� 
����

and estimated MSE ����
� 
����� We do not present all simulation results for this example

since they only con�rm the messages obtained from the above described examples�

��� American electric utility data

Data on ��� American electric utility companies were collected� These consists of measure�

ments on several variables� For our illustration we only use the measurements on the variable

Y � log�Q�� with Q the production output of a �rm� and X � log�C�� with C the total

cost involved in the production� For detailed descriptions and analysis of these data see e�g�

Christensen and Greene ����
� and Greene �������

����� Nonparametric estimation of the production frontier

Figure � shows the ��� observations� together with the DEA estimate �g��� and the bias

corrected estimate �g��� for g���� For illustration purpose we also provide the pointwise ��!

con�dence intervals for g���� calculated from ������ and depicted as a con�dence band in Fig�

��
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Figure �� Scatter plot of the American electric utility data� Solid line
 the DEA estimator�
Dotted line
 the bias corrected estimator� The dashed lines represent the �� con�dence
intervals for g����

ure �� We restricted the region of estimation to x � "��� �# to avoid dealing with boundary

e�ects� For calculation of the bias corrected estimator we subdivided the x�region into two

regions� x � "��� �# and x � "�� �#� The smoothing parameters � and h were taken equal to

� and � for the region "��� �#� and equal to � and � for the estimation region "�� �#� Note

that the con�dence band is wider at places where the di�erence between the DEA estimator

and the bias corrected estimator is bigger� This is also obvious from the de�nition of the

con�dence intervals in ������ Indeed� the width of the con�dence interval for g�x�� depends

on �B�x��� which involves estimation of the density f at the point �x�� g�x��� as well as es�

timation of the curvature of g at the point x�� In regions where there are more points the

density estimate will be larger� and hence it is not surprising that the con�dence intervals are

�




smaller there� as can be seen from Figure �� On the other hand� sparsity of data will result

in smaller estimated values of the joint density� and in wider con�dence intervals� Note also

that at some places the DEA estimate falls outside the con�dence band�

����� Fitting some parametric models

In this paper we focus on nonparametric estimation of the production frontier g� It might be

of interest to compare the performance of our nonparametric estimation procedure with some

parametric estimators� The literature on parametric procedures for estimating g is rather

limited� An example of a parametric model which has been studied is the linear model

Yi � � � �TXi � Ui� i � �� � � � � n �����

where Ui � � with E�Ui� � �� � � IRp and Xi is a p�variate random variable� Here the

superscript T denotes the transpose of a vector� Note that under this model the production

frontier equals g�x� � � � �Tx� i�e� is a linear function� For estimating the parameters �

and � descriptive programming estimators� least�squares methods and maximum likelihood

estimators have been proposed� We focus here on the least�squares method since consistency

results are available for these estimators� See for example Greene ������� Least�squares

estimation under the parametric model ����� is done as follows� One �rst centers the error

term Ui� by subtracting its mean� leading to

Yi � �� � �TXi � �i� i � �� � � � � n �����

where �� � � � E�Ui� and �i � �Ui � E�Ui�� i � �� � � � � n� Ordinary least�squares then

provides estimators ��� and �� of �� and � respectively� Moreover� the standard least�squares

theory tells us that ��� and �� are consistent estimators of �� and � respectively� A particular�

ity here is that one needs some extra e�orts in order to get an estimator for �� the intercept

parameter� Consider the least�squares residuals ��i � Yi � ���� � ��TXi�� Then� an estimator

for � is given by �� � ��� � max
��i�n

��i� The resulting parametric estimator for the production

frontier is �g�x� � �� � ��Tx� So far only the consistency of �g has been proved �see Greene

�������� To our knowledge there are no results available on the asymptotic distribution and

on the convergence rate of �g� However� for some particular case �panel data and stochastic

frontier function� the convergence rate of �g has been established by Park and Simar �������

��
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Figure �� Parametric �ts of Models � and � �dotted and dashed line respectively� for the
American electric utility data	 together with the nonparametric con�dence intervals for g���
�the solid lines��

For comparison purpose we �t two parametric models to the American electric utility

data� a Cobb�Douglas model and a translog model �see Berndt and Christense �������� Such

models are commonly�used in econometrics�

Parametric model �� log�Q� � �� � log�C�� U

Parametric model �� log�Q� � �� �� log�C� �
�

�
�� log

��C�� U�

Note that both models are of the form given in ������ We estimate the parameters as

indicated above using the least�squares method� The resulting estimators for the production

frontier are �� � �� log�c� for model � and �� � ��� log�c� �
�

�
��� log

��c� for model ��

The results of these parametric �ts are presented in Figure � together with the pointwise

��



con�dence intervals based on the nonparametric estimate for g� Note that both the linear

and quadratic �t exceed the con�dence intervals at certain regions� which indicates that

these parametric models are not so appropriate�

� Proofs

��� Proof of Theorem �

Without loss of generality we assume that x� � � and g�x�� � �� Fix z � �� Put z� � n����z�

We denote� for � � �� by I� the line segment joining ��� z�� and ��� g����� Speci�cally�

I� � f�x� y� j x � �� and y � �g��� � ��� ��z� for some � � � � �g�

Moreover� we denote by J� the set surrounded by the function g and the straight line passing

through the two points� ��� z�� and ��� g����� More precisely� we de�ne

J� � f�x� y� j x � �� and g�x� � y � �g��� � �� � ��z� for some � � �g�

For � � �� � ��� we de�ne I����� � J c
��
� J��� It is the set surrounded by the function

g� the line passing through ��� z�� and ���� g������ and the other line passing through ��� z��

and ���� g������ Note that with probability tending to one there exists � � � for which I�
includes a sample point� Hence� we put

W � minf� � � j there exists �Xi� Yi� � I� for some � � i � ng�

The essential idea of the proof is to note that when �g�x�� � z� there is no second sample

point in the random set JW �

We show that for an in�nitesimal change dv

P �n���W � �v� v � dv�� �g�x�� � z�� � h�v� z�dv�� � o���� �����

uniformly for v in compact subsets of "����� and

n���W � OP ���� �����

Theorem � directly follows from ����� and ������

We prove ����� �rst� We note that� for an in�nitesimal change d��

PfW � ��� � � d�� and �g�x�� � z�g
� nPf�X�� Y�� � I����d�gPf�Xi� Yi� � J� for any � � i � ng �����

� n
Z
I����d�

f�x� y�dxdyf��
Z
J�

f�x� y�dxdygn���

��



For � � vn���� with �xed v � �� we get

R ��
Z
I����d�

f�x� y�dxdy � b�	�I����d���� � o���� �����

where 	 denotes the Lebesgue measure� Now� ignoring �d���� the area of 	�I����d�� is the

same as that of the triangle connecting ��� z��� ��� g���� and the intersection of the line

segment I��d� with the line parallel to x�axis that passes through ��� g����� Speci�cally�

	�I����d�� � �������g��� � z�� where

� � d� � �� � d��fg�� � d��� g���g�fg�� � d��� z�g�

Since g��� � b�� � b��
� � o�n������ by ignoring �d��� again it follows that � � �b��� �

z��d��fg��� � z�g� o�n�����d�� This gives

R � �����b��b��
� � z��d� � o�n�����d�� �����

We now compute S ��
R
J�

f�x� y�dxdy� As in the case of R we can write S � b�	�J���� �

o����� Denote by �� the x�coordinate of the point at which the extension of I� to the left

intersects with g� It has the property that

fg��� � z�g�� � �fz� � g����g���� ���
�

Let � � b�� b��� z���� Then we can write the common value of ���
� as �� o�n������ Also�

we can write

	�J�� �
Z �

��
�b�x� b�x

� � �x� z��dx� o�n���� �����

The integrand function in ����� has the values o�n����� at � and ��� Let � � �� � ������

Without altering the value of the integral in ������ we can shift the integrand function so

that it is expressed as an integral over ���� ��� It is still the integral of a quadratic function

of which the coe�cient of x� is �b�� But� this quadratic function has the values o�n�����

now at �� and �� Thus� the quadratic function must have the form �b�x�� b��
�� o�n������

and this gives

	�J�� �
R �
���b��

� � b�x
��dx� o�n���

� ���
�b��� � ���� � o�n���� �����

Also� it is easily seen from ���
� and an expansion for g��� � g���� that

� � �� � � � b��� ���z� � o�n������ �����

��



Putting ����� and ����� together� we get

��� S�n�� � expf����
�nb�b
��
� ����b��

� � z���g�� � o����� ������

Combining the results ������ ����� and ������ we deduce ������

For the proof of ����� note �rst that

P �W � n����C� � Pf there exists no �Xi� Yi� in I��n����C for � � i � ng�

Claim ����� now follows from the fact that for � � � we have 	�I��n����C� � ��n for su�ciently

large C� This implies that for � � � we have that P �W � n����C� � � for su�ciently large

C� This concludes the proof�

��� Proof of Theorem �

For the proof of the consistency of �b�� letD� denote S������f�x� y� j y � g�x������g� Then�
it can be shown that 	�D�D�� � OP �n������ where � denotes the symmetric di�erence�

From this we can deduce that �b� � �b� � oP ��� where �b� is constructed as �b� but with D�

replacing D� The consistency of �b� now follows�

For the proof of the consistency of �b�� we assume x� � � and g�x�� � � without loss of

generality� We will show �rst

g��h���� Z�� � OP �n
����� � g�h��� � Z�

� � ������

For this� it is important to note that Z�� never exceeds g��h��� �but Z� may%�� Hence for

the �rst equality of ������ we only need to show that maxfg��h��� � Z�� �g � OP �n�����

since g��h��� � �g��h��� is already within OP �n������ Now� if L denotes the line segment

connecting ��� �� and ��h��� g��h��� � n��h��C� for C � �� then

Pfg��h��� � Z� � n��h��Cg � Pf there exists no �Xi� Yi� in ��h��� �� 
 IR beyond Lg

The above probability can be bounded by c� exp��c��C� for some positive c� and c��� Hence

maxfg��h��� � Z�� �g � OP �n��h���� and this proves the �rst equality of ������� The

second equality of ������ can be shown in the same way� Next� we denote by g� the second

order polynomial passing through ��h��� g��h����� ��� �� and �h��� g�h����� Then by ������

it can be shown that

 g����� � g������ �OP �n
����h���� ������

��



Also� it follows that

g������ � g����� � o���� ������

The consistency of �b� now follows from ������ and ������� This completes the proof of

Theorem ��
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