
 

On event based state estimation

Citation for published version (APA):
Sijs, J., & Lazar, M. (2009). On event based state estimation. In R. Majumdar, & P. Tabuada (Eds.), Hybrid
Systems : Computation and Control (pp. 336-350). (Lecture Notes in Computer Science; Vol. 5469). Springer.
https://doi.org/10.1007/978-3-642-00602-9_24

DOI:
10.1007/978-3-642-00602-9_24

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://doi.org/10.1007/978-3-642-00602-9_24
https://doi.org/10.1007/978-3-642-00602-9_24
https://research.tue.nl/en/publications/479e9eba-5d32-4634-a185-fc22f0e07b5e


On Event Based State Estimation

Joris Sijs1 and Mircea Lazar2

1 TNO Science and Industry
2600 AD Delft, The Netherlands

joris.sijs@tno.nl
2 Eindhoven University of Technology
5600 MB Eindhoven, The Netherlands

m.lazar@tue.nl

Abstract. To reduce the amount of data transfer in networked control systems
and wireless sensor networks, measurements are usually taken only when an
event occurs, rather than at each synchronous sampling instant. However, this
complicates estimation and control problems considerably. The goal of this pa-
per is to develop a state estimation algorithm that can successfully cope with
event based measurements. Firstly, we propose a general methodology for defin-
ing event based sampling. Secondly, we develop a state estimator with a hybrid
update, i.e. when an event occurs the estimated state is updated using measure-
ments; otherwise the update makes use of the knowledge that the monitored vari-
able is within a bounded set that defines the event. A sum of Gaussians approach
is employed to obtain a computationally tractable algorithm.

1 Introduction

Different methods for state estimation have been introduced during the last decades.
Each method is specialized in the type of process, the type of noise or the type of
system architecture. In this paper we focus on the design of a state estimator that can
efficiently cope with event based sampling. By event sampling we mean that measure-
ments are generated only when an a priori defined event occurs in the data monitored
by sensors. Such an estimator is very much needed in networked control systems and
wireless sensor networks (WSNs) [1]. Especially in WSNs, where the limiting resource
is energy, data transfer and processing power must be minimized. Existing estimators
that could be used in this framework are discussed in Section 4. For related research on
event based control, the interested reader is referred to the recent works [2, 3, 4, 5, 6].

The contribution of this paper is twofold. Firstly, using standard probability notions
we set up a general mathematical description of event sampling depending on time and
previous measurements. We assume that the estimator does not have information about
when new measurements are available, which usually results in an unbounded error-
covariance matrix. To prevent this from happening, we develop an estimation algorithm
with hybrid update, which is the second main contribution. The developed event based
estimator is updated both when an event occurs, with a received measurement sample,
as well as at sampling instants synchronous in time, without receiving a measurement
sample. In the latter case the update makes use of the knowledge that the monitored
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variable, i.e. the measurement, is within a bounded set that defines the event. In order
to meet low processing power specifications, the proposed state estimator is based on
the Gaussian sum filter [7, 8], which is known to be computationally tractable.

2 Background Notions and Notation

R defines the set of real numbers whereas the set R+ defines the non-negative real
numbers. The set Z defines the integer numbers and Z+ defines the set of non-negative
integer numbers. The notation 0 is used to denote either the null-vector or the null-
matrix. Its size will become clear from the context.

Suppose a vector x(t) ∈ R
n depends on time t ∈ R and is sampled using some sam-

pling method. Two different sampling methods are discussed. The first one is time sam-
pling in which samples are generated whenever time t equals some predefined value.
This is either synchronous in time or asynchronous. In the synchronous case the time
between two samples is constant and defined as ts ∈R+. If the time t at sampling instant
ka ∈ Z+ is defined as tka , with t0a := 0, we define:

xka := x(tka) and x0a:ka := (x(t0a),x(t1a), · · · ,x(tka)).

The second sampling method is event sampling, in which samples are taken only
when an event occurs. If t at event instant ke ∈ Z+ is defined as tke , with t0e := 0, we
define:

xke := x(tke) and x0e:ke := (x(t0e),x(t1e), · · · ,x(tke)).

A transition-matrix At2−t1 ∈ R
a×b relates the vector u(t1) ∈ R

b to a vector x(t2) ∈ R
a

as follows: x(t2) = At2−t1u(t1).
The transpose, inverse and determinant of a matrix A ∈ R

n×n are denoted as A�, A−1

and |A| respectively. The ith and maximum eigenvalue of a square matrix A are denoted
as λi(A) and λmax(A) respectively. Given that A ∈ R

n×n and B ∈ R
n×n are positive

definite, denoted with A � 0 and B � 0, then A � B denotes A−B � 0. A � 0 denotes A
is positive semi-definite.

The probability density function (PDF), as defined in [9] section B2, of the vector
x ∈ R

n is denoted with p(x) and the conditional PDF of x given u ∈ R
q is denoted as

p(x|u). The expectation and covariance of x are denoted as E[x] and cov(x) respectively.
The conditional expectation of x given u is denoted as E[x|u]. The definitions of E[x],
E[x|u] and cov(x) can be found in [9] sections B4 and B7.

The Gaussian function (shortly noted as Gaussian) of vectors x ∈ R
n and u ∈ R

n and
matrix P ∈ R

n×n is defined as G(x,u,P) : R
n ×R

n ×R
n×n → R, i.e.:

G(x,u,P) =
1

√
(2π)n|P|e

−0.5(x−u)�P−1(x−u). (1)

If p(x) = G(x,u,P), then by definition it holds that E[x] = u and cov(x) = P.
The element-wise Dirac-function of a vector x ∈ R

n, denoted as δ (x) : R
n → {0,1},

satisfies:

δ (x) =

{
0 if x �≡ 0,

1 if x ≡ 0,
and

∫ ∞

−∞
δ (x)dx = 1. (2)
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For a vector x ∈ R
n and a bounded Borel set [10] Y ⊂ R

n, the set PDF is defined as
ΛY (x) : R

n →{0,ν} with ν ∈ R defined as the Lebesque measure [11] of the set Y , i.e.:

ΛY (x) =

{
0 if x �∈ Y,

ν−1 if x ∈ Y.
(3)

3 Event Sampling

Many different methods for sampling a vector y(t) ∈ R
q can be found in literature.

The one mostly used is time sampling in which the kth
a sampling instant is defined at

time tka := tka−1 + τka−1 for some τka−1 ∈ R+. Recall that if y(t) is sampled at ta it is
denoted as yka . This method is formalized by defining the observation vector zka−1 :=
(y�ka−1,tka−1)� ∈ R

q+1 at sampling instant ka−1. Let us define the set Hka(zka−1) ⊂ R

containing all the values that t can take between tka−1 and tka−1 + τka−1, i.e.:

Hka(zka−1) := {t ∈ R
∣
∣tka−1 ≤ t < tka−1 + τka−1}. (4)

Then time sampling defines that the next sampling instant, i.e. ka, takes place when-
ever present time t exceeds the set Hka(zka−1). Therefore zka is defined as:

zka := (y�ka
,tka)

� if t �∈ Hka(zka−1). (5)

In the case of synchronous time sampling τka = ts, ∀ka ∈ Z+, which is graphically
depicted in Figure 1(a). Notice that with time sampling, the present time t specifies
when samples of y(t) are taken, but time t itself is independent of y(t). As a result
y(t) in between the two samples can have any value within R

q. Recently, asynchronous
sampling methods have emerged, such as, for example “Send-on-Delta” [12, 13] and
“Integral sampling” [14]. Opposed to time sampling, these sampling methods are not
controlled by time t, but by y(t) itself.

Next, we present a general definition of event based sampling. In this case a sampling
instant is specified by an event of y(t) instead of t. As such, one has to constantly check
whether the measurement y(t) satisfies certain conditions, which depend on time t and

(a) Time sampling (b) Event sampling

Fig. 1. The two different methods for sampling a signal y(t)
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Fig. 2. Event sampling: Send-on-Delta

previous samples of the measurement. This method recovers the above mentioned asyn-
chronous methods, for a particular choice of ingredients. Let us define the observation
vector at sampling instant ke−1 as zke−1 := (y�ke−1,tke−1)� ∈R

q+1 . With that we define
the following bounded Borel set in time-measurement-space, i.e. Hke(zke−1, t) ⊂ R

q+1,
which depends on both zke−1 and t. In line with time sampling the next event instant,
i.e. ke, takes place whenever y(t) leaves the set Hke(zke−1,t) as shown in Figure 1(b) for
q = 2. Therefore zke is defined as:

zke := (y�ke
, tke)

� if y(t) �∈ Hke(zke−1,t). (6)

The exact description of the set Hke(zke−1,t) depends on the actual sampling method.
As an example Hke(zke−1,t) is derived for the method “Send-on-Delta”, with y(t) ∈ R.
In this case the event instant ke occurs whenever |y(t)− yke−1| exceeds a predefined
level Δ , see Figure 2, which results in Hke(zke−1,t) = {y ∈ R|−Δ < y− yke−1 < Δ}.

In event sampling, a well designed Hke(zke−1, t) should contain the set of all pos-
sible values that y(t) can take in between the event instants ke − 1 and ke. Meaning
that if tke−1 ≤ t < tke , then y(t) ∈ Hke(zke−1,t). A sufficient condition is that yke−1 ∈
Hke(zke−1,t), which for “Send-on-Delta” results in y(t) ∈ [yke−1 −Δ ,ye−1 + Δ ] for all
tke−1 ≤ t < tke .

Besides the event sampling methods discussed above, it is worth to also point out
the related works [2,4,3], which focus on event based control systems rather than event
based state estimators. Therein event sampling methods are proposed using additional
information from the state of the system, which is assumed to be available.

4 Problem Formulation: State Estimation Based on Event
Sampling

Assume a perturbed, dynamical system with state-vector x(t)∈R
n, process-noise w(t)∈

R
m, measurement-vector y(t) ∈ R

q and measurement-noise v(t) ∈ R
q. This process is
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described by a state-space model with Aτ ∈ R
n×n, Bτ ∈ R

n×m and C ∈ R
q×n. An event

sampling method is used to sample y(t). The model of this process becomes:

x(t + τ) = Aτ x(t)+ Bτw(t), (7a)

y(t) = Cx(t)+ v(t), (7b)

zke = (y�ke
,tke)

� if y(t) �∈ Hke(zke−1, t), (7c)

with p(w(t)) := G(w(t),0,Q) and p(v(t)) := G(v(t),0,V ). (7d)

The state vector x(t) of this system is to be estimated from the observation vectors
z0e:ke . Notice that the estimated states are usually required at all synchronous time sam-
ples ka, with ts = tka − tka−1, e.g., as input to a discrete monitoring system (or a discrete
controller) that runs synchronously in time. For clarity system (7a) is considered au-
tonomous, i.e. there is no control input. However, the estimation algorithm presented in
this paper can be extended to controlled systems.

The goal is to construct an event-based state-estimator (EBSE) that provides an es-
timate of x(t) not only at the event instants tke , at which measurement data is received,
but also at the sampling instants tka , without receiving any measurement data. There-
fore, we define a new set of sampling instants tn as the combination of sampling instants
due to event sampling, i.e. ke, and time sampling, i.e. ka:

{t0:n−1} := {t0a:ka−1}∪{t0e:ke−1} and tn :=

{
tka if tka < tke ,

tke if tka ≥ tke .
(8a)

and t0 < t1 < · · · < tn, xn := x(tn), yn := y(tn). (8b)

The estimator calculates the PDF of the state-vector xn given all the observations
until tn. This results in a hybrid state-estimator, for at time tn an event can either occur
or not, which further implies that measurement data is received or not, respectively. In
both cases the estimated state must be updated (not predicted) with all information until
tn. Therefore, depending on tn a different PDF must be calculated, i.e.:

if tn = tka ⇒ p(xn|z0e:ke−1) with tke−1 < tka < tke , (9a)

if tn = tke ⇒ p(xn|z0e:ke). (9b)

The performance of the state-estimator is related to the expectation and error-covariance
matrix of its calculated PDF. Therefore, from (9) we define:

xn|n :=

{
E [xn|z0e:ke−1] if tn = tka

E [xn|z0e:ke ] if tn = tke

and Pn|n := cov
(
xn − xn|n

)
. (10)

The PDFs of (9) are described as the Gaussian G(xn,xn|n,Pn|n). Together with xn|n,

the square root of each eigenvalue of Pn|n, i.e.
√

λi(Pn|n) (or
√

λ (Pn|n) if there is only

one eigenvalue), indicate the bound which surrounds 63% of the possible values for xn.
This is graphically depicted in Figure 3(a) for the 1D case and Figure 3 for the 2D case,
in a top view.
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(a) Full view - 1D (b) Top view - 2D

Fig. 3. Two examples of a Gaussian function

As such, the problem of interest in this paper is to construct a state-estimator suitable
for the general event sampling method introduced in Section 3 and which is computa-
tionally tractable. Also, it is desirable that Pn|n has bounded eigenvalues for all n.

Existing state estimators can be divided into two categories. The first one contains
estimators based on time sampling: the (a)synchronous Kalman filter [15, 16] (linear
process, Gaussian PDF), the Particle filter [17] and the Gaussian sum filter [7, 8] (non-
linear process, non-Gaussian PDF). These estimators cannot be directly employed in
event based sampling as if no new observation vector zke is received, then tn − tke → ∞
and λi(Pn|ke−1)→ ∞. The second category contains estimators based on event sampling.
In fact, to the best of our knowledge, only the method proposed in [18] fits this category.
However, this EBSE is only applicable in the case of “Send-on-Delta” event sampling
and it requires that any PDF is approximated as a single Gaussian function. Moreover,
the asymptotic property of Pn|n is not investigated in [18].

In the next section we propose a novel event-based state-estimator, suitable for any
event sampling method based on the general set-up introduced in Section 3.

5 An Event-Based State Estimator

The EBSE estimates xn given the received observation vectors until time tn. Notice that
due to the definition of event sampling we can extract information of all the measure-
ment vectors y0:n, i.e. also at the instants tn = tka , when the estimator does not receive
yka . For with ti ∈ {t0:n} and t je ∈ {t0e:ke} it follows that:

{
yi ∈ Hje(z je−1,ti) if t je−1 ≤ ti < t je ,

yi = y je if ti = t je .
(11)

Therefore, from the observation vectors z0e:ke and (11) the PDF of the hybrid state-
estimation of (9), with the bounded, Borel set Yi ⊂ R

q, results in:

p(xn|y0 ∈ Y0,y1 ∈ Y1, ...,yn ∈ Yn) with (12a)

Yi :=

{
Hje(z je−1,ti) if t je−1 < ti < t je ,

{y je} if ti = t je .
(12b)
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For brevity (12a) is denoted as p(xn|y0:n ∈ Y0:n) and with Bayes-rule [19] yields:

p(xn|y0:n ∈ Y0:n) :=
p(xn|y0:n−1 ∈ Y0:n−1) p(yn ∈ Yn|xn)

p(yn ∈ Yn|y0:n−1 ∈ Y0:n−1)
. (13)

To have an EBSE with low processing demand, multivariate probability theory [20]
is used to make (13) recursive:

p(a|b) :=
∫ ∞

−∞
p(a|c)p(c|b)dc ⇒ (14a)

p(xn|y0:n−1 ∈ Y0:n−1) =
∫ ∞

−∞
p(xn|xn−1)p(xn−1|y0:n−1 ∈ Y0:n−1)dxn−1, (14b)

p(yn ∈ Yn|y0:n−1 ∈ Y0:n−1) =
∫ ∞

−∞
p(xn|y0:n−1 ∈ Y0:n−1) p(yn ∈Yn|xn)dxn. (14c)

The calculation of p(xn|y0:n ∈ Y0:n) is done in three steps:

1. Assimilate p(yn ∈ Yn|xn) for both tn = tke and tn = tka ;
2. Calculate p(xn|y0:n ∈ Y0:n) as a summation of N Gaussians;
3. Approximate p(xn|y0:n ∈Y0:n) as a single Gaussian function.

The last step ensures that p(xn|y0:n ∈ Y0:n) is described by a finite set of Gaussians,
which is crucial for attaining computational tractability. Notice that (13) gives a unified
description of the hybrid state-estimator.

5.1 Step 1: Measurement Assimilation

This section gives a unified formula of the PDF p(yn ∈Yn|xn) valid for both tn = tke and
tn = tka . From multivariate probability theory [20] and (7b) we have:

p(yn ∈ Yn|xn) :=
∫ ∞

−∞
p(yn|xn)p(yn ∈ Yn)dyn and p(yn|xn) = G(yn,Cxn,V ). (15)

The PDF p(yn ∈ Yn) is modeled as a uniform distribution for all yn ∈ Yn. Therefore,
depending on the type of instant, i.e. event or not, we have:

p(yn ∈Yn) :=

{
ΛHke

(yn) if tke−1 < tn < tke ,

δ (yn − yke) if tn = tke .
(16)

Substitution of (16) into (15) gives that p(yn ∈ Yn) = G(yke ,Cxn,V ) if tn = tke . How-
ever, if tn = tka then p(yn ∈ Yn|xn) equals ΛHke

(yn), which is not necessarily Gaussian.
Moreover, it depends on the set Hke and therefore on the actual event sampling method
that is employed. In order to have a unified expression of p(yn ∈ Yn|xn) for both types
of tn, independent of the event sampling method, ΛHke

(yn) can be approximated as a
summation of N Gaussians, i.e.

ΛHke
(yn) ≈

N

∑
i=1

α i
nG(yn,y

i
n,V

i
n) and

N

∑
i=1

α i
n := 1. (17)
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Fig. 4. Approximation of ΛHke
(yn) as a sum of Gaussian functions

This is graphically depicted in Figure 4 for yn ∈ R
2. The interested reader is referred

to [7] for more details.
Substituting (17) into (16) yields the following p(yn ∈Yn|xn) if tn = tka :

p(yn ∈Yn|xn) ≈
N

∑
i=1

α i
n

∫ ∞

−∞
G(yn,Cxn,V )G(yn,y

i
n,V

i
n)dyn. (18)

Proposition 1. [15, 17] Let there exist two Gaussians of random vectors x ∈ R
n and

m ∈ R
q, with Γ ∈ R

q×n: G(m,Γ x,M) and G(x,u,U). Then they satisfy:
∫ ∞

−∞
G(x,u,U)G(m,Γ x,M)dx = G

(
Γ u,m,ΓUΓ � + M

)
, (19)

G(x,u,U)G(m,Γ x,M) = G(x,d,D)G(m,Γ u,ΓUΓ � + M),

with D :=
(

U−1 +Γ �M−1Γ
)−1

and d := DU−1u + DΓ�M−1m.
(20)

Applying Proposition 1 ((19) to be precise) and G(x,y,Z) = G(y,x,Z) on (18) yields:

p(yn ∈ Yn|xn) ≈
N

∑
i=1

α i
nG(yi

n,Cxn,V +V i
n), if tn = tka . (21)

In conclusion we can state that the unified expression of the PDF p(yn ∈Yn|xn), at both
tn = tke and tn = tka , for any event sampling method results in:

p(yn ∈ Yn|xn) ≈
N

∑
i=1

α i
nG(yi

n,Cxn,R
i
n) with Ri

n := V +V i
n. (22)

If tn = tke the variables of (22) are: N = 1, α1
n = 1, y1

n = yke and V 1
n = 0. If tn = tka the

variables depend on ΛHke
(yn) and its approximation. As an example these variables are

calculated for the method “Send-on-Delta” with y ∈ R.

Example 1. In “Send-on-Delta”, for certain N, the approximation of ΛHke
(yn), as pre-

sented in (17), is obtained with i ∈ {1,2, . . . ,N} and:

yi
n = yke−1 −

(
N −2(i−1)−1

2N

)
2Δ ,

α i
n =

1
N

, V i
n =

(
2Δ
N

)2 (
0.25−0.05e−

4(N−1)
15 −0.08e−

4(N−1)
180

)
, ∀i.

(23)

With the result of (22), p(xn|y0:n ∈Y0:n) can also be expressed as a sum of N Gaussians.
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5.2 Step 2: State Estimation

First the PDF p(xn|y0:n−1 ∈ Y0:n−1) of (14b) is calculated. From the EBSE we have
p(xn−1|y0:n−1 ∈Y0:n−1) := G(xn−1,xn−1|n−1,Pn−1,n−1) and from (7a) with τn := tn−tn−1

we have p(xn|xn−1) := G(xn,Aτn xn−1,BτnQB�
τn

). Therefore using (19) in (14b) yields:

p(xn|y0:n−1 ∈ Y0:n−1) = G(xn,xn|n−1,Pn,n−1) with

xn|n−1 := Aτnxn−1|n−1 and Pn|n−1 := AτnPn−1|n−1A�
τn

+ BτnQB�
τn

.
(24)

Next p(xn|y0:n ∈ Y0:n), defined in (13), is calculated after multiplying (22) and (24):

p(xn|yn−1 ∈ Y0:n−1)p(yn ∈Yn|xn) ≈
N

∑
i=1

α i
nG(xn,xn|n−1,Pn|n−1)G(yi

n,Cxn,R
i
n). (25)

Equation (25) is explicitly solved by applying Proposition 1:

p(xn|y0:n−1 ∈ Y0:n−1)p(yn ∈ Yn|xn) ≈
N

∑
i=1

α i
nβ i

nG(xn,x
i
n,P

i
n) with (26a)

xi
n := Pi

n

(
P−1

n|n−1xn|n−1 +C� (
Ri

n

)−1
yi

n

)
, Pi

n :=
(

P−1
n|n−1 +C� (

Ri
n

)−1
C

)−1

and β i
n := G(yi

n,Cxn|n−1,CPn|n−1C� + Ri
n).

(26b)

The expression of p(xn|y0:n ∈Y0:n) as a sum of N Gaussians is the result of the following
substitutions: (26) into (13), (26) into (14c) to obtain p(yn ∈ Yn | y0:n−1 ∈ Y0:n−1) and
the latter into (13) again. This yields

p(xn|y0:n ∈Y0:n) ≈
N

∑
i=1

α i
nβ i

n

∑N
i=1 α i

nβ i
n

G(xn,x
i
n,P

i
n). (27)

The third step is to approximate (27) as a single Gaussian, as this facilitates a compu-
tationally tractable algorithm. For if p(xn−1|y0:n−1 ∈ Y0:n−1) is described using Mn−1

Gaussians and p(yn ∈Yn|xn) is described using N Gaussians, the estimate of xn in (27)
is described with Mn = Mn−1N Gaussians. Meaning that Mn increases after each sample
instant and with it also the processing demand of the EBSE increases.

5.3 Step 3: State Approximation

p(xn|y0:n ∈Y0:n) of (27) is approximated as a single Gaussian with an equal expectation
and covariance matrix, i.e.:

p(xn|y0:n ∈Y0:n) ≈ G
(
xn,xn|n,Pn|n

)
with (28a)

xn|n :=
N

∑
i=1

α i
nβ i

nxi
n

∑N
i=1 α i

nβ i
n
, Pn|n :=

N

∑
i=1

α i
nβ i

n

∑N
i=1 α i

nβ i
n

(
Pi

n +
(
xn|n − xi

n

)(
xn|n − xi

n

)�)
. (28b)

The expectation and covariance of (27), equal to xn|n and Pn|n of (28), can be derived
from the corresponding definitions. Notice that because the designed EBSE is based on
the equations of the Kalman filter, the condition of computational tractability is met.
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5.4 On Asymptotic Analysis of the Error-Covariance Matrix

In this section we present some preliminary results on the asymptotic analysis of the
error-covariance matrix of the developed EBSE, i.e. limn→∞ Pn|n which for convenience
is denoted as P∞. The main result of this section is obtained under the standing assump-
tion that ΛHke

(yn) is approximated using a single Gaussian. Note that the result then
also applies to the estimator presented in [18], as a particular case. Recall that Hke is
assumed to be a bounded set. Therefore, it is reasonable to further assume that ΛHke

(yn)
can be approximated using the formula (17), for N = 1, and that there exists a constant
matrix R such that V +V 1

n � R for all n.
Note that if the classical Kalman filter (KF) [15] is used to perform a state-update

only at the synchronous time instant tn = tka (with a measurement covariance matrix
equal to R), then such an analysis is already available. In [21, 22] it is proven that if the
eigenvalues of Ats are within the unit circle and (Ats ,C) is observable, then the error-
covariance matrix of the synchronous KF, denoted with P(s), converges to PK, with PK

defined as the solution of:

PK =
((

Ats PKA�
ts + BtsQB�

ts

)−1
+C�R−1C

)−1

. (29)

In case that the classical asynchronous Kalman filter (AKF) [16] is used, then the
estimation would occur only at the instants that a measurement is received, i.e. tn = tke .
As it is not known when a new measurement is available, the time between two samples
keeps on growing, as well as the eigenvalues of the AKF’s error-covariance matrix,
denoted with λi(P(a)). Moreover, in [23] (see also [24]) it is proven that P(a) will diverge
if no new measurements are received.

To circumvent this problem, instead of a standard AKF, we consider an artificial AKF
(denoted by CKF for brevity) obtained as the combination of a synchronous KF and a
standard AKF. By this we mean that the CKF performs a state-update at all time instants
tn with a measurement covariance matrix equal to R. Therefore its error-covariance

matrix, denoted with P(c)
n|n , is updated according to:

P(c)
n|n :=

((
AτnP(c)

n−1|n−1A�
τn

+ BτnQB�
τn

)−1
+C�R−1C

)−1

. (30)

Notice that because the CKF is updated at more time instants then the KF, it makes
sense that its error-covariance matrix is “smaller” than the one of the KF, i.e. P(c) � P(s)

holds at the synchronous time instants tn = tka . However, this does not state anything
about P(c) at the event instants. As also at these sample instants the CKF performs an

update rather then just a prediction, the following assumption is needed. Let P(c)
∞ denote

limn→∞ P(c)
n|n .

Assumption 1. There exists Δλ ∈ R+ such that λmax

(
P(c)

∞

)
< λmax (PK)+ Δλ .

Next we will employ Assumption 1 to obtain an upper bound on the error-covariance
matrix of the developed EBSE. The following technical Lemma will be of use.
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Lemma 1. Let any square matrices V1 � V2 and W1 � W2 with V1 � 0 and W1 � 0 be

given. Suppose that the matrices U1 and U2 are defined as U1 :=
(
V−1

1 +C�W−1
1 C

)−1

and U2 :=
(
V−1

2 +C�W−1
2 C

)−1
, for any C of suitable size. Then it holds that U1 �U2.

Proof. As shown in [25], it holds that V−1
1 � V−1

2 and C�W−1
1 C � C�W−1

2 C. Hence,
it follows that V−1

1 +C�W−1
1 C � V−1

2 +C�W−1
2 C, which yields U−1

1 � U−1
2 . Thus,

U1 �U2, which concludes the proof. �

Theorem 1. Suppose that the EBSE, as presented in Section 5, approximates ΛHke
(yn)

according to (17) with N = 1. Then λmax(P∞) ≤ λmax
(
P(c)

∞
)
.

The proof of the above theorem, which makes use of Lemma 1, is given in the Ap-
pendix. Obviously, under Assumption 1 the above result further implies that the error-
covariance matrix of the developed EBSE is bounded. Under certain reasonable as-
sumptions, including the standard ones (i.e. the eigenvalues of the Ats -matrix are within
the unit-circle and (Ats ,C) is an observable pair), it is possible to derive an explicit ex-
pression of Δλ , which validates Assumption 1. However, this is beyond the scope of
this manuscript.

6 Illustrative Example

In this section we illustrate the effectiveness of the developed EBSE in terms of state-
estimation error, sampling efficiency and computational tractability. The case study is
a 1D object-tracking system. The states x(t) of the object are position and speed while
the measurement vector y(t) is position. The process-noise w(t) represents the object’s
acceleration. Then given a maximum acceleration of 0.5[m/s2] its corresponding Q,
according to [26], equals 0.02. Therefore the model as presented in (7) yields A =

(
1 τ
0 1

)
,

B =
(

τ2
2 τ

)�
, C =

(
1 0

)
and D = 0, which is in fact a discrete-time double integrator.

The acceleration, i.e. process noise w(t), in time is shown in Figure 5 together with the
object’s position and speed, i.e. the elements of the real state-vector x(t). The sampling
time is ts = 0.1 and the measurement-noise covariance is V = 0.1 ·10−3.

Three different estimators are tested. The first two estimators are the EBSE and the
asynchronous Kalman filter (AKF) of [16]. For simplicity, in both estimators we used
the “Send-on-Delta” method with Δ = 0.1[m]. For the EBSE we approximated ΛHke

(yn)
using (23) with N = 5. The AKF estimates the states only at the event instants tke . The
states at tka are calculated by applying the prediction-step of (14b). The third estimator
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Fig. 6. The squared estimation error of the two states

is based on the quantized Kalman filter (QKF) introduced in [26] that uses synchronous
time sampling of yka . The QKF can deal with quantized data, which also results in less
data transfer, and therefore can be considered as an alternative to EBSE. In the QKF
ȳka is the quantized version of yka with quantization level 0.1, which corresponds to the
“Send-on-Delta” method. Hence, a comparison can be made.

In Figure 6(a) and Figure 6(b) the squared state estimation-error of the three estima-
tors is plotted. They show that the QKF estimates the position of the object with the
least error. However, its error in speed is worse compared to the EBSE. Further, the
plot of the AKF clearly shows that prediction of the state gives a significant growth in
estimation-error when the time between the event sampling-instants increases (t > 4).

Beside estimation error, sampling efficiency η is also important due to the increased
interest in WSNs. For these systems communication is expensive and one aims to have
the least data transfer. We define η ∈ R+ as

η :=
(xi − xi|i)�(xi − xi|i)

(xi − xi|i−1)�(xi − xi|i−1)
,

which is a measure of the change in the estimation-error after the measurement update
with either zke or ȳka was done. Notice that if η < 1 the estimation error decreased after
an update, if η > 1 the error increased and if η = 1 the error remained the same. For the
EBSE i = ke with i−1 equal to ke −1 or ka −1. For the AKF i = ke with i−1 = ke−1.
For the QKF i = ka and i− 1 = ka − 1. Figure 7 shows that for the EBSE η < 1 at all
time instants. The AKF has one instant, t = 3.4, at which η > 1. In case of the QKF the
error sometimes decreases but it can also increase considerably after an update. Also
notice that η of the QKF converges to 1. Meaning that for t > 5.6 the estimation error
does not change after an update and new samples are mostly used to bound λi(Pka|ka).
The EBSE has the same property, although for this method the last sample was received
at t = 4.9.

The last comparison criterion is the total amount of processing time that was required
by each of the three estimators. From the equations of the EBSE one can see that for
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or ȳka

every Gaussian (recall that there are N Gaussians employed to obtain an approximation
of ΛHke

(yn)) a state-update is calculated similar to a synchronous Kalman filter. There-
fore, a rule of thumb is that the EBSE will require N times the amount of processing
time of the Kalman filter [15]. Because the QKF is in fact such a Kalman filter, with
a special measurement-estimation, the EBSE of this application example will roughly
cost about 5 times more processing time then the QKF. After running all three algo-
rithms in Matlab on an Intell�Pentium�processor of 1.86 GHz with 504 MB of RAM
we have obtained the following performances. The AKF estimated xke and predicted
xka in a total time of 0.016 seconds while the QKF estimated xka and its total process-
ing time equaled 0.022 seconds. For the EBSE, both xke and xka were estimated and
it took 0.094 seconds, which is less than 0.11 = 5× 0.022. This means that although
the EBSE results in the most processing time, it is still computationally comparable
to the AKF and QKF. On the overall, it can be concluded that the EBSE provides an
estimation-error similar to the one attained by the QKF, but with significantly less data
transmission. The application case study also indicate that the number of Gaussians be-
comes a tuning factor that can be used to achieve a desired tradeoff between numerical
complexity (which further translates into energy consumption) and estimation error. As
such, the proposed EBSE it is most suited for usage in networks in general and WSNs
in particular.

7 Conclusions

In this paper a general event-based state-estimator was presented. The distinguishing
feature of the proposed EBSE is that estimation of the states is performed at two dif-
ferent type of time instants, i.e. at event instants, when measurement data is used for
update, and at synchronous time sampling, when no measurement is received, but an
update is performed based on the knowledge that the monitored variable lies within a
set used to define the event. As a result, under certain assumptions, it was established
that the error-covariance matrix of the EBSE is bounded, even in the situation when no
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new measurement is received anymore. Its effectiveness for usage in WSNs has been
demonstrated on an application example.

As a final remark we want to indicate that future work, besides a more general proof
of asymptotic stability, is focused on determining specific types of WSNs applications
where the developed EBSE would be most suitable.
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A Proof of Theorem 1

Under the hypothesis, for the proposed EBSE, Pn|n of (28), with τn := tn − tn−1 and
Rn := V +V 1

n , becomes:

Pn|n =
((

AτnPn−1|n−1A�
τn

+ BτnQB�
τn

)−1
+C�R−1

n C

)−1

. (31)

The upper bound on λmax(P∞) is proven by induction, considering the asymptotic be-
havior of a CKF that runs in parallel with the EBSE, as follows. The EBSE calculates

Pn|n as (31) and the CKF calculates P(c)
n|n as (30). Note that this implies that Rn � R for

all n. Let the EBSE and the CKF start with the same initial covariance matrix P0.
The first step of induction is to prove that P1|1 � P(c)

1|1 . From (31) and (30) we have
that

P1|1 =
((

Aτ1P0A�
τ1

+ Bτ1QB�
τ1

)−1
+C�R−1

1 C

)−1

,

P(c)
1|1 =

((
Aτ1P0A�

τ1
+ Bτ1QB�

τ1

)−1
+C�R−1C

)−1

.

Suppose we define V1 := Aτ1P0A�
τ1

+Bτ1QB�
τ1

, V2 := Aτ1P0A�
τ1

+Bτ1QB�
τ1

, W1 := R1 and
W2 := R, then W1 �W2 and V1 = V2. Therefore applying Lemma 1, with U1 := P1|1 and

U2 := P(c)
1|1 , yields P1|1 � P(c)

1|1 .

The second and last step of induction is to show that if Pn−1|n−1 � P(c)
n−1|n−1, then

Pn|n �P(c)
n|n . Let V1 := AτnPn−1|n−1A�

τn
+BτnQB�

τn
, V2 := AτnP(c)

n−1|n−1A�
τn

+BτnQB�
τn

, W1 :=

Rn and W2 := R. Notice that this gives W1 �W2 and starting from Pn−1|n−1 � P(c)
n−1|n−1

it follows that V1 � V2 (see, e.g. [25]). Hence, applying Lemma 1, with U1 := Pn|n and

U2 := P(c)
n|n yields Pn|n � P(c)

n|n . This proves that P∞ � P(c)
∞ , which yields (see e.g., [25])

λmax (P∞) � λmax
(
P(c)

∞
)
. �
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