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Abstract— In this paper we study an event based control
algorithm for trajectory tracking in control affine nonlinear
systems. The desired trajectory is modelled as the solution of
a reference system with an exogenous input. It is assumed that
the desired trajectory and the exogenous input to the reference
system are uniformly bounded. Given a continuous-time con-
troller that guarantees global uniform asymptotic tracking of
the desired trajectory our algorithm provides an event based
controller that not only guarantees semiglobal uniform ultimate
boundedness of the tracking error, but also ensures non-
accumulation of inter-execution times. In the special case that
the derivative of the exogenous input to the reference system is
also uniformly bounded, the proposed control algorithm can be
used to design an ultimate bound that is arbitrarily small. The
main ideas in the paper are illustrated through simulations of
trajectory tracking by a nonlinear system.

I. INTRODUCTION

Traditional computer based control systems rely on peri-
odic sampling of the sensors and computation/execution of
the control. The reason for the popularity of this paradigm
is a well developed theory and the ease of analysis of such
systems. However, such control algorithms may be very
inefficient from a computational perspective as the period
for sampling and control execution is determined by a worst
case analysis and the rate of control execution is independent
of the state of the system. On the other hand, in event
based control systems, timing of control execution is not
necessarily periodic and can be state dependent. Thus, event
based control is useful in systematically designing controllers
that make better use of computational and communication
resources in a wide variety of applications such as embedded
control systems and decentralized systems (a representative
list of references includes [1], [2], [3], [4]).

While there have been some efforts in the past to study
event based control systems [5], [6], [7], their systematic
design for tasks such as stabilization has been undertaken
only recently [8], [1], [9], [10], [11]. Of these, [1] has
significantly influenced the the proposed controller in this
paper. In [1], an event-triggering algorithm was proposed that
ensures global asymptotic stability as well as a lower bound
on the inter-execution times of the control law for general
nonlinear systems that are rendered Input-to-State Stable
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(ISS) with respect to measurement errors by a continuous
time controller.

In this paper, we investigate an event triggered control
algorithm for trajectory tracking. Tracking a time varying
trajectory or even a set-point is of tremendous practical
importance in many control applications. In these applica-
tions, the goal is to make the state of the system follow
a reference or desired trajectory, which is usually specified
as an exogenous input to the system. In this paper, the
reference trajectory is modelled as a solution of a reference
system. To the best of our knowledge, all the previous
works in the event-triggered control literature assumed a state
feedback control strategy with no exogenous input signals,
notable exceptions being [8], [9], [10], [11], [12], [13], where
unknown disturbances appear as exogenous inputs. However,
in this paper, we consider exogenous inputs that are available
to the controller through measurements, namely the reference
trajectory and the input to the reference system.

The main contribution of this paper is the design of
event-triggered controllers for trajectory tracking in control
affine nonlinear systems, which is a special case of nonlinear
systems with exogenous inputs. It is assumed that the ref-
erence trajectory and the exogenous input to the reference
system are uniformly bounded. Given a nonlinear system
and a continuous-time controller that ensures global uniform
asymptotic tracking of the desired trajectory, the proposed
algorithm provides an event based controller that guarantees
semiglobal uniform ultimate boundedness of the tracking
error and ensures that the inter-execution times of the control
are bounded away from zero. In the special case that the
derivative of the exogenous input to the reference system is
also uniformly bounded, an arbitrarily small ultimate bound
for the tracking error can be designed. It is to be noted
that our assumption regarding the closed loop system with
continuous-time control is weaker than the ISS like property
assumed in [1], and hence is a minor contribution in itself.

The rest of the paper is organized as follows. In Section II
we set up the problem and introduce the notation used in the
paper. Subsequently, in Section III, the major assumptions
are stated and the event triggering condition is introduced.
The main analytical results are presented in Section IV.
The theoretical results in the paper are illustrated through
numerical simulations of a second order nonlinear system in
Section V. Finally, the results are summarized in Section VI.

II. PROBLEM STATEMENT AND NOTATION

Consider a nonlinear system of the form

ẋ = f(x) + g(x)u, (1)
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where x ∈ Rn, f : Rn −→ Rn, u ∈ Rm and g : Rn −→
Rn×Rm. Let the reference or the desired trajectory that has
to be tracked be defined implicitly by the dynamical system

ẋd = fr(xd, v) (2)

where xd ∈ Rn, v ∈ Rq and fr : Rn × Rq −→ Rn.
The external signal v and the initial condition of the signal
xd determine the reference trajectory. The tracking error is
defined as

x̃ , x− xd. (3)

In general, a control for tracking a reference trajectory
depends on both the tracking error as well as the reference
trajectory. Hence, we assume that the control signal is of the
form

u = γ(ξ), where ξ , [x̃, xd, v]T (4)

where the notation [a1, a2, a3]T denotes the concatenation
of the vectors a1, a2 and a3. Consequently, the closed loop
system that describes the tracking error is given as

˙̃x = f(x̃+ xd) + g(x̃+ xd)γ(ξ)− ẋd. (5)

Now, consider a controller that updates the control only
intermittently and not continuously in time. Let ti for i =
0, 1, 2, . . . be the time instances at which the control is
computed and updated. Then the tracking error evolves as

˙̃x = f(x̃+ xd) + g(x̃+ xd)γ(ξ(ti))− ẋd,
for t ∈ [ti, ti+1), i ∈ {0, 1, 2, ...}. (6)

The above dynamical system can also be viewed as a
continuously updated control system, albeit with an error in
the measurement of the state and the exogenous input. Let

ei , ξ(ti)− ξ. (7)

Now, by defining the measurement error as

ē ,

e1e2
e3

 , ei ,

 x̃(ti)− x̃
xd(ti)− xd
v(ti)− v

 ,
for t ∈ [ti, ti+1), i ∈ {0, 1, 2, ...} (8)

the system in (6) can be rewritten as

˙̃x =
[
f(x̃+ xd) + g(x̃+ xd)γ(ξ)− ẋd

]
+ g(x̃+ xd)

[
γ(ξ + ē)− γ(ξ)

]
(9)

where we have expressed the above system as a perturbed
version of the dynamical system described in (5). Note that
ē is discontinuous at t = ti, for each i, because ē(ti) =
ei(ti) = 0 while ē(t−i ) , lim

t↑ti
ē(t) = lim

t↑ti
ei−1(t).

In time-triggered or periodic control systems, ti+1 − ti =
Ts for all i ∈ {0, 1, 2, . . .}, where Ts > 0 is a constant
sampling time. On the other hand, in an event-triggered
system the time instants ti in general are not uniformly
separated, and are determined dynamically by an event-
triggering condition.

The objective of this paper is to develop an event based
control for tracking a trajectory within a desired ultimate
bound. To this end, we assume that when the control is
updated continuously in time, the state x tracks the desired
trajectory asymptotically, that is, for system (5) x̃ → 0 as
t → ∞. In the next section we investigate the conditions
under which it is possible to track the desired trajectory with
the same control function, but updated intermittently based
on event-triggering, as in (6), rather than continuously in
time.

III. EVENT-TRIGGERING CONDITION FOR EMULATION
BASED TRAJECTORY TRACKING CONTROL

There are two main requirements for an event based
controller for trajectory tracking. It needs to (i) guarantee that
the tracking error is at least uniformly ultimately bounded,
and (ii) ensure that there are no accumulation of execution
times. In this section, an event-triggering condition that
satisfies both these requirements is developed. We begin
by formally stating the main assumptions in this paper
regarding the system in (5).

(A1) There exists a C1 Lyapunov function for the dynamical
system in (5), V (x̃) : Rn → R, such that for all
admissible xd and v,

α1(‖x̃‖) ≤ V (x̃) ≤ α2(‖x̃‖)
∂V

∂x̃

[
f(x̃+ xd) + g(x̃+ xd)γ(ξ)− ẋd

]
≤ −α3(‖x̃‖)

where α1(.), α2(.), and α3(.) are class K∞ 1 functions.
(A2) f(.), g(.), fr(., .), and γ(., ., .) are Lipschitz on compact

sets.
(A3) For all time t ≥ 0, ‖[xd, v]T ‖ ≤ d for some d ≥ 0 and

v is piecewise continuous.
(A4) For all time t ≥ 0, ‖v̇‖ ≤ c for some c ≥ 0.
(A5) The initial tracking error is bounded by a known con-

stant, that is, ‖x̃(0)‖ ≤ R, and R > 0 is a known
constant.

Let L be the Lipschitz constant for the function γ(., ., .)
on the compact set

B = {ξ : ‖x̃‖ ≤ µ, ‖[xd, v]T ‖ ≤ d}, µ = α−11 (α2(R)).
(10)

Note that the set B includes all the admissible reference
signals. Next, by assumption (A2)

‖γ(ξ + ē)− γ(ξ)‖ ≤ L‖ē‖, ∀ ξ, (ξ + ē) ∈ B (11)

We also define

β(‖x̃‖) , max
‖w‖≤‖x̃‖, ‖xd‖≤d

∣∣∣∣∣∣∣∣∂V (w)

∂w
g(w + xd)

∣∣∣∣∣∣∣∣. (12)

We now derive the triggering condition that determines the
time instants ti at which the control is updated.

Consider the Lyapunov function, V (.), in assumption (A1)
as a candidate Lyapunov function for the system defined

1A continuous function α : [0,∞) → [0,∞) is said to belong to the
class K∞ if it is strictly increasing, α(0) = 0 and α(r) → ∞ as r → ∞
[14].
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by (6). The time derivative of V (x̃), along the flow of the
tracking error system, V̇ = (∂V/∂x̃) ˙̃x, may be obtained
through the measurement error interpretation, (9).

V̇ =
∂V

∂x̃

[
f(x̃+ xd) + g(x̃+ xd)γ(ξ)− ẋd

]
+
∂V

∂x̃
g(x̃+ xd)

[
γ(ξ + ē)− γ(ξ)

]
≤− α3(‖x̃‖) +

∂V

∂x̃
g(x̃+ xd)[γ(ξ + ē)− γ(ξ)] (13)

≤− α3(‖x̃‖) + β(‖x̃‖)L‖ē‖, ∀ ξ, (ξ + ē) ∈ B (14)

where (13) is obtained from assumption (A1), and (14) is
then obtained from (10)-(12). From (14) it appears that a
triggering condition that ensures ξ, (ξ+ ē) ∈ B for all t ≥ 0
also ensures ultimate boundedness of the tracking error, x̃.
In the sequel, this statement is formally shown to be true.
But first, we define a triggering condition based on this idea.

Consider the following triggering condition (for the sake
of clarity, the complete system description including the state
equation and the triggering condition are given).

˙̃x = f(x̃+ xd) + g(x̃+ xd)γ(ξ(ti))− ẋd,
for t ∈ [ti, ti+1), i ∈ {0, 1, 2, ...} (15)
where
t0 = min{t ≥ 0 : ‖x̃‖ ≥ r > 0}, and

ti+1 = min{t ≥ ti : ‖ei‖ ≥W (‖x̃‖), and ‖x̃‖ ≥ r > 0}

W (‖x̃‖) =
σα3(‖x̃‖)
Lβ(‖x̃‖) , 0 < σ < 1, for x̃ 6= 0 (16)

where the parameter r is a design choice that determines the
ultimate bound of the tracking error. It is necessary to update
the control only when ‖x̃‖ ≥ r, for some r > 0, else it may
result in the accumulation of control update times. Further,
without loss of generality, it is assumed that r ≤ R, where
R is the bound on the initial condition (assumption (A5)).
Notice that each update instant ti+1 is defined implicitly with
respect to ti. Hence, the initial update instant t0 has been
specified separately. As the proposed triggering condition
does not allow the control to be updated whenever ‖x̃‖ < r,
the first update instant, t0, need not be at t = 0. Therefore, it
is assumed that u = 0 for 0 ≤ t < t0. In the next section it
is shown, for two different classes of reference trajectories,
that the triggering condition (16) ensures uniform semiglobal
ultimate boundedness of the tracking error.

IV. UNIFORM ULTIMATE BOUNDEDNESS OF THE
TRAJECTORY TRACKING ERROR

The following lemma demonstrates that the event-
triggering condition (16) ensures ultimate boundedness of
the tracking error, provided the sequence of control execution
times does not exhibit Zeno behavior (accumulation of inter-
execution times), that is either the sequence of control
execution times is finite or lim

i→∞
ti =∞.

Lemma 1: Consider the system (5). Suppose that assump-
tions (A1), (A2), (A3) and (A5) are satisfied, and let r be any
constant such that 0 < r ≤ R. In the event-triggered system
(15)-(16), if the sequence of control execution times does not

exhibit Zeno behavior, then the tracking error, x̃, is uniformly
ultimately bounded by a ball of radius r1 = α−11 (α2(r)).

Proof: Case I: Suppose that the sequence of control
execution times is infinite and lim

i→∞
ti =∞.

From the definition of t0, it is clear that ‖x̃‖ ≤ r ≤ R
for t ∈ [0, t0), and ‖x̃(t0)‖ ≤ R. Thus, by assumption (A1),
V (x̃(t0)) ≤ α2(R). Now, we show by induction that for all
t ∈ [t0, ti], and for each i ∈ {0, 1, 2, . . .}, V (x̃(t)) ≤ α2(R).
Clearly, the statement is true for i = 0. Now, assume that
for all t ∈ [t0, ti], V (x̃(t)) ≤ α2(R), and hence ξ ∈ B
(or, equivalently ‖x̃‖ ≤ µ). Then, we need to show that the
induction statement is true for t ∈ [t0, ti+1]. Observe that
for each k ∈ {0, 1, . . . , i}, and for t ∈ [tk, tk+1), ξ + ē =
ξ(tk) ∈ B. Hence, (ξ + ē) ∈ B for all t ∈ [t0, ti+1). Then
by (14) we have that for all t ∈ [t0, ti+1)

V̇ ≤ −α3(‖x̃‖) + β(‖x̃‖)L‖ē‖, for all x̃ s.t. ‖x̃‖ ≤ µ
≤ −(1− σ)α3(‖x̃‖), for all x̃ s.t. r ≤ ‖x̃‖ ≤ µ (17)

where the second relation follows from the triggering condi-
tion (16). Note that α(‖x̃‖) , (1−σ)α3(‖x̃‖) is a class K∞
function. By the induction hypothesis V (x̃(ti)) ≤ α2(R).
Thus, (17) and continuity of the tracking error imply that
V (x̃(t)) ≤ α2(R) for all t ∈ [t0, ti+1]. Therefore, by
induction we see that V (x̃(t)) ≤ α2(R) for all t ∈ [t0, ti],
for each i ∈ {0, 1, 2, . . .}.

Now, consider the sets Ω , {x̃ : r ≤ ‖x̃‖ ≤ µ} and
E , {x̃ : V (x̃) ≤ α2(r)}. The assumption that lim

i→∞
ti =∞,

together with (17) implies that V̇ ≤ −α(r) < 0 for all x̃ ∈ Ω
and t ≥ t0. The set Ω ∩ E is non-empty, and moreover the
level set δE , {x̃ : V (x̃) = α2(r)} ⊂ Ω. Consequently,
all trajectories satisfying assumption (A5) eventually enter
the set E in finite time and stay there, as E is positively
invariant.

Finally, α1 is a class K∞ function, and there exists an r1
such that r1 = α−11 (α2(r)) and E ⊆ {x̃ : ‖x̃‖ ≤ r1}.
Therefore, the tracking error, x̃, is uniformly ultimately
bounded by the closed ball of radius r1.

Case II: Suppose that the sequence of control execution
times, {t0, t1, . . . , tN}, is finite.

The induction hypothesis in Case I holds in this case for
each i ∈ {0, 1, . . . , N} with tN+1 = ∞. The rest of the
proof is similar to that of Case I.

Henceforth, Case II is not considered explicitly as it is
included in Case I. Next, we show that the system (15-16)
does not exhibit Zeno behavior by demonstrating that the
inter-execution times are uniformly bounded away from zero.
We consider two different classes of reference trajectories in
Lemmas 2 and 3, respectively.

Lemma 2: Consider the system (5). Suppose that assump-
tions (A1), (A2), (A3), (A4) and (A5) are satisfied, and let
r be any constant such that 0 < r ≤ R. Then, in the event-
triggered system (15)-(16), the inter-update times (ti+1− ti)
for i ∈ {0, 1, 2, . . .} are uniformly bounded away from zero.

Proof: It follows from the proof of Lemma 1 that
‖x̃‖ ≤ µ = α−11 (α2(R)) and r ≤ ‖x̃(ti)‖ ≤ µ, for each
i. Additionally, we note that by definition ‖ē(ti)‖ = 0, for
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each i. Hence ti+1 − ti ≥ T , where T is the time it takes
‖ē‖ to grow from 0 to ε = σα3(r)/Lβ(µ), which is a lower
bound for the minimum value of σα3(‖x̃‖)/Lβ(‖x̃‖) on the
compact set {x̃ : r ≤ ‖x̃‖ ≤ µ}. If we show that T > 0,
then the proof is complete.

From (9), and the triangle inequality property, we observe
that

‖ ˙̃x‖ ≤‖f(x̃+ xd) + g(x̃+ xd)γ(ξ)− ẋd‖
+ ‖g(x̃+ xd)[γ(ξ + ē)− γ(ξ)]‖. (18)

By assumptions (A2) and (A3), there exists a Lipschitz
constant M1 for the function on the right hand side of (5)
in the set B. Recall that for all t ∈ [t0, ti), ξ ∈ B and
(ξ + ē) ∈ B, thus (11) holds. Also, by virtue of assumption
(A1), f(0)+g(0)γ(0, 0, 0)−0 = 0. Finally, g(.) is Lipschitz
on compact sets, and hence ‖g(x̃+xd)‖ attains a maximum
value, M2, on the compact set {x̃+xd : ‖x̃‖ ≤ µ, ‖xd‖ ≤ d}.
Using these facts we see that

‖ ˙̃x‖ ≤M1(‖x̃‖+ ‖[xd, v]T ‖) + L‖ē‖‖g(x̃+ xd)‖
≤M1(‖x̃‖+ ‖[xd, v]T ‖) +M2L‖ē‖. (19)

Therefore, ‖ ˙̃x‖ ≤ P1(‖x̃‖ + ‖ē‖ + d) for some P1 > 0,
where d is the uniform bound on ‖[xd, v]T ‖ in assumption
(A3). Since ‖x̃‖ ≤ µ for all t ∈ [t0, ti), for each i, ‖ ˙̃x‖ ≤
P1(µ+ ‖ē‖+ d). Hence, by the definition ˙̄e = −[ ˙̃x, ẋd, v̇]T

there exists a finite P > 0 such that
d‖ē‖
dt
≤ ‖ ˙̄e‖ ≤ P (µ+ ‖ē‖+ d+ c) (20)

where c is the uniform bound on ‖v̇‖ in assumption (A4).
Note that for ‖ē‖ = 0, the first inequality holds for all
the directional derivatives of ‖ē‖. Then, according to the
Comparison Lemma [14]

‖ē‖ ≤ (µ+ d+ c)(eP (t−ti) − 1), for t ≥ ti. (21)

Thus, the inter-execution times are uniformly lower bounded
by T , which satisfies

T ≥ 1

P
log

(
1 +

σα3(r)

Lβ(µ)(µ+ d+ c)

)
. (22)

As P and L are finite, we conclude that the inter-execution
times have a uniform lower bound, T , that is greater than
zero.

This leads to the first main result of this paper, which is
presented below.

Theorem 1: Consider the system (5). Suppose that as-
sumptions (A1), (A2), (A3), (A4) and (A5) are satisfied,
and let r be any constant such that 0 < r ≤ R. Then,
for the event-triggered system (15)-(16), the tracking error,
x̃, is uniformly ultimately bounded by a ball of radius
r1 = α−11 (α2(r)), and the inter-update times (ti+1 − ti) for
i ∈ {0, 1, 2, . . .} are uniformly bounded away from zero.

Proof: The proof follows from Lemma 1 and Lemma
2.

In the next result, we relax the conditions on the reference
trajectory by no longer requiring it to satisfy assumption

(A4). Instead, certain conditions on the function W (‖x̃‖) =
σα3(‖x̃‖)/Lβ(‖x̃‖) are assumed to demonstrate the absence
of Zeno behavior. The new assumption implies that there
is a certain region in the state space where the numerator,
σα3(‖x̃‖), dominates the denominator, Lβ(‖x̃‖), by a factor
determined by the bound on [xd, v]T in assumption (A3).

In this case also we demonstrate that the inter-execution
times are uniformly bounded away from zero. However, as
compared to Lemma 2, where the choice of r was completely
arbitrary, the new assumptions lead to a constraint on the
choice of the radius r in the triggering condition.

Lemma 3: Consider the system defined by (5). Suppose
that the following assumptions are satisfied
(1) assumptions (A1), (A2), (A3) and (A5) hold.
(2) r is any constant such that 0 < r ≤ R.
(3) There exist constants s0 > 0 and δ > 0 such that
(2d+ δ) ≤W (‖x̃‖), for all s0 ≤ ‖x̃‖ ≤ µ.
If r > s0, then in the event-triggered system (15)-(16),
the inter-update times (ti+1 − ti) for i ∈ {0, 1, 2, . . .} are
uniformly bounded away from zero.

Proof: The proof is very similar to that of Lemma 2,
and hence only the essential steps are described here. We
note that for each i, s0 < r ≤ ‖x̃(ti)‖ ≤ µ. Furthermore,
due to assumption (3), (2d + δ) ≤ W (‖x̃‖) for all x̃ s.t.
s0 < r ≤ ‖x̃‖ ≤ µ. The triggering condition in (16) implies
that ‖ē(t−i )‖ ≥W (‖x̃(ti)‖), and therefore ‖ē(t−i )‖ ≥ (2d+
δ), for each i. We know by Assumption (A3) that ‖ē‖ ≤
‖e1‖ + ‖[e2, e3]T ‖ ≤ ‖e1‖ + 2d. Hence, the inter-execution
times ti+1 − ti ≥ T , where T is the time it takes ‖e1‖ to
grow from 0 to δ. If we show that T > 0, then the proof is
complete.

From the proof of Lemma 2, it is known that ‖ ˙̃x‖ ≤
P1(µ + ‖ē‖ + d) for some P1 > 0. Since by definition
ė1 = − ˙̃x, we see that

‖ė1‖ ≤ P1(µ+ ‖ē‖+ d)

≤ P1(µ+ ‖e1‖+ 3d), as ‖ē‖ ≤ ‖e1‖+ 2d.

Therefore, there exists a finite P > 0 such that
d‖e1‖

dt
≤ ‖ė1‖ ≤ P (µ+ ‖e1‖+ d). (23)

Note that for ‖e1‖ = 0, the first inequality holds for all
the directional derivatives of ‖e1‖. Then, according to the
Comparison Lemma [14]

‖eq‖ ≤ (µ+ d)(eP (t−ti) − 1). (24)

Hence, the inter-execution times are uniformly lower
bounded by T , which satisfies

T ≥ 1

P
log

(
1 +

δ

(µ+ d)

)
. (25)

As P is finite, we conclude that the inter-execution times
have a lower bound, T , that is greater than zero.

This leads to the second main result of this paper, which
is presented below.

Theorem 2: Consider the system defined by (5). Suppose
that the following assumptions are satisfied
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(1) assumptions (A1), (A2), (A3) and (A5) hold.
(2) r is any constant such that 0 < r ≤ R.
(3) There exist constants s0 > 0 and δ > 0 such that (2d+
δ) ≤W (‖x̃‖), for all s0 ≤ ‖x̃‖ ≤ µ.
If r > s0, then for the event-triggered system (15)-(16),
the tracking error, x̃, is uniformly ultimately bounded by a
ball of radius r1 = α−11 (α2(r)), and the inter-update times
(ti+1− ti) for i ∈ {0, 1, 2, . . .} are uniformly bounded away
from zero.

Proof: The proof follows from Lemma 1 and Lemma
3.

Remark 1: In Theorem 1, the uniform ultimate bound of
the tracking error can be made arbitrarily small by choosing
an arbitrarily small value for r. Although Theorem 2 holds
for a wider class of reference trajectories, the ultimate bound
cannot be made arbitrarily small.

Remark 2: Equations (22) and (25) provide very conser-
vative lower bounds on the inter-execution times. It may
appear that smaller the r (and r1), the higher the average
triggering frequency. However, it is not necessarily true. In
fact, this is the advantage of event-triggered control over
time-triggered control. In time-triggered control the period of
control execution has to be uniformly less than a worst-case
bound such as (22), which depends on the desired ultimate
bound of the tracking error.

Remark 3: It is not necessary for L to be constant for all
t ≥ t0. At each ti we can choose L = Li, the Lipschitz
constant for γ on the compact set Bi = {ξ : ‖x̃‖ ≤
α−11 (V (x̃(ti))), ‖[xd, v]T ‖ ≤ d}. As V̇ < 0 for r ≤
‖x̃‖ ≤ µ, and α−11 is a monotonously increasing function, the
sequence of sets Bi and the sequence of Lipschitz constants
Li are decreasing as long as ‖x̃‖ ≥ r. Subsequently, a
constant value of L may be used. These constants Li may be
pre-computed, and by appropriately partitioning the x̃ space
only a finitely many of them are needed.

In the next section our theoretical results are illustrated
through simulations of a second order nonlinear system.

V. EXAMPLES AND SIMULATION RESULTS

The theoretical results developed in the previous sections
are illustrated through simulations of the following second
order nonlinear system.

ẋ1 = x2

ẋ2 =
1

l
(−g cos(x1) + u). (26)

In the simulations the parameters g and l were chosen as 10
and 0.2, respectively. The desired trajectory is a solution of
the system

ẋd,1 = xd,2

ẋd,2 = v (27)

where v is an exogenous input, which along with the initial
conditions determines the specific trajectory.

The evolution of the tracking error, x̃ = [x̃1, x̃2]T , can be
written as

˙̃x1 = x̃2

˙̃x2 =
1

l
(−g cos(x̃1 + xd,1) + u)− v. (28)

Let the control input be given as

u = γ(x̃, xd, v)

= l(v − λx̃2) + g cos(x̃1 + xd,1)−K(x̃2 + λx̃1). (29)

where K > 0 and λ > 0. Now consider the Lyapunov
function

V (x̃) =
l

2
(x̃2 + λx̃1)2 + λKx̃21. (30)

Then along the flow defined by (28) and (29)

V̇ = −Kx̃22 −Kλ2x̃21 ≤ −min(K,Kλ2)‖x̃‖2 (31)

As the candidate Lyapunov function is a radially unbounded
positive definite function, the origin of system (28) is glob-
ally asymptotically stable, that is the nonlinear system tracks
the desired trajectory asymptotically.

If instead, the control input is updated using event triggers,
then

V̇ (x̃) ≤ −min(K,Kλ2)‖x̃‖2 + L
√
λ2 + 1‖x̃‖‖ē‖ (32)

where x̃ and ē are defined as in Section II and
L =

√
(λK + g)2 + (K + λl)2 + g2 + l2. By comparison

with the results, we see that in this case α3(‖x̃‖) =
min(K,Kλ2)‖x̃‖2 and β(‖x̃‖) =

√
λ2 + 1‖x̃‖. Conse-

quently, given a desired ultimate bound for the trajectory
tracking error, we can design a r in the triggering condition.
In this system, L is a global Lipschitz constant. Therefore,
W (‖x̃‖) = ‖x̃‖/Q, where Q is a constant (σ was chosen
as 0.99). Next, we present simulation results for two cases
corresponding to the two classes of reference trajectories
considered in this paper.

Case I: The signals xd,1, xd,2, and v were chosen as
sinusoidal signals with amplitude 1/2. We selected K = 7,
λ = 1, and following the conditions in Theorem 1, we chose
r = 0.0164 in the triggering condition to achieve an ultimate
bound of r1 = 0.1 in the tracking error. The simulation
results are shown in Figure 1. Figure 1a shows the norm of
the tracking error, the radius r in the triggering condition,
and the desired ultimate bound r1. The figure demonstrates
that the tracking error is ultimately bounded, and well below
the desired bound. Figure 1b shows the scaled measurement
error, Q‖ē‖, in addition to the data in the first figure. We
recall that according to the triggering condition (16), the
control is not updated when ‖x̃‖ < r. Hence, as long as
‖x̃‖ ≥ r, the scaled measurement error, Q‖ē‖, is bounded
above by the norm of the tracking error, ‖x̃‖, and an event
is triggered (control is sampled) each time Q‖ē‖ ≥ ‖x̃‖.
However, when ‖x̃‖ < r, Q‖ē‖ may exceed ‖x̃‖.

The number of control executions in the simulated time
duration was 319, and the minimum inter-execution time
was observed to be 0.0043s. Therefore, the observed average
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Fig. 1: Case I

frequency of control updates is around 32Hz. Since most of
the updates occur before x̃ first enters the ball of radius r, it
is important to also consider the average frequency for this
time period, and in this simulation it was found to be around
51Hz.

Case II: In this case the input signal v is continuous
but not differentiable (v̇ was chosen as a piecewise constant
function), and xd,1, xd,2 were chosen as sinusoidal signals.
In this case K = 9 was chosen, and other parameters were
kept the same as in the earlier simulation. This, however,
changed the parameter r to 0.0145. Figures 2a and 2b show
the results. The number of control updates were observed to
be higher in this case at 1047, with the minimum execution
time at 9 × 10−4s. The observed average frequencies of
control updates were found to be around 105Hz and 221Hz
for the simulated time duration and the time duration that x̃
takes to first enter the ball of radius r, respectively.
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Fig. 2: Case II

VI. CONCLUSIONS

In this paper, we developed an event based control al-
gorithm for trajectory tracking in control affine nonlinear
systems. Using two main results, it was demonstrated that
given a nonlinear dynamical system, and a continuous-time
control that ensures uniform asymptotic tracking of the
desired trajectory, an event based controller can be designed
that not only guarantees uniform ultimate boundedness of the
tracking error, but also ensures that the inter-execution times
for the control algorithm are uniformly bounded away from
zero. The first result demonstrated that an arbitrary ultimate

bound for the tracking error can be designed, provided the
reference trajectory, the exogenous input to the reference
system, and its derivative are all uniformly bounded. How-
ever, the choice of an arbitrary ultimate bound is constrained
by the minimum guaranteed inter-execution time, which
decreases along with the ultimate bound. In the second result,
we relaxed the assumption on the second derivative of the
input to the reference system, and demonstrated that the
tracking error is uniformly ultimately bounded. In this case,
the analytical result demonstrated that it may not be feasible
to reduce the ultimate bound below a certain threshold.

The theoretical results were demonstrated through sim-
ulations of a second order nonlinear system. Numerical
simulations indicated that the ultimate bound of the tracking
error is much lower than the desired value. Therefore, this
is one area for improvement of the theoretical predictions.
Another area of future research is finding better estimates of
the lower bounds on the inter-execution times.

VII. ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their
helpful comments.

REFERENCES

[1] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, Sep 2007.

[2] M. Mazo and P. Tabuada, “On event-triggered and self-triggered
control over sensor/actuator networks,” in 47th IEEE Conference on
Decision and Control, Cancun, Mexico, Dec. 2008, pp. 435–440.

[3] X. Wang and M. Lemmon, “Decentralized event-triggered broadcasts
over networked control systems,” in Hybrid Systems: Computation and
control, ser. Lecture Notes in Computer Science, M. Egerstedt and
B. Mishra, Eds., vol. 4981. Springer Berlin / Heidelberg, 2008, pp.
674–677.

[4] ——, “Event triggering in distributed networked control systems,”
IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 586–601,
2011.

[5] K.-E. Årzén, “A simple event-based PID controller,” in Preprints 14th
World Congress of IFAC, Beijing, P.R. China, Jan 1999.
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