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We consider theoretically, computationally and experimentally spontaneous
evaporation of water and isopropanol drops on smooth silicon wafers. In contrast to
a number of previous works, the solid surface we consider is smooth and therefore the
droplets’ evolution proceeds without contact line pinning. We develop a theoretical
model for evaporation of pure liquid drops that includes Marangoni forces due to the
thermal gradients produced by non-uniform evaporation, and heat conduction effects
in both liquid and solid phases. The key ingredient in this model is the evaporative
flux. We consider two commonly used models: one based on the assumption that
the evaporation is limited by the processes originating in the gas (vapour diffusion-
limited evaporation), and the other one which assumes that the processes in the
liquid are limiting. Our theoretical model allows for implementing evaporative fluxes
resulting from both approaches. The required parameters are obtained from physical
experiments. We then carry out fully nonlinear time-dependent simulations and
compare the results with the experimental ones. Finally, we discuss how the simulation
results can be used to predict which of the two theoretical models is appropriate for
a particular physical experiment.
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1. Introduction

A renewed interest for the phenomenon of drying liquid films and drops is
due to the rapid advances in semiconductor technologies, and micro- and nano-
fluidics. Evaporative sessile drops are particularly interesting due to non-uniform drop
thickness and the presence of contact lines, leading to non-uniform evaporation along
the liquid—gas interface. The resulting temperature gradients and related Marangoni
forces induce flow inside the drop and lead to a number of interesting effects, including
contact line instabilities (e.g. see Gotkis et al. 2006). These effects are essential in a
variety of problems, including the so-called coffee-stain phenomenon which involves
deposition of solid particles close to a contact line (Deegan et al. 1997; Bhardwaj,
Fang & Attinger 2009), and its numerous applications, including the manufacturing
and operation of nano- and micro-devices (e.g. see Blossey 2003; Kim et al. 2007).

The simplicity of the physical system in which a drop of pure liquid placed on a
solid surface evaporates is all but obvious. Yet, much is still unclear, and even systems
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such as drying water drops are not well understood. The most important difference
among various models is the manner in which evaporation is introduced into the
problem. In addition to usual difficulties in describing the motion of contact lines,
evaporation induces a complex interplay between thermal and hydrodynamic effects.
Using the appropriate evaporative model is therefore the paramount objective if one
is to understand the experiments and the applications which critically depend on the
evaporative mechanism.

We devote the opening section to a review of the background to this problem. The
review serves as an important motivation for this work, since it illustrates how different
assumptions may lead to different (and commonly used) models. We focus on two
such models, and outline the mathematical framework in § 3 and the evaporative fluxes
in §4. Section 5 and the Appendix describe experimental techniques employed for
estimating volatility parameters. The comparison of predictions of evaporative models
directly and against the experimental data in §6 is the central point of this work.

The issues related to the microscopic physics involved in evaporation next to the
contact line are only briefly discussed. Instead, we focus on the scale defined by the
drop size, and refer the reader to the literature discussing the relevant micro- and
nano-scale physics much more thoroughly (e.g. Israelachvili 1992; Morris 2001). We
consider a single solid type (silicon); other solids and a study of the influence of their
thermal properties on evaporation are left for future work.

2. Background

The problem of an evaporating drop involves three phases: solid, liquid and gas.
Solving the problem in all three phases, coupled with the moving interface problem
and the resolution of the flow in the vicinity of the contact line, would be exceedingly
complex. Henceforth, we refer the model including ‘full’ treatment of liquid and gas
phases as the two-sided model. Before reviewing simplifications of this model, we
discuss the state of the liquid—gas interface and the composition of the gas phase.
In thermodynamic sense, either equilibrium (Cachile et al. 2002; Hu & Larson 2002,
2005a,b; Dondlinger, Margerit & Dauby 2005; Haut & Colinet 2005; Margerit,
Dondlinger & Dauby 2005; Poulard et al. 2005) or non-equilibrium (Burelbach,
Bankoff & Davis 1988; Anderson & Davis 1995; Hocking 1995; Ajaev 2005; Sultan,
Boudaoud & ben Amar 2005) at the liquid—gas interface is assumed. The gas phase is
considered to consists of either vapour itself or a mixture of vapour and inert gas (e.g.
air). If we first consider a drop in contact with its vapour only, and that the interface
is at thermodynamic equilibrium, the temperature and the pressure in the gas are
related through the Clausius—Clapeyron law (Clausius 1850; Atkins & de Paula 2006):

1n[psz'] _ G { b 1] (2.1)
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where &,,, and R are the enthalpy of vaporization and the universal gas constant,
p. and T, are the saturation pressure and temperature, and (pg, 7;) is a point
on the liquid—vapour co-existence curve. Henceforth, we use the notation f*= f[f],
where f denotes the non-dimensional version of the variable f*, scaled by [f]. The
thermocapillary Marangoni effect should not be expected for a drop in contact with its
vapour only, unless non-equilibrium is assumed at the interface (Haut & Colinet 2005).
On the other hand, the Marangoni effect is more likely to occur when the gas phase is
a vapour/inert gas mixture, even under equilibrium assumption, due to possibly large
fluctuations of the partial pressure of vapour. Under non-equilibrium assumption, the
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mass flux J* is related to the interface quantities via the Hertz—Knudsen expression
from kinetic theory of gases (e.g. Knudsen 1915; Plesset & Prosperetti 1976):
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where p; . (7;") is the saturation pressure at the interface temperature 7;*, and p; is the
vapour pressure just beyond the interface. The parameters « and M are the accom-
modation coefficient (measuring liquid volatility) and the molecular mass of vapour
respectively. Equation (2.2) assumes continuity of temperature across the interface;
see Fang & Ward (1999) and Sefiane & Ward (2007) regarding this assumption.

The two-sided model can be simplified by assuming a convection-free vapour/inert
gas mixture, and using the fact that vapour viscosity and thermal conductivity are
much smaller compared to liquid. This yields a reduction to the Navier-Stokes and
energy equations in the liquid, coupled via boundary conditions to the diffusion of
vapour in the gas. Various models that follow such an approach are referred to as
1.5-sided models (Dondlinger et al. 2005; Haut & Colinet 2005; Margerit et al. 2005).
These models are still rather complex. In order to simplify further, one may first
focus on the vapour concentration, ¢, satisfying a diffusion equation with vapour
mass diffusivity D and appropriate boundary conditions. If the choice of time scale is
such that #;cqe > tsir—vap, Where taig—yqp =12/D is the vapour diffusion time scale and
[ is a typical length scale, the transient term in the diffusion equation can be dropped,
simplifying the problem to Laplace’s equation: Ac =0. Water vapour diffuses into the
air with D ~2.5 x 107> m?s™'; using dy = 0.5 mm as a typical drop thickness and [ ~ d
(to be discussed below) yields #4—vap ~ O (107%) s. In comparison, a sensible choice for
tscate» @ time scale on which microlitre water drops evaporate, is ~O(10°)s. Therefore,
unless /> d,, the reduction to the steady-state formulation is usually appropriate
(see Barash et al. 2009). Under certain assumptions, most notably of a pinned contact
line, this approach leads to an evaporative flux of the form J ~h~", where h is the
drop thickness, see Deegan et al. (1997, 2000). A similar method, where the diffusion-
based evaporative model is coupled with the heat conduction in liquid and solid, was
used recently in Dunn et al. (2009). Further applications of this approach to problems
with pinned contact lines include Popov 2005, Girard et al. 2006 and Barash et al.
2009. This vapour diffusion-limited evaporation model, henceforth referred to as the
‘lens’ model, was subsequently extended to problems with moving contact lines, see,
e.g. Sefiane, David & Shanahan (2008). In Cazabat & Guena (2010), it was argued
that the lens model is generally applicable for isolated drops evaporating in free
atmosphere. They listed two possible exceptions: water drops, where the evaporating
interface is susceptible to contamination, and situations where thermal conductivities
of liquid and solid are comparable, or the liquid is extremely volatile, effectively
rendering the stationarity assumption for the vapour concentration inapplicable.

The 1.5-sided model can also be simplified by concentrating on the liquid phase.
In this fundamentally different approach, the influence of the gas phase on the
evaporative flux is neglected. Such an approach is generally referred to as the one-
sided model (Burelbach et al. 1988; Colinet, Legros & Velarde 2001). The decoupling
of the phases is achieved by assuming that either vapour diffuses rapidly away from
the evaporating interface (mixture) or the presence of vapour does not limit the
evaporation process (vapour only). The resulting non-equilibrium one-sided model
(NEOS) has been used for volatile thin films on heated solid substrates (Burelbach
et al. 1988) and has been reviewed extensively in Oron, Davis & Bankoff (1997). We
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mention here the work by Fischer (2002), where the dependence of the evaporation
regime on the environment was studied. Based solely on numerical simulations, it was
argued that, depending on the environment, either the lens or the NEOS evaporation
model may be utilized. Recent work by Cazabat & Guena (2010) hinted that the
NEOS model is relevant for spontaneously evaporating drops surrounded by vapour
only or the cases when the evaporating interface is contaminated (e.g. water drops).
The NEOS model, under certain assumptions discussed in §4, leads to an evaporative
flux of the form J ~1/(h + const).

Some insight regarding a connection between the lens and NEOS models can be
gained by examining the relative importance of relevant physical mechanisms. In
particular, as in Haut & Colinet (2005), we may consider an evaporation process
divided into three distinct steps, each characterized by its own ‘resistance’: the
resistance to phase transition, %, the resistance to heat conduction through liquid,
A., and the resistance to vapour removal by means of diffusion, #,. The additional
resistance due to heat conduction through the solid may also be considered, but
we omit it here for brevity. Since there are a number of limiting assumptions,
see Haut & Colinet (2005), the argument that follows is meant only to provide an
order-of-magnitude estimate. The resistances are defined as follows:
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where R, =R/M, k is the liquid thermal conductivity, dy is the liquid thickness, ¢,
is the heat capacity of the liquid, p,; =1atm, L is the latent heat of vaporization
and k, is the thermal conductivity of the vapour (we assume k, ~ k,;-). Henceforth,
the saturation temperature is taken as a parameter in units of temperature. Finally,
My, py and N, are the molar mass of the inert gas (air), volumetric mass (density)
of the vapour and mass fraction of the vapour at the top of the gas layer (ambient
value) respectively. The mass fraction of the vapour is given as N,, = p,/(0s + Puir ),
where p,;, is the volumetric mass of air. Using the ideal gas law and the fact that
p,, the partial pressure of vapour, may be approximated as p; ~ Hp,,(T,,), where H
is the relative humidity and p;,(7,,) is the saturation pressure corresponding to 7,
(ambient temperature), one arrives at the following approximation for N,,:

Mp:at (TL‘P)
Mair pair '

N,

wp ~ H (2.5)
The derivative in (2.3a, b) is estimated at Ty, the temperature at the liquid—solid
interface. Using the Clausius—Clapeyron law, (2.1), the ideal gas law, and the fact that

the gas layer is a mixture of air and vapour, this derivative may be approximated as

dpg, ~ Lo,N
dT* T, Tsat ’

(2.6)

where p,N is the volumetric mass fraction of the vapour in the gas phase. The
resistances defined in (2.3a, b) and (2.4) were shown in Haut & Colinet (2005) to
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enter the mass flux J corresponding to a composite evaporation model for a volatile
liquid film surrounded by a mixture of inert gas and vapour:

p:al(T;'*) o NupMair
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(2.7)

where the ratio p;,,(7;")/ pair in the numerator drives evaporation, while (N,, M)/ M
suppresses it. The above approximation applies if p;, (T,,) = ps, (T;").

If a particular resistance is small, the corresponding step in the evaporation process
may be ignored. For example, if #, <%,, the evaporating interface is at local
thermodynamic equilibrium; if Z. < %, the heat is supplied to the interface relatively
fast, but the phase transition is negligible due to the relatively slow rate of vapour
removal, and hence the interface is at room temperature (non-volatile case); finally,
if #; <., the diffusion of vapour away from the interface is rapid, and therefore
the composition of the gas phase is uniform. As a result, several crucially different
evaporation regimes emerge: if Z,>> ZA., %4, evaporation is reaction-limited and the
interface is at non-equilibrium (as in the NEOS model); if Z.>> #,,, #,, evaporation
proceeds in the heat conduction-limited regime and the interface is at thermodynamic
equilibrium; if #,>> %,, #., the limiting mechanism is vapour diffusion (as in the
lens model), with interface also in equilibrium.

The expression for %, has roots in the kinetic theory of gases. Among other
quantities, #, depends on the accommodation coefficient «, which describes the
probability of phase change. However, the o used in the literature vary across several
orders of magnitude: O(107%)-0O(1). In particular, while in Kennard (1938) it was
argued that o should be small, « =1 was used in Schrage (1953) and Sultan et al.
(2005), «=0.83 in Burelbach et al. (1988), and @ =0.1 in Colinet et al. (2001).
The theoretical predictions suggested that a € [1072, 1] for water (Marek & Straub
2001). Nevertheless, these predictions were found to overestimate the volatility and
have failed to agree with the experiments — in fact, values of « in the range
0(107°)-0(10~?) have been measured (Mansfield 1955; Derjaguin, Fedoseyev &
Rosenzweig 1966; Barnes 1978; Marek & Straub 2001). While particularly small
values (0(107%)-0(1073)) resulted from experiments with water drops where the
surface was intentionally contaminated by monolayers of cetyl alcohol (Mansfield
1955; Derjaguin et al. 1966), susceptibility of water, in particular, to unintentional
contamination by surfactants has been identified as one of the main reasons for
small measured values of o (Cammenga 1980; Barnes 1986). Effectively, for water,
the values of « in the range [1072, 1] may be measured only in experiments carried
out in vacuum or when the evaporating surface is continuously renewed (Cazabat &
Guena 2010). When water drops are allowed to evaporate in free atmosphere without
manipulating (i.e. renewing) the evaporating surface, a < O(107%) is likely to result
(Murisic & Kondic 2008; Cazabat & Guena 2010). We note that the range [107°, 1]
for o leads to a wide range of values of #,, as illustrated in table 1.

The resistance #., (2.3a, b), measures the relative importance of heat conduction in
liquid with respect to the one in the gas phase. While most of the parameters entering
(2.3a, b) and (2.6) are well known, the relevant extent of the gas phase, /, is difficult
to estimate. While / only weakly influences %, it strongly modifies #,, as illustrated
in table 1, where we use H =0.5 and consider the values of [ varying between 80d,,
suggested by Hu & Larson (2002), and 0.1dy, which may be relevant in the case of
drops open to the atmosphere where the vapour can also be removed by convection
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l o Ry R. Ry Evaporation limited by, appropriate model
0.1dy, 107* 0.26 x 10? 0.41 0.92 Volatility, NEOS
dy 1074 0.26 x 10? 0.56 0.92x 10" Volatility + vapour diff., mixed

80d, 10~* 0.26 x 10? 0.59 0.74 x 10  Vapour diff., lens
80dy, 107! 0.26x107!' 0.59 0.74x10° Vapour diff,, lens
dy 1071 0.26x 107" 0.56 0.92x 10" Vapour diff,, lens
0.1dy 107" 026x107' 041 0.92 Vapour diff. + heat cond., mixed

TaBLE 1. Table of the values of resistances relevant to the evaporation process for water,
relative to the choice of values for / and «.

in the gas. Table 1 summarizes the effect of changing « and/or I, illustrating how
these parameters may lead to a transition between different evaporation regimes.

To summarize, the choice of the relevant evaporation model depends on the
quantities that cannot be estimated precisely, such as the relevant gas phase thickness,
[, or for which a range of results exist, such as the accommodation coefficient, «.
As pointed out e.g. in Haut & Colinet (2005) and Cazabat & Guena (2010), even
when the gas phase is an inert gas/vapour mixture, additional information about the
set-up is required before one can decide which model is more appropriate. In this
paper, we expand on the preliminary results of the numerical study of evaporation
models (Murisic & Kondic 2008) and show how physical experiments, combined with
modelling and simulations, can be used to distinguish between the two commonly used
evaporation models. We discuss the differences between these models and compare
their predictions directly and against our experimental results. To the best of our
knowledge, this is the first time such a comparison has been carried out using data
appropriate to a particular experiment.

3. Problem formulation

The main building blocks of the model are as follows:

(1) the spreading drop is characterized by a small aspect ratio so that lubrication
approximation is appropriate;

(i) Marangoni forces are considered, so that the dependence of surface tension on
temperature is included;

(iii) the effect of the thermal conductivity of the solid and liquid phases as well as
the vapour recoil effect is included;

(iv) the solid-liquid interaction is modelled using a disjoining pressure approach.
The solid-liquid interaction is included through a model with both attractive and
repulsive terms which are often considered to result from van der Waals (vdW)
intermolecular forces, leading to a stable equilibrium liquid layer. We note that we
focus on pure liquids; the Marangoni effect arising due to the variation in liquid
composition is hence neglected. That thermocapillary Marangoni effect is relevant
even for water drops was shown in the experiments carried out by Xu & Luo (2007).

The starting point of the model is the Navier—Stokes equations, accompanied by
the energy equations (liquid and solid) and, in general, by the diffusion equation for
vapour. Figure 1 shows the physical set-up. Our model derivation mostly follows the
approach presented in Burelbach et al. (1988), with a few modifications which are
relevant to the present work. In particular, we keep the evaporative flux unspecified
at this point, so that later we will be able to apply either the lens or the NEOS model.
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FiGUre 1. The physical configuration: the evaporating drop on a horizontal solid surface.

Moreover, to account for vdW forces, we include a disjoining pressure model, allowing
us to carry out time-dependent simulations of the resulting equation. An inclusion of
such a term has been reviewed in e.g. Oron et al. (1997) and discussed by other authors
in the presence of evaporation (Colinet et al. 2001; Ajaev 2005). The temperature at
the bottom of the solid layer is prescribed as 7T, (—d,, t*) = Ty, where Tj is the reference
(room) temperature. This particular choice is appropriate for our experimental set-up,
where a solid wafer rests on an insulating platform at a fixed (room) temperature. At
the liquid—solid boundary, z* =0, we assume no-slip and no-penetration conditions,
along with continuity of the temperature and matching heat fluxes between the liquid
and the solid. We use the scales similar to those in Burelbach et al. (1988): dj is the
length scale (~0.5 mm, typical drop thickness); d3/v, v/dy and pv?/d3 are the viscous
scales for time, velocity and pressure respectively (v and p are the kinematic viscosity
and density of liquid); the scale for the evaporative mass flux is kAT /(dyL); finally,
the temperature difference 7, — Ty, is scaled against AT =T, — T,,. Since we assume
that the aspect ratio of the drop is small, we employ the lubrication approximation in
order to simplify our model. Within the lubrication approximation, the final equation
for the thickness, & = h(r, t), of an axisymmetric volatile drop in polar coordinates
(see Murisic & Kondic 2008) is given by

oh S 1 1 E? M
O BT+ 2k (e 4 by — =1, )| — SR T + LR+ 90)))
ot r r r? ., rD rP

b\ (bY
rh? -] ==

h h
The consecutive terms describe viscous dissipation, evaporation, capillary effects,
vapour recoil, the Marangoni effect, disjoining pressure and gravity respectively. The
disjoining pressure term involves an (n, m)-type potential, see e.g. Schwartz & Eley

(1998) and Diez & Kondic (2007). The non-dimensional parameters appearing here,
defined as

kAT O'()do _ 3,0,)N Ma — )/ATd()Cp
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A
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pvL

are the evaporation number, scaled surface tension, density ratio, and Marangoni
and Prandtl numbers respectively. We note that oy is the surface tension at room
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Parameter Water Isopropanol Non-dim. Par. Water Isopropanol
Ty (K) 286.8 256.1 D 1075 103
oo N (kgm™3) 1.196 x 1072 7.549 x 1073 E 102 1073
p(kgm™) 998 790 Ma 10 104
y(NK'm™") 0.18x 1073  0.25%x 1073 A 106 103
oo (Nm™) 7.2 x 1072 2.1 %1072 |G| 10? 10!
LJkg™) 2.44 x 106 0.79 x 106 S 104 10?
R,(Jkg™' K™ 461.92 138.35 H 10 1
v(m?s 0.902 x 1076 2.582 x 106 P 1 10
k(WK-'m™) 6.05x 1071 1.35x 107! W 1 1
k, (WK~ m™") (Si) 1.35 1.35

¢, (Tkg ' K 418 x 103 24x%10

TABLE 2. Table of parameter values (left) and non-dimensional parameters (right) at
T =298 K for water and isopropanol (Lide 1997).

temperature, and y =—do/dT > 0 for most liquids. Also

kd, 2d, _ dgg

W = ) A = 55 — T 5 5>
kydo 3v2pAN'b 32

(3.3)

where #~ describes the thermal effects in the solid: d; =0.75 mm is the typical thickness
and k; is the thermal conductivity of silicon wafers. Furthermore, b = d,gui1/do, where
dequir 18 the equilibrium film thickness (resulting from disjoining pressure), £2 = oo(1 —
cos®@) and V" =(n —m)/((n — 1)(m — 1)). We use (n, m)=(3, 2), see Schwartz & Eley
(1998), and note that the results do not depend in any significant manner on this
choice. Finally, g is the gravitational acceleration, and @ is the contact angle. The
non-dimensional parameter A therefore encodes the contact angle behaviour; we note
that here both A and b are independent of the liquid temperature.

Before specifying the evaporative flux, it is appropriate to briefly discuss the values
of the non-dimensional parameters appearing in (3.1) for the physical problems
of interest. Table 2 lists the values of the most important material parameters. We
concentrate on two types of pure liquids with substantially different volatilities at room
conditions — water and isopropanol (alcohol) — and silicon (Si) solids. T, is obtained
from the Clausius—Clapeyron law, (2.1): we consider (pg, Tp) = (1 atm, 355K) for
isopropanol and (1 atm, 373 K) for water (normal boiling points for the two liquids).
For representative values of 50 % relative humidity (water) and 5 % relative vapour
content in the surrounding gas (isopropanol), we obtain py, = 1.58 kPa for water and
Psae =267 Pa for isopropanol; these are then used in the Clausius—Clapeyron law to
calculate Ty, for water and isopropanol. The p,N values from table 2 are calculated
from the ideal gas law, using py,; and Ty, . The choice of values for relative humidity
and vapour content has only a minor influence on the results — e.g. if relative humidity
(vapour content) is varied between 40 % and 60 % (2% and 10 %), calculated Ty,
changes by only 1 %.

Table 2 also gives the order-of-magnitude size of relevant non-dimensional
parameters for both water and isopropanol. We note that our assumptions regarding
the relative size of dependent parameters have been extensively used in previous
studies (e.g. see Burelbach et al. 1988; Oron et al. 1997; Craster & Matar 2009). In
addition to allowing retainment of all physical mechanisms at the leading order in
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our model, these assumptions also ensure regularization of the resulting governing
equation by maintaining the high-order capillary term.

4. The two evaporation models

The two evaporation models we consider have been extensively reviewed in the
Introduction. Here, we discuss the precise formulation of the evaporative flux needed
for our simulations and comparison with experiments.

4.1. The lens evaporation model

The lens model is consistent with the liquid—gas interface at equilibrium and the
evaporation limited by the diffusion of vapour into the surrounding gas. The problem
for vapour mass diffusion is reduced to Laplace’s equation for vapour concentration,
¢*, accompanied by the boundary condition at the liquid—vapour interface (constant
saturation concentration) and some far-field condition (ambient concentration). If
the drop is assumed to be a spherical cap, this boundary value problem has an
electrostatic equivalent: the problem of finding an electric field exterior to a lens-
shaped conductor, where ¢* is equivalent to the electrostatic potential and the mass
flux J* to the electric field (Picknett & Bexon 1977; Deegan et al. 1997). An additional
requirement is that there should be no evaporation beyond the contact line of the
drop. Solving this electrostatic problem analytically is rather complex (Deegan et al.
2000; Popov 2005), but the resulting expression for the mass flux J* can be well
approximated by (Hu & Larson 2002)

Jlens
(R> — 2y

where R is the drop radius, r* is the radial distance from the drop centre and Jj,;s
is an evaporation coefficient to be related to the volatility parameter below. We use
the expression A=1/2 — ®/n from Hu & Larson (2002), which achieved the best
fit between the approximation, (4.1), and the numerical solution for J* (obtained
from the numerical solution for ¢*, using the boundary condition J* = DV"c" at the
evaporating interface); it was found to be valid for ® € [0, /2], with the maximum
relative error <6 %. We note that the results in Hu & Larson (2002) depend on
the choice of the relevant thickness of the gas phase, /. In particular, if [ < 80d,,
e.g. [ ~dy, the validity of the vapour diffusion-limited evaporation model and (4.1)
become questionable, as discussed in §2.

In what follows, we assume that the surface of the drop is well approximated by a
spherical cap, see figure 2, an assumption discussed in more detail later in §5. Here,
we only note that this approach is justified by a small relevant capillary number,
Ca=u?/(poody) ~ O(10~*), and a small Bond number, Bo=(pgdy*)/co~ O(1072).
Hence, the thickness of the drop is 4" = v/ R? 4+ d?> — r*>*—d, where d = (R>*—d,*)/(2d,).
Since the shape of the drop changes slowly, R and d, are treated as constants. Next,
we non-dimensionalize (4.1), using [J] = (kAT)/(doL). Substituting the expression for
r=r"/dy in terms of h=h"/d, gives

') = (4.1)

Jlens
M A°
[J1do* (h((R/do)* — 1 + h))
For small @, the dominant term in the brackets is (R/dy)?, allowing the reduction to

X
h’

J(h) = (4.2)

J(h) = (4.3)
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FIGURE 2. The spherical cap approximation.

where ¥ = 4. The volatility parameter x is given as x = Jius/([J]R?). For larger ®
(ie. R ~dy), (4.3) is still valid, but with ¥ =24 and x = Jiens /([J]do**). We note that
here J diverges as h — 0. Although this divergence is integrable, it is not physical.
However, in the approach we use, the disjoining pressure naturally removes this
divergence, by introducing a length scale, related to d.qi, Where evaporation stops
due to attractive vdW forces. The manner in which yx is determined experimentally is
discussed in § 5.

4.2. The NEOS evaporation model

This model corresponds to a case when Z,> ., #, (reaction-limited evaporation
with the interface at non-equilibrium). The decoupling of the liquid and gas phases
allows us to solve the problem in the liquid phase only and ignore the vapour. The
mass flux J satisfies the Hertz—Knudsen relation, (2.2). We note that while (2.2) was
originally introduced in Knudsen (1915) for evaporation of pendant drops, it typically
requires correction for the Laplace pressure when describing evaporation from curved
interfaces, see e.g. Ajaev (2005). Here, this correction is small — O(10~°) — hence,
we neglect it, similarly to Cazabat & Guena (2010), where sessile drops were also
considered. The Clausis—Clapeyron law, (2.1), is used to relate the temperature and
the pressure, and thus we obtain the boundary condition at the liquid—gas interface:

* * aLIOUN —
J=@—M%M>W&W? (4.4)

sat

The use of the scales for temperature and evaporative mass flux gives J =T7/%". The
non-equilibrium parameter 4 is given by

2nR,) KT,
— ( T g) sat . (45)
adyL?p,N
Using the connection between the temperature and the evaporative flux at z=h as
in Burelbach et al. (1988) gives
b
h+A +W"
For water, %" + #" ~ O(10); hence, J(h) depends only weakly on h. Furthermore, J
in (4.6) remains finite as & — 0, unlike the one in (4.3).

J(h) = (4.6)
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FIGURE 3. (Colour online available at journals.cambridge.org/FLM) (a) The goniometer:
camera, syringe and deposition platform. Snapshots of the evaporating water drop recorded
at (b) 565, (c) 256s and (d) 536s. The silicon wafer is shown in grey; the drop itself and
goniometer platform are black.

Depending on which evaporation model is considered, J given by either (4.3)
or (4.6) may be substituted into (3.1), which can then be solved numerically, provided
volatility parameters are known. Therefore, we proceed by describing our experiments
carried out in order to find the unknown volatility parameters x and o.

5. The experimental procedure

The main goal of the experiments is twofold: first, they provide the data for the
rate of mass loss and allow us to estimate x and «; second, the experimental data
regarding the evolution of the drop volume and the position of the contact line
provide a benchmark for the two theoretical models.

We carry out the experiments using a goniometer (KSV CAM 200), which consists
of a camera, light source, static deposition platform and a Hamilton 1700 Series
GASTIGHT syringe (see figure 3a); also included is image analysis software. The
experiments are performed at room temperature and in open atmosphere. While
we impose no special precautionary measures to shield the experimental set-up
from sources of air convection, we examine the influence of applied convection on
experimental data and find it to be insignificant (see the discussion accompanying
figure 10 in §6.1).

In the experiments, water and isopropanol drops are deposited onto smooth
semiconductor grade Si wafers, treated by chemical-mechanical polishing that reduces
surface roughness (Rms) to 0.5 nm (the same wafers as in Gotkis et al. 2006 are used).
No additional preparation or cleaning of wafers is employed. We note that rapid
oxidation of Si wafers can lead to formation of hydroxyl groups and siloxane bridges —
our experimental results showing a well-defined initial contact angle for water ~40.9°,
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FIGURE 4. (Colour online) (a) Evolution of the volume and radius of a drop of water.
(b) Evolution of the contact angle @ for a drop of water during the interval [0, #7]. The linear
fit ©(¢) (dashed line) is used in our theoretical model. The size of symbols accounts for the
experimental error.

see figure 4(b), suggest that the siloxane bridges dominate and that the surface
is reasonably homogeneous (we thank an anonymous referee for providing further
insight regarding this issue). While the importance of surface chemistry is undeniable,
our present experimental equipment does not allow us to go further than to report
the experimental procedure and the results. In our experiments, the wetting line of
drops remains circular (within experimental error) — no substantial deviation from
circular shape is observed.

The typical size of the drops is 4.828 pl for water and 3.200 pl for isopropanol. The
experiments are carried out repeatedly to ensure reproducibility. In each experiment,
the drop is deposited on a new wafer location. The drops evaporate spontaneously,
and the temperature of solid wafers is not controlled. Figures 3(b)-3(d) show three
images recorded during evaporation of a 4.828 pul drop of water. With the exception of
a brief interval (<2 s) immediately following the deposition, the evolution of the drop
profile is rather slow. We neglect the short initial stage of evolution and concentrate
on subsequent dynamics only. Hence, in our discussion below, =0 refers to the
time instant approximately 2s after drop deposition. The images are recorded at 8s
intervals. The software analyses each image by first verifying that the drop satisfies the
spherical cap shape. To this end, a curve is fitted to the drop profile, with maximum
permitted average deviation of 1 um. The data for the radius and the height of the
drop at time #;, R; and H;, respectively, are extracted at a cost of the additional
error associated with the pixel size, not exceeding 10 um. The apparent contact angle
O(t;) = O, is calculated using simple geometrical arguments at the intersection of the
liquid-solid interface and the fitted curve, thereby circumventing the pixel-counting
procedure and the associated error. Using the data for radius, height and contact
angle, we calculate the drop volume V; and the surface area S;, based on the spherical
cap approximation.

Figure 4(a) shows typical evolution of the radius and volume of the evaporating
water drop. Consistent with previous works (Deegan 2000; Hu & Larson 2002;
Girard et al. 2006; Kim et al. 2007; Sodtke, Ajaev & Stephan 2007; Girard, Antoni &
Sefiane 2008), we observe a linear decrease of volume for the considered time interval.
However, we find neither contact line pinning nor significant stick-slip motion, as
in Hu & Larson (2002). The lack of contact line pinning is likely a consequence
of the smoothness of the solid substrates — typical surface roughness of glass slides
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FiGURE 5. (Colour online) Volatility parameters for water. The data points indicate the
calculated values and the lines indicate the corresponding average value. The lens model:
x =(4.04+1.2) x 1072, The NEOS model: @ =(3.5+1) x 10~*.

used in Hu & Larson (2002) is ~O(1 um), several orders of magnitude larger than
the roughness of our Si wafers. Our findings regarding the mobility of the contact
line are consistent with the experimental results in Sefiane et al. (2008), where similar
liquids and solids were used. In addition, in all experiments with water drops, we find
that the evolution is characterized by an increasing absolute rate of change of radius,
in qualitative agreement with the recent experiments by Sodtke, Ajaev & Stephan
(2008), involving water drops in contact with their vapour.

Figure 4(a) also indicates that during the final phase of evaporation (¢ > ¢, =7005s),
when drop thickness is very small, the accuracy of our data deteriorates significantly.
This feature is due to the difficulties the software encounters during the curve-fitting
process on very thin drops. For this reason, we use only the data obtained for
t <ty. Some results of our computations are also compared at an intermediate time,
tin = 106.7 s.

Figure 4(b) shows typical variation of ® during the time interval [0, ¢,]. We include
this variation in our model by using ©(¢) as given by the linear fit to the experimental
data with the slope —3.26 x 102s~! (the line in figure 4b). This variation of @(t)
suggests that there is the additional resistance to the contact line motion, not included
in the model. We leave detailed understanding of this effect for future work and here
simply include its effect by using the time-varying coefficient A in (3.1). We note that
our approach differs from previous works, such as Ajaev (2005); here contact angle
behaviour is directly prescribed by the experiment.

The procedure used to calculate y and « from the experimental data (volume and
surface area) for water drops is described in the Appendix. Figure 5 shows the values
of x and o over the time interval [0, 7;]. An important observation is that although
there is some spread in the results, ¥ and o remain constant throughout the considered
time interval, as also confirmed by additional experiments with the same size drops.
The influence of the initial drop size on these quantities is discussed later in §6.3.

The relatively small values of « are consistent with those in Mansfield
(1955), Derjaguin et al. (1966) and Marek & Straub (2001) for water. For example,
using the calculation technique and the experimental data for pure water drops
without imposed monolayers from Derjaguin et al. (1966), we consistently find
a~2x 107, Furthermore, our results are in direct agreement with experimentally
measured values listed in Barnes (1978). The possibility of having rather small
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accommodation coefficient has also been suggested by other authors (e.g. see Colinet
et al. 2001; Cazabat & Guena 2010). Therefore, such small values are not surprising
for water drops evaporating spontaneously in free atmosphere, although they are very
different from the ones used in some recent works (e.g. Sultan et al. 2005; Sodtke
et al. 2008). We also note that the obtained values for y are consistent with those
from Guena, Poulard & Cazabat (2007b).

In light of the discussion from §2 regarding the three resistances to evaporation,
we note that the obtained value of « yields £, ~7.7. Independently of the relevant
thickness /, this value of #, is an order of magnitude larger than %.. However,
without knowing /, the relationship between the magnitudes of %, and Z, is unclear.
Therefore, the value of @ alone is not sufficient to decide which of the two evaporation
models (if any) is appropriate. The information regarding the relevant thickness / is
likely encoded into the calculated value of x, and so the natural manner to proceed is
to compare the predictions of the two models directly, and against the experimental
data.

Finally, we ensure the quality of our experimental data for water through a
comparison with the experimental results from Hu & Larson (2002). In particular,
we use their data for evaporation of a small water drop on a glass cover slip, with
pinned contact line. We apply the same procedure as above and obtain x = 5.1 x 1072
and o =3.1 x 107*. Despite the differences in experimental set-ups, these values are
in excellent agreement with the results for x and « obtained from our experiments.
Therefore, we have an independent confirmation that our experimental results are
reasonably accurate.

In the case of isopropanol, drops become very thin rather quickly, a regime for
which the goniometer set-up is ill-suited. Therefore, we use a different approach for
calculating x and «, discussed in §6.

6. Numerical simulations, comparison with the experimental results
and discussion

In order to compare the two evaporation models with the experimental data, we
perform numerical simulations of (3.1). Preliminary results of our simulations can be
found in Murisic & Kondic (2008). We utilize an extension of the numerical code used
in Gotkis et al. (2006) to cylindrical geometry. For computational reasons, we carry
out simulations using the value of d,4,; which is larger than in experiments, or in Ajaev
(2005) and Sodtke et al. (2008), where a different approach to inclusion of vdW forces
was employed. However, we have verified that for a sufficiently small value (we use
dequit = 0.625 pm), there is no influence of this quantity on the evolution of the drop
radius. First, we focus on water and carry out simulations using volatility parameters
from § 5. Numerical results for the evolution of the contact line position and volume
are compared to experimental data, while the results for interface temperatures
are compared directly between the two models. Next, we consider isopropanol and
describe the method used to calculate the corresponding volatility parameters.

6.1. Water drops

For water, the initial condition for simulations matches the experimental data for the
corresponding drop immediately after deposition (R =2.069 mm, H =0.692 mm and
® =41°). We note that the validity of lubrication approximation even for such large
values of ® has been confirmed by finite element-based simulations in Hu & Larson
(2002). The initial condition is developed from a spherical cap profile, evolved for
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FIGURE 6. (Colour online) Comparison of numerical and experimental results for water. The
lines are obtained using the mean values of volatility parameters, shown in figure 5; the error
bars correspond to those obtained using the mean values + standard deviation; the size of
circles shows the experimental error. (a) Evolution of the drop volume and (b) evolution of
the contact line position.

a short time using the J =0 version of our numerical code in order to ensure its
smoothness.

Figure 6(a) shows the volume evolution of the evaporating drop. For this
configuration, we find excellent agreement between the experimental results and
the NEOS model, which is consistent with Sodtke et al. (2008). The lens model
overestimates the volume loss, predicting an early dryout at r=698s. The most
probable reason for the difference between these results and the earlier work (e.g. Hu &
Larson 2002, 20054, b) is that here, no contact line pinning occurs. The importance
of the pinning is in the following: with drop radius fixed, the evaporative mass loss
is manifested solely through the thinning of the drop; hence, the variation in ® is
much larger than the one considered here, causing accordingly a larger variation in
4, thereby affecting the predictions of the lens model. The importance of the pinning
effect was emphasized in Girard et al. (2008): although good agreement between the
experiments with pinned drops and the lens model was found, they noted that this
model may not be as appropriate when moving contact lines are considered.

Figure 6(b) shows the results for the evolution of the contact line position for the
two models in addition to the experimental results. The differences between the models
are as substantial as in figure 6(a). The NEOS model is still in better agreement with
experimental results compared to the lens model, but both models overestimate the
mobility of the contact line. This issue is further discussed below.

Figure 7 compares the temperature profiles at the liquid—gas interface predicted
by the lens and NEOS models at ¢t =¢;,,, showing a qualitative difference between
the two. As illustrated in figure 8, the lens model predicts significantly larger mass
flux in the contact line region, causing a sharp temperature decrease. On the other
hand, for the NEOS model, the heat supplied from the solid in this region exceeds
the heat lost due to evaporation; consequently, temperature increases as one moves
from the centre of the drop towards the contact line. The increase in temperature
as one moves towards the contact line is consistent with the previous results using
the lens model for similar liquids, evaporating either spontaneously (Hu & Larson
2005 b ; Ristenpart et al. 2007) or on weakly heated solids (Girard et al. 2006, 2008)
under the pinned contact line assumption. The prediction of the NEOS model agrees
with the recent numerical results for a similar model in Sodtke et al. (2008). Also, it
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FiGURE 7. (Colour online) Numerical results for water: the temperature of the liquid—gas
interface for the lens and NEOS evaporation models. (a) At t =t;,,; (b) at t =681.25s. Note
the ‘stagnation point’ in the profile corresponding to the lens model: present at early (a), but
not at later times (b).
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FIGURE 8. (Colour online) Water: mass flux J as a function of the radial coordinate r at
t =t;,;. The full lines represent J, and the dotted lines represent the corresponding drop profile
at r=t;,;. The labels on the vertical axes correspond to the values of J. (a) The lens model.
(b) The NEOS model.

is consistent with the recent experimental measurements in David, Sefiane & Tadrist
(2007), involving a miniature thermocouple, and the ones in Girard et al. (2008).

An interesting feature of the results presented in figure 7(a) for the lens model is
a ‘stagnation point’ at which temperature gradient changes sign. Similar temperature
maximum was proposed as an explanation for the stagnation points recorded
experimentally in the flow occurring inside evaporating water drops (Xu & Luo 2007).
We note that the non-monotonic temperature profile is not required to understand the
experimental results of Xu & Luo (2007): the presence of a stagnation point, based on
entirely different physical grounds, was discussed extensively by Deegan et al. (2000)
and more recently by Berteloot et al. (2008), as one of the necessary conditions for
the formation of ring-like deposits. We also note that in the lens evaporation model,
smaller values of ® (e.g. at late times as in figure 7b) lead to monotonically decreasing
temperatures along the liquid—gas interface as one moves away from the drop centre,
in full agreement with Hu & Larson (2005b) and Ristenpart et al. (2007).

Next, we discuss the influence of thermocapillary Marangoni forces within the
framework of the model formulated by (3.1). Additional Marangoni forces due to
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FIGURE 9. (Colour online) Water: R(t) resulting from simulations versus Rj,,(t), obtained
using spherical cap approximation, versus experimental data. Deviation from the spherical cap
shape (0.51 % for the lens, 2.33 % for the NEOS model) is defined as the time average of
[R(t) — Rypn(2)I/R(2). The size of circles indicates the experimental error; error bars on Ry, ()
account for the spread in values of x and «.

the presence of surfactants which may lead to the combined Marangoni effect, as
discussed in Hu & Larson (2005b), are not considered here. We examine whether
thermocapillary Marangoni forces may lead to a deviation from a spherical cap shape,
sufficiently large to influence the results in figure 6(b) but still below the experimental
accuracy. To analyse this possibility, we proceed as follows: at a given time, the
numerical result for the thickness at the centre and the corresponding contact angle
are both used to calculate the drop radius, assuming the spherical cap shape; this
radius is then compared to the one resulting from the simulation. Figure 9 shows that
the deviation from the spherical cap shape occurs for both models. Furthermore, the
NEOS prediction, modified to satisfy the spherical cap shape, remains very close to
the experimental data, when accounted for the spread in the values of «. To confirm
that the Marangoni effect is indeed responsible, we carry out additional simulations
without gravity (G =0) and find that the influence of gravity is minor. Hence, the
distortion from the spherical cap shape due to Marangoni forces may be an important
source of the discrepancy in figure 6(b). We note in passing that these forces act in
opposing directions for the two models, as expected from the temperature profiles in
figure 7. In light of the work by Hu & Larson (2005b), where it was pointed out that
even minor contamination may significantly influence the Marangoni effect, and Xu &
Luo (2007), where the thermocapillary Marangoni effect is claimed to be important,
it will be of interest to consider the combined thermal/surfactant Marangoni forces
in more detail. We leave this issue for future work.

In order to further analyse the influence of the gas phase on evaporation, we
carry out additional experiments with mild air current applied by an air ventilator
running at moderate speed positioned 3m away from the experimental set-up. This
configuration induces a steady flow in the surrounding gas phase with flow speed
~O(1) cms™!. Figure 10 shows the comparison of experimental results for J, the
average evaporative flux, defined as the ratio of the evaporation rate (discussed in
the Appendix) and drop surface area. While we see some influence of the additional
air current, in particular regarding much larger spread of flux values, this difference
does not appear to be statistically significant, at least on the level of our experimental
accuracy. This suggests that the evaporation rate is not very sensitive to the manner in
which vapour moves away from the interface — vapour motion (diffusion, convection
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FIGURE 10. (Colour online) Influence of convection on experimentally measured surface-
averaged flux J for water during the time interval [0, 350s]. The stars indicate experimental
measurements, the dashed lines indicate the corresponding average values. (a) Convection-free:
J=044+0.1gm™2 s7'; (b) convected: J =0.7+0.4gm2s7".

or combination of the two) does not appear to be the main factor limiting the
evaporation process.

In conclusion, at least for the drop size and set-up considered here, the lens model
appears to overestimate both the mass loss and the contact line mobility of water
drops with moving contact lines on Si substrates. Here we note that modifications
of the lens model, e.g. inclusion of non-stationary effects in the gas (see Poulard,
Benichou & Cazabat 2003; Poulard et al. 2005), may improve its predictions. The
NEOS model describes both the mass loss and the contact line mobility reasonably
well. Our results confirm the expectations for spontaneously evaporating water
drops, briefly outlined in Cazabat & Guena (2010). Nevertheless, the real verification
of the NEOS model should come from the direct measurements of the temperature
of the liquid—gas interface, since the two models predict qualitatively different
temperature profiles. As we shall see in the next section, this decisive experiment
will be even more relevant for the isopropanol case.

6.2. Isopropanol drops

Next, we apply the two evaporation models to a more volatile isopropanol. Since
this configuration is characterized by a small (apparent) contact angle (® ~6° is
obtained via the procedure discussed in §5), in our experiments carried out using the
goniometer, we are unable to accurately follow the evolution, since the drop quickly
becomes very thin. For this reason, we also carry out experiments using a microscope
and a high-speed camera set-up, allowing a view from above and the extraction
of the maximum radius achieved by a drop. These experiments and corresponding
simulations are discussed in §6.2.2. We note that all the experiments are carried
out in the open atmosphere, so some degree of absorption of water vapour by
the isopropanol drop may occur. This absorption may be rapid, but for moderate
water intake it leads to only small changes in surface tension. Due to the short
duration of the experiments discussed below, we do not expect that absorption has
a significant effect on the results. Carrying out experiments in dry air would be of
interest if this effect is to be analysed in more detail. While we are not able to monitor
experimentally the contact angle evolution, we expect that the relative change in @ is
small, as expected for the configurations characterized by spontaneous evaporation,
where contamination of the free surface is not as important as for water, the liquid
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FiGURre 11. (Colour online) Comparison of numerical results for isopropanol for the lens and
NEOS models. Time interval: [0, #;,,]. (a) Evolution of the drop volume; (b) evolution of the
contact line position, see Murisic & Kondic (2008).

is partially wetting and the contact line speed is moderate, see e.g. Cazabat & Guena
(2010).

Immediately upon deposition (¢ <1s), we observe fast spontaneous spreading
of isopropanol drops. Similarly as for water, we ignore this phase and focus on
subsequent evolution. Although in our experiments with goniometer we are not
able to collect as extensive data as for water, we can extract initial profiles and
the dryout time with reasonable accuracy (estimated error <10 %). In particular,
for Vo =3.200 ul, we consistently find #4, =~ 125s. We use this dryout time to obtain
the volatility parameters: requiring that the dryout times in the simulations match
the experimentally measured one yields x =5.7 x 10~ and « =9.3 x 10~* (here, we
do not consider the time dependence of ®). Similar values of x were obtained in
the experiments with pure alkanes in Guena et al. (2007b), while the value of o
is consistent with the experimentally measured values for water/alcohol mixtures
(Barnes 1978). We note that the values of x and « estimated in this manner do not
exhibit any significant dependence on the initial profile used in simulations.

Next, we consider briefly the argument concerning resistances. The calculated value
of a yields #,~0.56, an order of magnitude larger than Z%.. The value of %,
depends on [: Z,~0.05, 0.54 and 43 for [ =0.1dy, dy and 80d, respectively. Therefore,
since the answer regarding the dominant resistance again depends on the value of
[, we proceed with the numerical simulations of (3.1). In what follows, we compare
the predictions of the lens and NEOS models directly, to our experimental results
and also to Cachile et al. (2002), Poulard et al. (2005) and Guena, Allancon &
Cazabat (2007a). The initial condition for our simulations (unless otherwise noted)
corresponds to an experimentally measured profile immediately after the deposition
(R=3.723mm, H =0.147mm and ® =6°). A smooth initial condition is developed
in the same manner as for water.

Figure 11(a) shows the numerical results for the evolution of volume for the
two evaporation models. The agreement between the lens and the NEOS model is
not surprising since the volatility parameters x and o have been estimated from
experimentally measured #4,. On the other hand, figure 11(h) shows dramatically
different contact line evolutions. Figure 12 shows the temperature profiles at
the liquid—gas interface and provides immediate understanding of the results in
figure 11(b). The Marangoni forces act in the opposing directions for the lens and
NEOS models. For the lens model, they are directed outwards, leading to an initial
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FiGURe 12. (Colour online) Isopropanol: the temperature of the liquid—gas interface at
t =t;,; for the two models, see Murisic & Kondic (2008).
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FiGUure 13. (Colour online) Volume evolution for isopropanol with and without Marangoni
forces for the time interval [0, #;,;]. (a) The lens model. (b) The NEOS model.

spreading, in spite of the mass loss due to evaporation. The difference between the
temperature profiles for the two evaporation models is much more pronounced for
isopropanol compared to water, due to its larger volatility. We also note that in
contrast to water, the lens model for isopropanol exhibits monotonically decreasing
temperature along the liquid—gas interface. This is due to the increased volatility and
smaller @, in agreement with Hu & Larson (2005 b).

6.2.1. Role of Marangoni forces

In order to gain even better understanding of the role of Marangoni forces, we
carry out simulations where the Marangoni effect is switched off by setting Ma =0.
Figures 13 and 14 show the evolution of volume and radius, with and without
Marangoni forces. Figure 13 confirms that Marangoni forces significantly affect the
mass loss for both models — setting Ma =0 leads to a decrease (an increase) in the
rate of mass loss for the lens (NEOS) model. This effect is particularly pronounced
for the lens model, where a substantial reduction in the mobility of the contact line
also occurs, see figure 14(a). Figure 14(b) shows that the exclusion of Marangoni
forces in the NEOS model prevents the swift initial receding motion.

An explanation of these results is as follows. For the lens model, Marangoni forces
lead to a strong outward flow close to the contact line, due to large temperature
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FiGURe 14. (Colour online) Radius evolution for isopropanol with and without Marangoni
forces for the time interval [0, #;,,]. (a) The lens model. (b) The NEOS model.

gradient there. The liquid in the vicinity of the contact line is being propelled
outwards, forming a thin stretched layer. Initially, the liquid lost due to evaporation
from this ‘super’-volatile thin zone is replenished by the liquid from the bulk. However,
this process cannot be sustained, and eventually the receding phase sets in. When
Marangoni forces are neglected, no initial spreading occurs, see figure 14(a). Without
the rapid increase in the surface area, the evaporation rate declines sharply. Since the
receding motion is entirely due to the mass loss, this decrease in the evaporation rate
causes slower receding motion.

For the NEOS model, the Marangoni induced flow along the liquid—gas interface
is inward and uniform (unlike for the lens model, where it is most pronounced close
to the contact line). It causes rapid receding motion shown in figure 14(b). As a
result, the surface area of the drop is decreased, leading to slower evaporation. When
Ma =0, the swift initial receding motion is suppressed. Therefore, the rapid decrease
in the surface area is prevented and the evaporation rate is larger, causing overall
faster receding motion.

6.2.2. Comparison to experimental data

The lens model predicts two distinct phases in the evolution: swift initial spreading
followed by receding motion, see figure 11(b). Qualitatively similar behaviour occurred
in experiments with alkanes of similar volatility in Cachile et al. (2002). In Poulard
et al. (2005) and Guena et al. (2007a), the dependence of the maximum extent of
spreading, R, on the initial drop volume, V;, in the range [0.01 pl, 10 pl] was studied
experimentally for alkanes. They found a power law dependence, R = C,V ",
where C, ~3 and C, =0.4. For the purpose of comparison, we carry out additional
simulations, where we record R, for few initial drop volumes. The parameter values
are the same as before, with the exception of x and «, which are re-evaluated from
dryout times for each considered V; (dependence of x and « on Vj is discussed in
§6.3). Here, we use hemispherical initial conditions, ®(0)=90°, in order to more
realistically simulate the profiles at the deposition time. Figure 15(a) compares our
numerical results with a power law (the ‘Slope 0.4’ line). It shows that both evaporation
models exhibit a power law behaviour with exponent ~0.4. Furthermore, R,y = 3 Vo™
fits the lens results almost exactly, which is in excellent agreement with Poulard et al.
(2005) and Guena et al. (2007a).

As mentioned above, we have carried out additional experiments using a microscope
and high-speed camera set-up to measure the diameter of isopropanol drops. A syringe
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Figure 15. (Colour online) (a) Numerical results for isopropanol: maximum extent of
spreading versus initial drop volume. Line ‘Slope 0.4’ corresponds to Ry =3Vo™*; Vo=
1.000, 3.200, 6.000 and 8.000 pl; (b) isopropanol: evolution of the contact line position for the
two evaporation models. The initial condition is a 7.900 ul hemisphere. The circles indicate
experimental data for (0, R(0)), (fmax» R(Emax))-

is used to manually deposit ~7.900 pul drops of isopropanol, and then the position
of the contact line is tracked. We find that the maximum radius of ~7.000mm is
achieved 25.0s after the deposition. We then perform numerical simulations for both
evaporation models, again using the hemispherical initial condition. Figure 15(b)
shows that the maximum radius, R, =6.720mm, for the lens model is achieved at
26.9 s, which is in excellent agreement with the experimental data. On the other hand,
the NEOS model substantially underestimates the contact line mobility. These results
support the conclusions of §6.2.1 regarding the role of Marangoni forces. Definite
confirmation of this hypothesis lies in the experiments with the saturated gas phase,
which are left for future work.

In view of the results presented so far, it appears that, at least for the considered
drop size and set-up, the lens model more realistically describes the evaporation of a
more volatile liquid, here isopropanol. We discuss below several reasons why such an
outcome is not surprising. Here, we note that this result is further supported in Sefiane
et al. (2008), where the spontaneous evaporation of water/methanol mixtures with
volatility comparable to isopropanol and moving contact lines was studied; although
evaporation of mixtures may not be best described by a model based on spherical cap
approximation, it was found that the predictions of the lens model are in excellent
agreement with the experiments. This outcome is also supported by a recent discussion
on the applicability of the lens model given in Cazabat & Guena (2010).

6.3. Influence of drop volume

Here, we discuss the influence of the initial drop volume. Recall the argument from § 2
that the evaporative flux, ignoring the effect of heat conduction in liquid (and solid,
ie. W =0), may be written as J oc 1/(#, + %4). If one ignores %, for a moment, one
effectively reduces the flux to the NEOS model, with the liquid thermal conductivity
(#. term in (2.7) or h in (4.6)) neglected. Effectively, since %, oc 1/a, one has the flux
in the form

1

T g (6.1)
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FiGure 16. Effective accommodation coefficient, &, versus the initial drop volume. (a) Water:
Vo=4.828, 10.129, 11.372 and 16.214 ul; (b) isopropanol: V;=3.200, 3.785, 6.287, 11.865,
12.506, 13.561 and 28.244pl. Average values (circles) + standard deviation are plotted;
deviation in (b) is based on the error in measured #4,, (<10 %).

Allow now for a possibility that #, plays a role. #, is proportional to the ratio
[/dy =46, and one expects that § is an increasing function of the drop size, see Haut &
Colinet (2005). One can interpret § as a scaled distance in the gas phase over which
vapour concentration changes substantially. We note in passing that particular scaling
8 oc \/dy and ignoring Z, leads directly to the lens model in the limit of small contact
angle. More generally, one can write Z, = f(Vp), where f(Vp) is some monotonically
increasing function of the initial drop volume, V,. Adding this contribution to the
flux leads to
1 1

L e =

Vo) +1/a  1/a
which defines the ‘effective’ accommodation coefficient, @. Hence, if the diffusion of
vapour in the gas influences evaporation, one expects that & depends on Vj.

To explore this possibility for water, we carry out additional experiments with a
few different initial volumes, calculating @ in the manner described in § 5. Figure 16(a)
shows that the obtained values of @ do not vary with V,, at least within the
range of drop sizes achievable using available experimental equipment. Therefore,
we conjecture that any process which depends on the initial drop size is not dominant
in the water experiments considered here, supporting the rest of the results presented
in this paper.

Next we consider isopropanol using the same approach as in §6.2. Figure 16(b)
shows the values of @ obtained for the drops within the range [3.200 pl, 28.244 pl].
Here, we find that & does strongly depend on the drop size, suggesting that the
diffusion of vapour into surrounding gas has an important effect. In particular,
the fact that @ is a decreasing function of the drop volume is in agreement with the
qualitative argument presented above.

J (6.2)

7. Conclusions

Evaporation in the presence of moving interfaces and contact lines is a complicated
problem. The presence of multiple phases and multiple scales, including very short
ones in the vicinity of fronts, leads to complex formulations which need to be
simplified. The simplifications are often difficult to justify due to unknown values
of physical parameters. In this paper we have shown that two commonly used
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evaporation models resulting from such simplifications lead to qualitatively different
results, including drop evolution and thermal gradients along the liquid—gas interface.

Our extensive review of the literature illustrates both the necessity of development
of simplified models and difficulties in reaching them. It serves to clearly identify
the governing parameters strongly influencing the simplification path which should
be taken: the accommodation coefficient, governing molecular transport across the
interface and the relevant extent of the gas phase. Both may vary in experiments and
applications. This encouraged us to carry out our own experiments, use the obtained
data to extract the unknown accommodation coefficient and simulate drop evolution.
The procedure we use has effectively allowed for a direct comparison between the
predictions of the two evaporation models corresponding to a particular physical
set-up. To our knowledge, this is the first implementation of such an approach.

The evaporation is embedded into the model based on the long-wave theory,
formulated to allow for time-dependent simulations of drop evolution. This model
includes capillary, thermal and body forces, as well as the interaction with the solid,
via the disjoining pressure approach. The key quantity, evaporative flux, is kept in the
formulation explicitly, see (3.1), so that one can easily default to any desired functional
form. The experiments, carried out with deionized water and isopropanol on smooth
silicon wafers, are then used to extract the needed volatility parameters. The resulting
values of the accommodation coefficient are ~3.5 x 10~ for water and 9.3 x 107*
for more volatile isopropanol; although substantially smaller than the ones used
recently, they are consistent with the experimental values in the literature. The results
of our simulations and their comparison with the experiments show how strongly
the material parameters influence the evaporation process. For water, we find that a
model (the NEOS) with the evaporative flux based on the liquid effects agrees well
with the experiments; for more volatile isopropanol, the lens model, concentrating on
the gas phase, is in much better agreement.

The simulations are then used to clearly show the importance of various physical
effects. In particular, they are carried out with and without Marangoni stresses,
showing that the thermal effects are significant, and can influence the evolution
even in the case of a slowly evaporating water drop at the room temperature. For
isopropanol, the role of these stresses in determining the evolution is even more
significant. Our results also suggest that the thermal effects are particularly relevant
to the configurations such as those considered here, where evolution proceeds without
contact line pinning. The differences between our results and those from works
focusing on pinned cases serve to highlight the importance of the front mobility.
More precisely, it releases the stresses there, so that only a minor change in the
apparent contact angle due to evaporation occurs, in contrast to the pinned case.
Evaporation may have much stronger influence if contact line motion is allowed,
since non-uniform evaporation leads to Marangoni stresses which directly influence
the contact line dynamics.

In the last part of the paper, we discuss, in qualitative terms, the foundations
of a more general approach which would include aspects of both models discussed
extensively in this work. In particular, we show that the diffusion of vapour in the
gas, if relevant to evaporation, leads to an ‘effective’ accommodation coefficient that
depends on the initial drop volume. Further experiments have confirmed that this
dependence is absent for water, suggesting that the NEOS model is indeed applicable.
However, for isopropanol, we find that this quantity does depend on the initial drop
volume, suggesting that the diffusion of vapour is important, consistent with all the
other presented results. Future work should include much more careful treatment of
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evaporation next to the contact line in the presence of a vapour/inert gas mixture.
New asymptotic methods will also need to be developed to connect the nano-scale
of relevance to the contact line physics and the macro-scale of a drop. Until this
is done, the obtained results suggest that significant care is required when deciding
which approach to use in modelling evaporation. In particular, the difference in
temperature profiles at the liquid—gas interface for the two models suggests that
the arguments concerning the influence of the Marangoni forces on the formation
of particle deposits next to the contact line may have to be carefully re-examined.
More elaborate experiments, involving the measurement of the temperature at the
liquid—gas interface, are therefore necessary, as they will provide an ultimate criterion
for the selection of an appropriate evaporation model.

The authors acknowledge many insightful conversations with Pierre Colinet and
Alex Rednikov, and thank Yehiel Gotkis, PhD, a former KLA-Tencor Corp. and
Lam Research Corp. scientist, for introducing us to many interesting problems
involving evaporation. The support by Katrina Mikhaylich, PhD, and Lam Research
Corporation for donating Si wafers is gratefully acknowledged. The equipment used
in the experiments was partially funded by the NSF CCLI grant no. 0511514.

Appendix

Here we show the procedure used to extract the volatility parameters, x and «,
from the experimental data. First, we calculate the evaporation rate J[“ = p AV, /At,
valid for each time interval [z, f;.1], where AV, =V, — Vi4y and Aty =141 — 1. This
evaporation rate corresponds to the surface integral of J*(h"), calculated over the
drop surface recorded in the experiment at time instant #.;. The drop surface is
assumed to be well approximated by a spherical cap. In calculating surface integrals,
we use either (4.3) for the lens or (4.6) for the NEOS model. To be consistent with
our numerical simulations, we integrate down to the thickness of equilibrium film,
dequir. The evaporation rate does not depend on d,q; in any significant manner, as
discussed earlier.

The surface integral of the mass flux J*(h") is given by

J’““"=/SH]J as'= [ [ 16 >[

Here, S;.; is the surface of the drop at time f.;. The quantity multiplying
J*(0*) in the double integral is a Jacobian, where o"=(x",y",z"), and
"= filx", ¥y )= \/Bk2 — (x** 4+ y*%) — di + dogur is the spherical cap at time # (ie.
B, and d, are B and d from figure 2 at time #,). Equation (A 1) can be rewritten in
the following form:

9 3 : .
Jpe = //J (fk+1)\/1+< f"“) +< g;T) dx*dy*. (A2)

Similar expressions for the evaporation rate were used previously (e.g. see Deegan et al.
2000; Hu & Larson 2002). For sufficiently thin drops, i.e. complete wetting case, (A 2)
simplifies to an integral over drop’s circular base (see e.g. Poulard et al. 2003;
Dunn et al. 2008, 2009); clearly, such simplification is not applicable to liquid/solid
configurations considered here. Also, unlike in e.g. Poulard et al. (2005), here, no

]d dy* (A1)
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additional regularization of J* is needed, since our model includes the attractive
liquid—solid forces.

For the lens model, the dimensional version of (4.3) is substituted into (A 2), which
is then rewritten in polar coordinates. We define x; as a dimensional equivalent of
the volatility parameter x at time #.. By treating x; as a constant for each interval
[[k, lk+1], we find

S =21 By i1 Xy (A3)
where I; ;. is the following integral:
Rieys r*dr*
L1 = s = = = 7 (A4)
0 /B> —r 2 (VBei? — 12 — disy + degui)

which is calculated numerically for each k. We can therefore calculate x valid for
the interval [#y, fri1]: Xk = X /(d(')/’ [J]), with [J] defined in §4. Finally, since ¢ is a
function of the contact angle @, the values of ® used in calculating ¥ match those
used for solving (3.1) numerically. In view of the arguments in §4 regarding v, we
use i = 4 for water, with the expression for 4 taken from Hu & Larson (2002).

For the NEOS model, the dimensional version of (4.6) is the appropriate expression
for J*(h"). The procedure similar to the one described for the lens model gives

Ji " = 2mdo[J) Byt In s (o), (AS)
where Iy p+1(o) is the following integral:
(o) Ryt rrdr”
Iy k1) =
0 VBt =2 (do(H () + W) — dist + doguit) + Brot® — 1™
(A6)

Here, o, given by (4.5), is treated as a function of the unknown volatility parameter,
A=A (o). The problem of solving for ¢ is recast into a minimization problem
o = ming, (106,17 I (o), where I'(oy) 1s defined as

J]:al@
r =|——1 , A7
(o) 21do[J1Biss N.k+1(o) (A7)
which is solved numerically for all k.
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