
On Event-Triggered and Self-Triggered Control
over Sensor/Actuator Networks

Manuel Mazo Jr. and Paulo Tabuada

Abstract— Event-triggered and self-triggered control have
been recently proposed as an alternative to the more traditional
periodic execution of control tasks. The possibility of reducing
the number of executions while guaranteeing desired levels of
performance makes event-triggered and self-triggered control
very appealing in the context of sensor/actuator networks. In
this setting, reducing the number of times that a feedback
control law is executed implies a reduction in transmissions and
thus a reduction in energy expenditures. In this paper we intro-
duce two novel distributed implementations of event-triggered
and self-triggered policies over sensor/actuator networks and
discuss their performance in terms of energy expenditure.

I. INTRODUCTION

Sensor networks research has extensively dealt with the
extraction of information from the physical world. Many
of the developed applications concentrate on how to obtain
this information for posterior off-line analysis [1], [2] or
on-line processing of this information for tracking [3], [4],
distributed optimization [5] or mapping [6]. In all of these
applications there is a common desire for small power con-
sumption, which would extend the life span of the network.
Many of the approaches used to reduce the power con-
sumption concentrate on the communication requirements, as
the works on compressive sensing [7], network throughput
optimization [8], [9], message-passing algorithms [10] or
sleep-scheduling of the nodes [11]. Still, most of these
studies are performed only for on- or off-line analysis on
the information gathered.

We address the problem of minimizing energy consump-
tion for applications in which actuation plays a major role,
namely control applications. In this context, energy expen-
ditures can be directly related to the frequency at which
measurements are being taken and transmitted through the
network. Although the choice of the sampling frequency is
a problem as old as the use of microprocessors for control,
this question never received a definitive answer and engineers
still rely on rules of thumb [12], [13], [14] such as sampling
with a frequency 20 times the system bandwidth. Moreover,
the choice of periodic sampling is not even a natural one
since the behavior of a control system can be quite different
in different regions of the state space.

In this paper, we show how to minimize energy con-
sumption by resorting to event-triggered and self-triggered

This work has been partially funded by the Spanish Ministry of Science
and Education/UCLA fellowship LA2004-0003 and by the NSF CSR-EHS
0712502 grant.

M. Mazo Jr. and P. Tabuada are with the Department of Electrical
Engineering, University of California at Los Angeles, Los Angeles, CA
90095-1594, USA mmazo,tabuada@ee.ucla.edu.

sampling strategies over sensor/actuator networks (SAN).
The event-triggered idea has been previously explored in the
literature [15]. It has been shown in [16] that by sampling
and computing the controller only when a certain threshold
condition on the state is violated, one can sample less
frequently than with a periodic scheme while guaranteeing
the same performance. In [17] and [18] the self-triggered
sampling paradigm was explored, for linear and non-linear
systems respectively, in an attempt to eliminate the re-
quirement of continuous state measurement. Self-triggered
strategies compute the next sampling time using the last
state measurement and thus do not require knowledge of
the current state. The contribution of this paper is to show
how the techniques introduced in [16], and later refined
in [19], [17] for H∞ controllers, can be implemented over
sensor-actuator networks to considerably reduce the number
of network transmissions. We propose an event-triggered
strategy in which each node uses its local information to
determine when to make a transmission and a self-triggered
strategy in which the actuator node determines for how
long should the sensing nodes sleep before collecting and
transmitting fresh measurements.

The paper is organized in the following way: Section II
introduces the notation and states the problem. Then we
proceed to describe the proposed decentralized self-triggered
algorithm in Section III. Next we propose a distributed event-
triggered protocol in Section IV, followed by Section V
where we formalize how to obtain the times between up-
dates in the previously described algorithms. The proposed
techniques are illustrated with two examples in Section VI.
The paper concludes with a brief discussion in Section VII.

II. NOTATION AND PROBLEM STATEMENT

We consider a linear control system:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (1)

stabilized by a linear controller:

u = Kx (2)

In what follows, we assume that K was obtained through
a LQR design and consider its implementation over a sen-
sor/actuator network. Therefore, K is given by K = −BTP
where P is the solution of the matrix Riccati equation:

ATP + PA−Q+ L = 0 (3)

with Q = PBBTP and for some L ≥ 0 and P = PT > 0.
Furthermore, we assume m=1, for simplicity of presentation,
and also the existence of a distinguished node collocated

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA14.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 435

with the actuator called the actuator node. The remaining
nodes are sensor nodes and further described below. The
control signal is obtained from zero-order sample and hold
measurements so that:

u(t) = Kx(tk), t ∈ [tk, tk+1)

where tk and tk+1 are two consecutive sampling instants.
For the sake of readability, we drop the explicit dependence
of t but denote with the subindex k those quantities that are
constant and equal to the value at the update time tk, i.e.
xk = x(tk). With this kind of sampled feedback the closed
loop is described by:

ẋ = Ax+BKxk = (A+BK)x+BKe

where e represents a measurement error defined by:

t ∈ [tk, tk+1) =⇒ e(t) = x(tk)− x(t)

Treating the measurement error e as a new variable we can
rewrite the closed loop dynamics as:[

ẋ
ė

]
=
[

A+BK BK
−A−BK −BK

] [
x
e

]
since ė = −ẋ. Moreover, the matrix P , obtained as the
solution of (3), defines a quadratic Lyapunov function V =
xTPx whose derivative along (4) satisfies:

V̇ = −xTLx+ eTQe− uTk uk

The desired performance for the closed loop system can
be described by a matrix S > 0 for which the inequality:

V̇ ≤ −xTSx (4)

holds. The matrix S would then define the desired rate of
decay for V . In order to enforce (4) we need to select the
sampling instants tk so that −xTLx + eTQe − uTk uk ≤
−xTSx. This can be achieved by sampling when (5) holds.

−xT (L− S)x+ eTQe− uTk uk = 0 (5)

At t = tk the execution of the controller renders xk = x and
e = xk−x = 0, forcing −xTk (Q+L−S)xk ≤ 0. Now we can
appreciate how (Q+ L− S) captures the trade-off between
sampling and performance. In a typical design one would
pick L to design the continuous optimal controller, Q will
be determined by the LQR design, and we will get to pick
again S. The closer S and L are, the better the performance
of the system will be (closer to the prescribed continuous
design) at the expense of more frequent sampling.

In a practical setting the measurements xk will actually be
received after a certain delay ∆ which should be incorporated
into the definition of e. For the sake of simplicity we
ignore this delay by assuming ∆ = 0 although we can
incorporate the delay ∆ in the proposed framework by
appropriately selecting S in the rule (4) by following the
approach described in [16].

We are interested in the use of event-triggered and self-
triggered control techniques as they require fewer measure-
ments than periodic techniques. In particular, in the context

of SAN’s, this also means that less transmissions are required
for control and thus less energy usage. We will assume
without loss of generality that each sensor measures one
entry of the full state of the system. With all of the above
in mind, the problem we solve in this paper is:

Problem 2.1: Given a Linear Time Invariant system as
in (1), a controller (2) rendering the closed-loop system
asymptotically stable, design a distributed algorithm enforc-
ing the controller update rule (4) over a SAN.

We can now see that the fundamental difficulty when
implementing an event-triggered or self-triggered strategy in
a distributed-sensing setting is that the “triggering” condi-
tion (4) has to be evaluated continuously and it depends
on full state information. A continuous centralization of
local measurements to check (4) would lead to extensive
communication and unacceptably high energy consumption,
thus justifying a distributed design. In addition to a reduction
in energy consumption, we will also require the distributed
algorithms to be energy-balanced, i.e. all the sensing nodes
should consume energy at the same pace, since as soon as
one sensing node exhausts its energy reserves the stability
and performance of the closed loop system becomes seri-
ously compromised.

In what follows ‖ ·‖ will denote the usual Euclidean norm
of a vector and σm,M (·) the minimum (m) or maximum (M)
singular value of a given matrix.

III. A SELF-TRIGGERED PROTOCOL

The first distributed implementation follows the self-
triggered paradigm for control [20], [17], [18]. According to
this paradigm, in addition to use the current state to compute
the controller, the current state is also used to compute the
next execution time of the controller. In this section we
describe a particular protocol to implement this paradigm
over a sensor/actuator network.

A. Algorithm description

We start by assuming the availability of a routing tree with
root at the actuation node. The construction of a routing
tree is typically done during the discovery phase of the
network by resorting to several efficient algorithms available
in the literature [21]. We also assume that the actuator node
has access to larger energy reserves since it drives one or
several actuators that are typically more power consuming.
Therefore, we assume that the actuation node has the ability
to broadcast messages to all nodes without seriously reducing
its energy reserves.

The proposed decentralized algorithm for self-triggered
control consists of two phases:
• A measurement collection phase in which the network

computes in a distributed manner, as explained later
in this section, two scalars: uk = Kxk and ‖xk‖2.
The actuator node uses this information to update the
actuator and to compute the next time instant at which
new samples should be collected and transmitted.

• A broadcast phase during which the actuator node
broadcasts the next update time to all the sensing nodes.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA14.2

436

In practice, in order to avoid synchronization issues one
would rather send tk+1−tk instead of tk+1. The sensing
nodes would then sleep for tk+1−tk units of time before
starting the next measurement collection phase. These
tk+1 − tk times will be computed in Section V.

In any implementation of a control system the control
signal u has to be delivered to the controller. In addition
to uk we will also need to transmit additional information
in order to predict the sampling times. For the techniques
that we will present ‖xk‖2 is enough; nevertheless, more
information will help to increase the time between updates.

The distributed computation of uk = Kxk and ‖xk‖2 =∑n
1 x

2
i (tk) is based on the fact that both quantities are sums

of quantities locally available to the nodes of the network.
The computation of these quantities can then be done by
a wave algorithm for trees (Tree Wave-Algorithm) [21] in
which each node collects its local quantity (Kix

i
k and (xik)2

respectively), adds it to the quantities that it receives from its
children and transmits the resulting sum to its parent. Having
the root at the actuation node ensures that the computation
ends at the actuation node. The algorithm also ensures that
each node transmits packets of the same size. The number
of transmissions are also limited to one per node, due to
the Tree Wave-Algorithm implementation. Briefly, the Tree
Wave-Algorithm limits the communication by passing to the
parent node a “token” or “signal” only when the node has
received one from each of the links to its children, and it has
locally generated its own token. In this way when the root
receives a token, the root node knows that all nodes in the
network generated locally a token.

If the maximum delay introduced by the measuring col-
lection phase can be computed, it can be regarded as a
computation delay and accommodated by modifying the
triggering rule as in [16].

B. Energy utilization

In order to determine the energy consumed by the pro-
posed protocol, we need to take into account the power
consumed in transmitting data, in listening for transmissions,
and in computing.

In the case of a self-triggered strategy the nodes only
perform the computations needed in the wave algorithm
computing uk and ‖xk‖2. We will denote this computing
cost by D1. It is a fixed unit of energy consumed per update.
The radio module can also be kept asleep most of the time
as there is no need for communication between updates,
therefore the listening cost could be neglected. As for the
power consumed in transmitting information, the nodes on
the self-triggered protocol only send two scalars per update.
Thus, we represent this cost by two parameters: C1 and C2.
The first parameter describes the cost associated to the packet
overhead transmission (independent of the payload) while the
second parameter describes the cost per transmitted scalar.
Therefore, in the self-triggered case there would be an energy
cost of C1 + 2C2, and the total energy consumed at a node

at any given point in time will be given by:

J1(t) =
∑
k∈Γ(t)

(C1 + 2C2 +D1) (6)

where Γ(t) = {k : tk ≤ t}.

IV. AN EVENT-TRIGGERED PROTOCOL

A different strategy consists in checking in a distributed
manner the condition imposed on the decay of the Lyapunov
equation. This leads to a distributed computation of the con-
troller update times. Our goal is to reduce the consumption at
the nodes of the network, on which communication has the
biggest impact. Therefore we cannot exchange information
frequently between nodes. Instead we propose to have the
nodes estimate in a conservative way when the triggering
condition stops to hold. Each of the nodes will be making use
of its local measurements in order to perform this estimation.
When all the nodes agree in that the triggering condition has
been violated a new controller update is forced.

A. Algorithm description

Once more we will need to assume the existence of a
routing tree with root at the actuation node visiting all the
nodes in the network. The event-triggered algorithm can be
divided in several phases:
• Phase 1: The actuation node broadcasts a request for

new measurements.
• Phase 2: The sensing nodes take their local measure-

ment and compute their part of uk and ‖xk‖2 and
forward them up the routing tree (towards the root).

• Phase 3: The actuation node finishes the computation
of uk and ‖xk‖2 and broadcasts those quantities to the
rest of the nodes.

• Phase 4: The sensing nodes use uk and ‖xk‖2 to update
their local estimators accordingly. When a node’s local
triggering condition stops to hold it will generate a local
“token”, starting the computation of the Tree Wave-
Algorithm, explained in a previous section. When the
actuation node receives “tokens” from all of its children
nodes it will broadcast a request for new measurements
and the network would be back in Phase 1. The local
triggering (generation of these tokens) will be explained
in detail in Section V.

As the measurements from the nodes are synchronized,
any delay introduced in phases 2 and 3 can be regarded
as a computation delay and again dealt with modifying the
triggering rule as in [16].

Note also that the performance of neither the self-triggered
nor the event-triggered protocol is affected by the topology of
the network if no delays are taken into account. However, the
topology will have an effect on the maximum delay present
in a practical implementation, and thus on its performance.

B. Energy utilization

The event-triggered protocol requires the nodes to contin-
uously compute estimates, and listen to possible communi-
cations from their children. Therefore, we have a constant

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA14.2

437

power consumption due to listening and computation, which
we will denote by l and d2 respectively. In the event-triggered
protocol there are two transmissions per node per update.
The first one is used just to decide the next update time
and contains no payload, therefore incurring on a cost of
C1. The second transmission is used to compute the control
signal uk and ‖xk‖2, therefore having two scalars as payload
and incurring on a cost of C1 +2C2. Finally the total energy
consumption at any node at any point in time will be given
by the following equation:

J2(t) =
∑
k∈Γ(t)

(2C1 + 2C2) + (l + d2) t (7)

where once more Γ(t) = {k : tk ≤ t}.

V. HOW TO COMPUTE SLEEPING TIMES

We will need to relax condition (4) in order to make it
possible to check in a decentralized way. In this section we
will present these relaxations and how to take advantage of
them to perform a distributed or decentralized computation
of the times between updates of the controller.

A. Self-triggered control

One of these possible relaxations provides the triggering
condition:

eT (Q+ L− S)e ≤ 1
2
σm(L− S)‖xk‖2 + uTk uk (8)

which implies the inequalities:

eT (Q+ L− S)e ≤ 1
2
xTk (L− S)xk + uTk uk ⇒

V̇ ≤ −xTSx

also hold, where we used:

xT (L− S)x ≥ 1
2
xTk (L− S)xk − eT (L− S)e

The right-hand-side of equation (8) is a linear combination
of the constants uk and ‖xk‖2 obtained from a distributed
computation involving only the last measurements taken by
the sensing nodes. In order to check the triggering condition
on-line we will need to estimate an upper bound for the
evolution of eT (Q+ L− S)e.

Provided that L and S where designed so that (Q +
L − S) > 0 we can find a dynamic estimator ε satisfying
‖e(t)‖M ≤ ε(t) and bounding above ‖e‖M = ‖M 1

2 e‖ =
‖
√
Q+ L− Se‖:

d

dt
‖e‖M ≤ ‖ė‖M ≤ ‖M

1
2AM−

1
2 ‖‖e‖M+‖(A+BK)xk‖M

Which now can be modified to be used as a bound estimator
depending only on quantities computable over the network:

d

dt
‖e‖M ≤ α‖e‖M + β(uk, ‖xk‖) (9)

with

α = ‖M 1
2AM−

1
2 ‖ (10)

β = min{β1, β2} (11)

β1 = ‖M 1
2 (A+BK)‖‖xk‖ (12)

β2 =
(
‖M 1

2 (A+BK)‖2‖xk‖2 + (13)

‖M 1
2Buk‖2 + 2‖uTkBTM

1
2A‖‖xk‖

) 1
2

Our bound estimator would therefore be ε̇ = αε+β, which
by the Comparison Lemma [22], would provide with ε(t) ≥
‖e(t)‖M . Integrating ε and taking into account ε(tk) = 0
leads to:

ε(t) =
β

α

(
eα(t−tk) − 1

)
(14)

Therefore the next update time will be given by:

ε2(tk+1) =
σm(L− S)

2
‖xk‖2 + uTk uk (15)

which can be solved analytically:

tk+1 = tk +
1
α

log
(

1 +
ακk
β

)
(16)

κk =

√
σm(L− S)

2
‖xk‖2 + uTk uk (17)

Let us summarize these results in the following proposi-
tion:

Proposition 5.1: The distributed implementation of a
LQR controller (2), designed to stabilize the linear sys-
tem (1), defined by the algorithm described in Section III
with update times given by (16) guarantees stability of the
closed loop system and enforces V̇ ≤ −xTSx. Moreover,
the algorithm is energy-balanced.

B. Event-triggered control

A different alternative consists of designing estimators in
which local measurements can be directly injected. In this
way the triggering conditions can be locally checked. In order
to be able to obtain such estimators we also need to relax
the triggering condition (4) in the local nodes.

σM (Q)‖e‖2 ≤
(
σm(L− S)‖x‖2 + uTk uk

)
(18)

⇒ V̇ ≤ −xTSx

Now, as in the design of the self-triggered estimator, we
can obtain estimators with direct injection of local measure-
ments for ‖e‖ and ‖x‖. Let us first partition and reorder the
state-space as e i =

[
ei, ê

i
]T

, with ei denoting the local
error variable at node i, and ê i the remaining entries of the
error vector. With this new description of the error vector at
node i, we can rewrite the dynamics for e as

d

dt

[
ei
ê i

]
=

[
A1 A2

A3 A4

] [
ei
ê i

]
−

[
A1 A2

A3 A4

] [
xi(tk)
x̂ i(tk)

]
−
[
B1

B2

]
uk

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA14.2

438

Then,
d

dt
‖ê i‖ ≤ ‖A3ei +A4ê

i −B2uk − [A3 A4]x ik‖ ≤

‖A4‖‖ê i‖+
(
‖A3ei −B2uk‖2 + ‖[A3 A4]‖2‖xk‖2

+ 2‖(A3ei −B2uk)T [A3 A4]‖‖xk‖
) 1

2

and hence we can use as bound estimator:

eT e ≤ e2i + (εi)2 (19)
d

dt
εi = ‖A4‖εi +

`
‖A3ei −B2uk‖2

+ ‖[A3 A4]‖2‖xk‖2

+ 2‖(A3ei −B2uk)T [A3 A4]‖‖xk‖
” 1

2 (20)

In an analogous way we can derive a lower bound estimator
for ‖x‖2 resulting in:

xTx ≥ x2
i + (χi)2 (21)

d

dt
χi = −‖A4‖χi − ‖A3xi +B2uk‖ (22)

Therefore, local triggering conditions of the form

σM (Q)
“
e2i + (εi)2

”
≤ σm(L− S)

“
x2

i + (χi)2
”

+ uT
k uk (23)

could be used to decide the update times. The distributed
algorithm proposed in section IV-A will enforce a new update
only when all nodes have their local rules violated. There-
fore, the distributed algorithm will ensure that the controller
follows the node with least conservative estimates, and thus
the system waits as long as possible before triggering a new
update. Now we can summarize the event-triggered protocol
in the following proposition:

Proposition 5.2: The distributed implementation of a
LQR controller (2), designed to stabilize the linear sys-
tem (1), defined by the algorithm described in Section IV
with update times given by (23),(20), and (22) guarantees sta-
bility of the closed loop system and enforces V̇ ≤ −xTSx.
Moreover, the algorithm is energy-balanced.

VI. EXAMPLE

We illustrate these techniques in two small examples. Let
us start with the system defined by

A =

26664
1 −2 0 2 0
2 −4 0 0 −1
0 0 1 −1 0
0 0 1 1 0
0 1 0 0 3

37775 , B =

26664
2
1
1
3
2

37775 , xo =

26664
1
−2
6
0
0

37775
The controller was designed solving the Riccati equation (3),
with L = 0.5I and setting K = −BTP . The S matrix
was set to S = 0.3I . For comparison we include plots
of simulations using the centralized event-triggered rule
eTQe − uTk uk ≤ xT (L − S)x, which does not involve any
approximation or relaxation from (4). This protocol would
be giving us the exact times when the controller needs to be
updated. Obviously our two protocols for networks will give
us more updates, but not necessarily always smaller times.

In figure 1 we can see how the three strategies achieve
the desired performance as measured by the decay of the

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

t[s]

xT Px

Centralized Event−Triggered
Distributed Event−Triggered
Distributed Self−Triggered

Fig. 1. Lyapunov function decay for centralized event-triggered, distributed
event-triggered and decentralized self-triggered. First example.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t[s]
t k+

1−
t k[s

]

Centralized Event−Triggered
Distributed Event−Triggered
Decentralized Self−Triggered

Fig. 2. Inter-sample times for centralized event-triggered, distributed event-
triggered and decentralized self-triggered strategies for the first example.

Lyapunov function. But looking at figure 2, while the times
obtained with the self-triggered strategy are much shorter
than the centralized event-triggered controller, the distributed
event-triggered strategy produces times much closer to those
from the centralized controller. This effect is explained by
the fact that in an event-triggered protocol measurements
from the plant at a local level are taken continuously, while
the self-triggered protocol is completely open loop between
updates.

Finally we present a comparison of the energy consump-
tion evolution at a node (and therefore at all of them as
our algorithms are balanced). The values for the different
costs used in the energy computation were: C1 = 38.4mJ ,
C2 = 3.2mJ , l = 60mW , d2 = 24mW and D1 = 0mJ
negligible. These values are approximations obtained from
the actual power consumption values for a MicaZ [23] using
ZigBee [24] for wireless communication. Figure 3 depicts the
energy consumption using the self-triggered and the event-
triggered protocols, as given by (6) and (7). Observe how the
distributed event-triggered algorithm consumes less energy
than the self-triggered. In this example the event-triggered
strategy becomes more energy-efficient because of the great
difference on number of updates between event and self-
triggered. But in general that does not have to be the case.
Even if the event-triggered algorithm produces fewer updates
than the self-triggered, the first algorithm could consume
more energy. The next example tries to portray this situation.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA14.2

439

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14 x 104

t[s]

J 1,
2[m

J]

Distributed Event−Triggered
Distributed Self−Triggered
Hybrid Strategy

Fig. 3. Energy consumption for distributed event-triggered and decentral-
ized self-triggered strategies for the first example.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

t[s]

J 1,
2[m

J]

Distributed Event−Triggered
Distributed Self−Triggered
Hybrid Strategy

Fig. 4. Energy consumption for distributed event-triggered and decentral-
ized self-triggered strategies for the second example.

The system is described by:

A = 10−2

26664
−10 −5 11 −8 3
−7 −9 14 −16 7
−5 −7 11 −15 7
−6 −7 10 −12 6
−13 −8 16 −11 3

37775 , B =

26664
0.2
0.3
0.4
0.1
0.2

37775 ,
xo = [−4.8 − 11 − 5.3 − 2.9 − 3.7]T

and we used again L = 0.5I and S = 0.3I .
In figure 4 we can appreciate how the self-triggered pro-

tocol again produces more frequent updates, but if we look
at the energy consumption we can see how the distributed
event-triggered algorithm consumes more energy all the time.
In this example the evolution of the system is quite slow,
and therefore the listening and computing energy plays a
bigger role, making the distributed event-triggered strategy
less efficient. A hybrid strategy in which the event-triggered
protocol also uses the self-triggered predicted times to keep
the radio-module asleep is also presented in both figure 3
and figure 4. This algorithm improves the performance of
the event-triggered algorithm but does not always outperform
the self-triggered algorithm.

VII. DISCUSSION

We have proposed two distributed implementations for
controllers over SAN’s based on the event-triggered and self-
triggered control paradigms. The use of event-triggered and
self-triggered control is justified in terms of the reduction
in energy consumption obtained by reducing the number of
messages exchanged over the network while achieving the
prescribed control performance. Both strategies were illus-
trated through two examples which show that no algorithm
outperforms the other in terms of energy expenditure. A

hybrid strategy benefiting from both approaches was tested.
This hybrid protocol always outperforms the event-triggered
approach, but that is not the case with the self-triggered
protocol. The selection of the most adequate protocol for a
given control system is left for future research. Note that the
results obtained strongly depend on the particular estimators
selected. We are currently investigating how to improve the
performance of the proposed estimators.

REFERENCES

[1] J. Fisher, T. Harmon, and W. Kaiser, “Multiscale river hydraulic and
water quality observations combining stationary and mobile sensor
network nodes,” in American Geophysical Union Joint Assembly
Annual Spring Meeting, Baltimore, MD, May 23-26 2006.

[2] L. Girod and M. Roch, “An overview of the use of remote embedded
sensors for audio acquisition and processing.” in In the Proceedings of
the IEEE International Symposium on Multimedia (ISM), San Diego,
CA, December 2006.

[3] S. Oh and S. Sastry, “Tracking on a graph,” in Information Processing
in Sensor Networks (IPSN), 2005.

[4] B. Sinopoli, C. Sharp, L. Schenato, S. Shaffert, and S. Sastry, “Dis-
tributed control applications within sensor networks,” in Proceedings
of the IEEE,Special Issue on Sensor Networks and Applications, 2005.

[5] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in Information Processing in Sensor Networks (IPSN), 2004.

[6] J. Djugash, S. Singh, and B. Grocholsky, “Decentralized mapping of
robot-aided sensor networks,” in IEEE International Conference on
Robotics and Automation, 2008.

[7] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressive wireless
sensing,” in Information Processing in Sensor Networks (IPSN), 2006.

[8] A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Multi-hop com-
munication in order-optimal for homogeneous sensor networks,” in
Information Processing in Sensor Networks (IPSN), 2004.

[9] H. Le, D. Henriksson, and T. Abdelzaher, “A control therory approach
to throughput optimization in multi-channel collection sensor net-
works,” in Information Processing in Sensor Networks (IPSN), 2007.

[10] M. Paskin, C. Guestrin, and J. McFadden, “A robust architecture for
distributed inference in sensor networks,” in Information Processing
in Sensor Networks (IPSN), 2005.

[11] R. Subramanian and F. Fekri, “Sleep scheduling and lifetime max-
imization in sensor networks: Fundamental limits and optimal solu-
tions,” in Information Processing in Sensor Networks (IPSN), 2006.

[12] G. Franklin, “Rational rate,” in IEEE Control Systems Magazine, 2007.
[13] G. Goodwin, S. Graebe, and M. Salgado, Control System Design.

Prentice Hall, 2001.
[14] C. Houpis and G. B. Lamont, Digital Control Systems. McGraw-Hill

Higher Education, 1984.
[15] K. Åström and B. Bernhardsson, “Comparison of Riemann and

Lebesgue sampling for first order stochastic systems,” Proceedings
of the 41st IEEE Conference on Decision and Control, vol. 2, 2002.

[16] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” in IEEE Transactions on Automatic Control, vol. 52(9), 2007.

[17] X. Wang and M. D. Lemmon, “State based self-triggered feedback
control systems with l2 stability,” in 17th IFAC World Congress, 2008.

[18] A. Anta and P. Tabuada, “Self-triggered stabilization of homogeneous
control systems,” in American Control Conference, 2008.

[19] X. Wang and M. D. Lemmon, “Event-triggered broadcasting across
distributed networked control systems,” in American Control Confer-
ence, 2008.

[20] M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model for
real-time control systems,” Work in Progress Proceedings of the 24th
IEEE Real-Time Systems Symposium (RTSS WIP 2003), pp. 67–70,
2003.

[21] A. Tel, Introduction to Distributed Algorithms. Cambridge University
Press, 2000.

[22] H. Khalil, Nonlinear systems. Prentice Hall Upper Saddle River, NJ,
2002.

[23] [Online]. Available: http://www.xbow.com/Products/Product pdf files/
Wireless pdf/6020-0060-01 A MICAz.pdf

[24] [Online]. Available: http://www.zigbee.org

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA14.2

440

