
Appl Intell (2012) 37:155–174

DOI 10.1007/s10489-011-0319-7

O R I G I NA L PA P E R

On evolutionary computing in multi-ship trajectory planning

Rafal Szlapczynski · Joanna Szlapczynska

Published online: 24 September 2011

© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The paper presents the updated version of Evo-

lutionary Sets of Safe Ship Trajectories: a method which

applies evolutionary algorithms and some of the assump-

tions of game theory to solving ship encounter situations.

For given positions and motion parameters of the ships,

the method finds a near optimal set of safe trajectories of

all ships involved in an encounter. The method works in

real time and the solutions must be returned within one

minute, which enforces speeding up the optimization pro-

cess. During the development of the method we have tested

extensively various formulas for fitness function, problem-

dedicated specialized operators as well as methods of selec-

tion. In the course of this research it turned out that some of

the classic evolutionary mechanisms had to be modified for

better performance, which included the order of some op-

erations. The results of the adaptation process are presented

here. The paper includes explicit description of all evolu-

tionary mechanisms used and accentuates the research on

improving the optimization process by adjusting evolution-

ary mechanisms to the problem.

Keywords Evolutionary algorithms · Ship collision

avoidance · Decision support systems

R. Szlapczynski (�)

Gdansk University of Technology, Narutowicza 11/12, Gdańsk,

Poland

e-mail: rafal@pg.gda.pl

J. Szlapczynska

Gdynia Maritime University, Morska 81-87, Gdynia, Poland

e-mail: asiasz@am.gdynia.pl

1 Introduction

There are a number of methods of solving multi-ship en-

counter situations: they can be divided into deterministic

and heuristic ones. Deterministic approach is based on dif-

ferential games and has been proposed by Lisowski [16]. Its

main limitation is high computational time for more com-

plex scenarios of encounters. Of the heuristic ones the most

successful and flexible is searching for a ship’s trajectory

by genetic or evolutionary algorithms. The method has been

first proposed by Smierzchalski and Michalewicz [20] and

since then similar approaches has been tried by other re-

searchers: evolutionary computation (EC) may be applied

for finding an optimal path [26, 31] and genetic algorithms

(GA) are used for optimization of collision avoidance ma-

neuvers [13, 28]. Other related approaches include trajec-

tory optimization using genetic annealing algorithm [2] and

ship collision avoidance route planning by ant colony al-

gorithm [27]. Apart from these, automatic collision avoid-

ance of ships using artificial potential field and speed vec-

tor [29] is also used, which is an adaptation of the Poten-

tial Field Method (PFM) widely used for navigating mobile

robots [19]. Summaries of applying GA and EC to maritime

collision avoidance and trajectory planning have been pre-

sented by Yang et al. [30] and Statheros et al. [21] among

others.

In short, EC and GA approach to the problem use algo-

rithms, which for a given set of pre-determined input tra-

jectories find a solution that is optimal according to a given

fitness function. However, their limitation is that they as-

sume that targets’ motion parameters do not change and if

they do change, the own trajectory (i.e., the trajectory of the

own ship) has to be recomputed. This limitation becomes a

serious one on restricted waters. If a target’s current course

collides with a landmass or another target of a higher pri-

ority, there is no reason to assume that the target would

mailto:rafal@pg.gda.pl
mailto:asiasz@am.gdynia.pl


156 R. Szlapczynski, J. Szlapczynska

keep such a disastrous course until the crash occurs. Con-

sequently, planning the own trajectory for the unchanged

course of a target will be futile in the majority of such cases.

Also, existing EC methods do not offer a full support to Ves-

sel Traffic Service (VTS) operators, who might face the task

of synchronizing trajectories of multiple ships while many

of those ships are maneuvering.

Therefore, we propose a new approach, where, instead

of finding the optimal own ship’s trajectory for the un-

changed courses and speeds of targets, a search is made

for an optimal set of safe trajectories of all ships involved

in an encounter. Our method is called Evolutionary Sets of

Safe Ship Trajectories (ESoSST) and its earlier version has

been presented in [25]. Here, it must be noted that optimiz-

ing a set of trajectories instead of a single trajectory dras-

tically magnifies the search space. At the same time, work-

ing in the constrained maritime environment while trying to

obey the COLREGS produces multiple constraints, which

make it more difficult to find any acceptable solution. All

these factors contribute to a non-typical optimization prob-

lem, often unsolvable by pure genetic algorithms in a given

time that is strictly limited because of operating while the

ships are approaching each other or the land. That is why

the first version of the ESoSST method [25] was aimed at

meeting all the critical requirements: it offered basic func-

tionality of solving the defined problem and simplified sup-

porting of international collision avoidance rules (aka COL-

REGS) [3, 5]. The returned results were usually sub-optimal

and therefore having accomplished the major goals we fo-

cused our research on improving all the phases of the evo-

lutionary process, which is addressed by this paper. First,

the fitness function has been changed: the optimization cri-

terion and existing penalties were modified and additional

COLREGS-violation penalties were introduced. Then, most

of the evolutionary mechanisms were extended or replaced

with more advanced ones to improve the ESoSST method

performance. New crossover operators have been designed,

various selection algorithms have been tried and some of

the previously used specialized operators have been slightly

changed as well. Here we present a description and a discus-

sion of the choices and modifications made in all the phases

of the evolutionary cycle, as well as results of the simula-

tion experiments that have been carried out to make these

decisions.

The rest of the paper is organized as follows. In the next

section the proposed approach to solving multi-ship encoun-

ters is compared with the own ship evolutionary approach.

In Sect. 3 the task—finding sets of safe trajectories—is pre-

sented as an optimization problem. Then the fitness is for-

mulated in Sect. 4. This is followed in Sect. 5 by a detailed

description of the subsequent phases of the evolutionary cy-

cle: initial population generation, reproduction, specialized

operators, mutation and selection. In the same section also

the modified evolutionary cycle is introduced. Section 6 in-

cludes visualization of an exemplary result returned by the

ESoSST. Simulation experiments and discussion of their re-

sults is presented in Sect. 7. Finally we summarize our algo-

rithm and conclude in Sect. 8.

2 Comparing two different evolutionary approaches

As stated in the introduction, our approach is to search for

an optimal set of trajectories instead of searching for an op-

timal trajectory of the own ship. This approach is typical

for collision avoidance methods based on games theory, but

has not been tried before for evolutionary computing applied

to marine navigation. Therefore, before we present the de-

tails of our ESoSST method, the practical difference of the

two evolutionary approaches will be shown in this section.

A question that is often asked when discussing a collision

avoidance system is: what would happen if all of the ships

involved in an encounter situation were using it? Below we

present a scenario of an encounter of two ships in a narrow

channel (the dotted areas surrounding the landmass form the

safety isobath). The ship parameters are provided by Ta-

ble 1.

The solution returned by the ESoSST method based on

our approach is presented in Fig. 1. Because the method

searches for an optimal set of trajectories, the results re-

turned by the onboard systems of both ships would be the

same for the same input data and settings or would differ

slightly in case of minor differences in the input data of

both ships. However, the tendency of their movement would

be the same: both ships would perform maneuvers to their

starboards (as recommended by COLREGS) and pass each

other safely.

In case of the standard evolutionary approach, a sys-

tem would assume that course of the other ship would not

change. As a result, each ship would see the situation in a

different way. Ship 1, assuming that Ship 2 keeps its course

would maneuver to starboard, as shown in Fig. 2. However

Ship 2, assuming that Ship 1 keeps its course, would keep

close to its port side (Fig. 3) of the channel so as to pass

Ship 1 starboard to starboard. Even though COLREGS gen-

erally recommend maneuvering to starboard in case of head

on and crossing encounters, Ship 2 would not do it because

it would see no threat of collision with Ship 1.

Table 1 Ship parameters for the presented scenario

Initial position Destination position Speed [knots]

Ship 1 16◦ 20′ 31′′ E 16◦ 32′ 17′′ E 10.00

56◦ 35′ 03′′ N 56◦ 50′ 09′′ N

Ship 2 16◦ 34′ 14′′ E 16◦ 16′ 36′′ E 10.00

56◦ 49′ 36′′ N 56◦ 34′ 31′′ N



On evolutionary computing in multi-ship trajectory planning 157

Fig. 1 The solution (a set of

two trajectories) returned by the

ESoSST method based on the

proposed approach

Fig. 2 A trajectory planned for

Ship 1 by the typical

evolutionary collision-avoidance

method

In result both ships would initially choose trajectories

shown in Fig. 4, which they would later have to change, af-

ter detecting the maneuvers of the other ship. As has been

illustrated in Fig. 4, the approach based on the optimization

of a single trajectory fails to deliver a reasonable solution for

some situations, even when the future maneuver of the other

ship is obvious.

3 Optimization problem and its implications

We assume that the following data is given:

– stationary constraints (such as landmasses and other ob-

stacles),

– positions, courses and speeds of all ships involved,



158 R. Szlapczynski, J. Szlapczynska

Fig. 3 A trajectory planned for

Ship 2 by the typical

evolutionary collision-avoidance

method

Fig. 4 Potentially dangerous

trajectories planned for the two

ships by their systems with a

single trajectory optimization

method applied

– ship domains (a domain is an area around a ship that

should be free from other ships, obstacles, etc.) and

– times necessary for accepting and executing the proposed

maneuvers.

Ship positions and ship motion parameters (courses and

speeds) are provided by ARPA (Automatic Radar Plotting

Aid) and AIS (Automatic Identification System) systems.

A ship domain can be determined based on the ship’s length,

its motion parameters and the type of water region. Since the

shape of a domain is dependent on the water region, we have

decided to use a ship domain model by Davis [6], which up-

dated Goodwin’s model [12], for open waters and to use a

ship domain model by Coldwell [4], which updated Fuji’s

model [11], for restricted waters. As for the last parameter—



On evolutionary computing in multi-ship trajectory planning 159

the necessary time, it is computed on the basis of naviga-

tional decision time and ship’s maneuvering abilities. It must

be noted that it is the navigational decision time (usually 3

to 6 minutes) that has the major impact on the total time

between recommending a trajectory by the system and exe-

cuting the first of the proposed maneuvers by the navigator.

Therefore a 6-minute value of the necessary time has been

assumed by default.

Knowing all the abovementioned parameters the goal is

to find a set of trajectories that minimize the average way

loss caused by maneuvering while fulfilling the following

conditions:

– none of the stationary constraints (i.e. landmasses and

safety isobaths) and ship domains are violated,

– course alteration should normally be between 15 and 60

degrees,

– speed alteration are not to be applied unless necessary

(that is, when collision cannot be avoided by course al-

teration up to 60 degrees),

– a ship only maneuvers when she is obliged to and maneu-

vers to starboard are favored over maneuvers to port,

– a succession of small alterations of course and/or speed

should be avoided (by default a new course has to be kept

for at least 3 minutes).

The conditions are mostly either imposed by COLREGS

[3, 5] and good marine practice or by the economics. In par-

ticular, course alterations are favored over speed changes

during collision avoidance maneuvers (COLREGS, Rule

8 c) and speed reduction should only be applied when nec-

essary (COLREGS, Rule 8 e).

Course changes smaller than 15 degrees might be mis-

leading for the ARPA systems (problems with detection)

and the course alterations larger than 60 degrees are inef-

ficient. Also, ships should only maneuver when necessary,

since each maneuver of a ship makes it harder to track its

motion parameters for the other ships’ ARPA systems. An

additional computational constraint is that because of the

optimization being done in real time (with the ships ap-

proaching each other and the obstacles), the solution should

be returned within a short time specified by the operator of

the system (by default, one minute is assumed). The follow-

ing subsections provide details on detecting the constraint

violations and its consequences.

3.1 Detecting static constraint violations (collisions with

landmasses and safety isobath)

The ESoSST method uses a vector map of a given area. We

have decided not to process a vector map for constraint vio-

lations detection, but to use it for generating a bitmap of an

area. Although it is a time-intensive operation, fortunately,

bitmaps can be generated offline and only once for each

area. Then, when the method is running in real time, each

bitmap cell which the trajectory of a ship traverses is read

and checked for belonging to a landmass or a safety isobath.

If a cell belongs to landmass or a safety isobath, a constraint

violation is registered in the trajectory data structure. The

information on constraint violation includes the percentage

of a particular trajectory’s segment, which crosses impass-

able cells. For a bitmap, whose detail level depends on the

given vector map, the computational time of this algorithm

would be proportional to the number of traversed cells. This

approach is also flexible in terms of bathymetry checks: for

a cell containing information on the water depth, it is easy to

check whether it is passable or not for a particular ship. The

computational time of detecting static constraint violations

for a given scenario is proportional to the number of ships.

3.2 Detecting ship domain violations

The algorithm for detecting ship-to-ship collisions is as fol-

lows. Each ship’s trajectory is checked against all other

ships. For each pair of ships the start time and end time of

each trajectory’s segments are computed. If two segments

of the two trajectories overlap in time they are checked for

geometrical crossing. In case of a crossing the special colli-

sion risk measure—approach factor value [22] is computed.

Then, if the approach factor value indicates collision, the

type of an encounter (head-on, crossing or overtaking) is de-

termined on the basis of the ships’ courses and it is decided

which ship is to give way (both ships in case of head-on).

The collision is only registered for the give way ship and the

information on the collision are stored in the trajectory data

structure. The computational time of detecting ship domain

violations for a given scenario is proportional to the number

of potential ship-to-ship collisions and thus grows squarely

with the number of ships.

3.3 Detecting COLREGS violations

The three most common types of COLREGS violations are

as follows:

– a ship does not give way when it should,

– a ship gives way when it should not (making unexpected

and misleading maneuvers),

– a ship maneuvers to port-board when it should maneuver

to starboard.

Each of these three situations may happen on either open

or restricted waters, which gives us a total of six cases

to handle. The difficulty with deciding whether a ship has

acted lawfully or not, lies in the nature of evolutionary algo-

rithms as well as in the nature of the problem itself: COL-

REGS specify only the procedures for ship-to-ship encoun-

ters. When looking at a set of ship trajectories for a multi-

target encounter, it is sometimes impossible to tell, what the



160 R. Szlapczynski, J. Szlapczynska

reason for a particular maneuver was: which ship was given

way intentionally and which one benefited from it only as a

side effect. Therefore the final COLREGS violations detec-

tion rules applied in the method are:

1. On open waters:

a. if a ship is not obliged to give way to any other ship

any maneuver it performs is registered as COLREGS

violation,

b. if a ship is obliged to give way and does not perform

a maneuver it is registered as COLREGS violation,

c. all maneuvers to port board are registered as COL-

REGS violations.

2. On restricted waters: here, as explained before, every

trajectory node which is a part of a maneuver contains

information on the reason why this particular node has

been inserted or shifted: land or other stationary obstacle

avoidance, target avoidance or accidental maneuver gen-

erated by evolutionary mechanisms. Based on this COL-

REGS violations are registered as follows:

a. if a ship does not initially have to give way to any tar-

get and its first maneuver has reason other than static

constraint violation avoidance it is registered as COL-

REGS violation,

b. any maneuver to port board of reason other than static

constraint violation avoidance is registered as COL-

REGS violation.

The computational time of detecting COLREGS violations

for a given scenario is proportional to the number of ships.

3.4 High cost of evaluation and other consequences

Due to the facts presented in the sub-sections above the eval-

uation (which includes constraint violations detection) is the

most time consuming phase of the evolutionary algorithm

with the computational times of other stages being insignif-

icant in comparison. Combined with the fact that the evolu-

tionary process is executed in real time it seriously limits the

number of generations we can afford. For the most complex

scenarios including several ships of various dynamics, com-

plex ship domain models and restricted waters with multiple

obstacles only up to 200 generations can be processed for a

population of 100 members, even if more generations could

bring further rise in fitness function values. Thus, the ob-

vious conclusion is that it is necessary to achieve as much

progress as possible in each generation, which can be done

by investing more computational time in other stages of the

evolutionary process to make them more effective. Addition-

ally, it means that balancing between two desirable goals:

search intensity and search diversity [15] is especially diffi-

cult in our case.

The other practical implications of the problem are as fol-

lows. The constraints are hard to be met and vast majority

of the individuals in early generations will be unacceptable,

with the valid and safe sets of trajectories few and far be-

tween. What more, in many cases the offspring of nearly

perfect parents will be unacceptable too. Also, even mi-

nor mutations can often bring disastrous effects completely

spoiling previously high-valued individuals. All this, com-

bined with strict time limits (by default—one minute) leads

to the need for optimizing the evolutionary process. In the

two following sections first the fitness function is formulated

(Sect. 4), then the elements of the evolutionary cycle are de-

scribed with focus on the evolutionary process optimization

(Sect. 5).

4 Formulating fitness function

In EC all individuals (sets of trajectories) are evaluated by

the specially designed fitness function, which should reflect

optimization criteria and constraints [17]. In this section it

is shown how this normalized fitness function is formulated.

First the basic economy criterion is presented, then penalties

for constraint violations. Penalizing constraint violations is

a commonly used technique, but usually penalties are addi-

tive elements, either static or dynamic. In our case they are

factors: this makes it easier to normalize the fitness func-

tion. It also means that the pressure on infeasible solutions

automatically grows with the general growth of the fitness

function values. This tendency is similar to dynamic or an-

nealing penalties [18], where pressure on infeasible solu-

tions is increased towards the end of the process (for later

generations). It also must be noted that keeping the high res-

olution of penalties is crucial here. In [18] it is stated that

“usually the penalty function is based on the distance of a

solution from a feasible region or on the effort to repair the

solution” and it is reasonable to apply this approach here.

If the initial population consists of unacceptable individu-

als, we have to differ between them: assign higher fitness

function values to those which are “promising” (and may be

subjects to evolution) and lower to those that should sim-

ply be eliminated. For example, a trajectory crossing a land-

mass on 1% of its length shows promise (this crossing can

possibly be eliminated by a specialized operator), but the

one which crosses landmass on 50% of its length is prob-

ably useless and should be penalized much more severely.

Also the collisions with ships are penalized less severely

than those with land because they are less “certain”. A col-

lision with landmass is always valid, while collisions with

other ships may be eliminated as a side effect of the future

changes of those other ships’ trajectories or future changes

of the own trajectory due to avoiding collision with land-

mass.



On evolutionary computing in multi-ship trajectory planning 161

4.1 Basic criterion—minimizing way loss

The basic criterion is the economic one—minimizing way

losses of trajectories in a set. For each of the trajectories a

trajectory economy factor tef i is computed according to the

formula (1).

tef i =

(

li − �lwi

li

)

, (1)

where i: the index of the current ship, li : the total length of

the i-th ship’s trajectory [nautical miles], �lwi : the total way

loss of the i-th ship’s trajectory [nautical miles] computed as

a difference between the trajectory length (li) and length of

a segment joining trajectory’s start point and endpoint.

As can be seen, the trajectory economy factor tef is al-

ways a number from a (0,1] range.

4.2 Penalizing static constraint violation

After the trajectory economy factor has been computed, the

static constraints are handled by introducing penalties for vi-

olating them. For each trajectory its static constraint factor

scf i is computed. The static constraints are always valid and

their violations must be avoided at all cost, therefore penal-

ties applied here are the most severe—hence the square in

the formula (2).

scf i =

(

li − lci

li

)2

, (2)

where lci: the total length of the parts of the i-th ship’s tra-

jectory, which violate stationary constraints [nautical miles].

The static constraint factor is a number from a [0,1]

range, where “1” value means no static constraint violation

(no landmasses or other obstacles are crossed) and “0” value

is for trajectories crossing landmasses on their whole length.

4.3 Penalizing collisions with other ships

Analogically to the static constraint factor, collision avoid-

ance factor caf i is computed to reflect the ship’s collisions

with all other privileged ships as shown by (3).

caf i =

n
∏

j=1,j �=i

(min(fmini,j ,1)), (3)

where n: the number of ships, j : the index of a target ship,

fmini,j : the approach factor value [22] for an encounter of

ships i and j , if i-th ship is the privileged one, the potential

collision is ignored and the approach factor value is equal to

“1” by definition.

The collision avoidance factor is a number from a [0,1]

range, where “1” value means no ship domain violation and

“0” means a crash with at least one of the targets.

4.4 Penalizing COLREGS violations

The COLREGS violations are secondary to static constraint

violations and to collisions with other ships and therefore

we have decided to penalize it moderately, to make sure that

constraints from the previous two points are met first. COL-

REGS compliance factor ccf i is computed according to the

following formula (4).

ccf i = 1 −

m
∑

k=1

[pk], (4)

where m: the number of COLREGS violations registered for

the current ship as described in Sect. 3.3, k: the index of a

registered violation, pk : penalty for the k-th of the registered

COLREGS violation.

The penalty values for all registered COLREGS viola-

tions are configurable in the method and are set to 0.05 by

default.

4.5 Fitness function value

Once all aforementioned factors have been computed, the

fitness function value is calculated. We wanted the fitness

function to be normalized, for convenience of further evolu-

tionary operations, mostly for selection. When fitness func-

tion values are normalized, we do not need any additional

operations on them and they can directly be used for ran-

dom proportional and modified random proportional selec-

tion in the reproduction and succession phases of the evo-

lutionary algorithm. We can also easily measure and see

progress we make with each generation. However, normal-

ized fitness function is harder to obtain, because we have to

make sure that we keep the high resolution of evaluating the

individuals, namely that we differ between various levels of

penalties: stationary constraints, being more important than

collision avoidance and collision avoidance being more im-

portant than COLREGS compliance.

Here, we succeeded in formulating a normalized fitness

function, while keeping relatively high resolution of eval-

uation: minor stationary constraint violations are penalized

similarly as major collisions with other ships and minor col-

lisions with other ships are penalized similarly as multiple

COLREGS violations. The final fitness function is as fol-

lows:

fitness =

n
∑

i=1

fitnesstr i

n
, (5)

where:

fitnesstr i = tef i · scf i · caf i · ccf i . (6)

It must be noted here, that while fitness function values are

normalized, a single trajectory fitness function (fitnesstr i)



162 R. Szlapczynski, J. Szlapczynska

value may be equal to 1.0 only for a stand-on ship in lack

of obstacles on his way. The global fitness function value

(fitness) of 1.0 is only possible when none of the ships ma-

neuvers, that is when there are no encounters (situations,

which are of no interest). The minimal assumed course al-

teration maneuver is 15 degrees, the minimal time for ac-

cepting and executing a maneuver—6 minutes. Thus, for a

ship which was supposed to cover a distance of 12 nautical

miles with a speed of 12 knots, but performed one minimal

course alteration maneuver and kept the changed course for

3 minutes, the trajectory’s fitness function value would be

approximately 0.99. For more complex scenarios the max-

imum possible value of fitness function computed over all

trajectories would be even smaller. Therefore, while the pre-

cise value cannot be determined analytically, it is reason-

able to assume that for a randomly generated multi-ship

encounter situation the maximum possible value of fitness

function would be below 0.98, which can be considered a

better practical reference value than 1.0.

5 Evolutionary algorithm

This section describes subsequent phases of the evolution-

ary cycle: generation of the initial population, reproduction,

specialized operators, mutation and selection. It also intro-

duces the modified evolutionary cycle. Some of the changes

and choices that we have made were our inventions, dictated

by the specifics of the problem, while others were based on

reported strategies and techniques [18]. The former are col-

lision avoidance operators, which are dedicated to particular

encounter situations and are using the data on the collision

type, degree and its time and place. The latter include non-

uniform mutation and arithmetical crossover of nodes, ad-

justed to our problem. In general, as opposed to typical EC

or GA, we use a hybrid approach of EC and operators which

are either semi-deterministic or strongly based on problem-

specific data [14]. In our case a solution is a set of trajec-

tories, which are evaluated separately (though not indepen-

dently) and we can benefit from this fact. For example, we

use trajectory fitness values instead of generation number

(a typical GA parameter) in case of mutation: we introduce

a trajectory mutation probability—a probability of mutat-

ing a part of a solution—which depends on trajectory fitness

value. The details on the particular evolutionary operations

are given in the following subsections.

5.1 Generating the initial population: randomly generated

trajectories or strong pre-processing?

The main question, regarding this phase of the evolutionary

algorithm is as follows: is it better to invest computational

time in strong pre-processing to gain strong initial popula-

tion or rather opt for randomly generated initial population

to save on computational time?

As has been said in the introduction, each individual

(a population member) is a set of trajectories, each trajectory

corresponding to one of the ships involved in an encounter.

A trajectory is a sequence of nodes, each node containing

the following data:

– geographical coordinates x and y,

– the speed between the current and the next node.

Typically, the initial population is generated randomly or by

some very generic methods. We tried strong pre-processing

approach first however, where the initial population con-

tained three types of individuals:

– a set of original ship trajectories—segments joining the

start and destination points,

– sets of safe trajectories determined by other methods,

– randomly modified versions of the first two types—sets

of trajectories with additional nodes, or with some nodes

moved from their original geographical positions.

The first type of individuals resulted in an immediate solu-

tion in case of no collisions, or in faster convergence in case

of minor constraint violations. The second type provided

sets of safe (though usually not optimal) trajectories. De-

pending on the type of water region, they were mostly gen-

erated by the method of planning a trajectory on raster grids

[23], which enabled avoiding collisions with other ships as

well as with stationary obstacles (for restricted waters) and

by the method of planning a sequence of necessary maneu-

vers on open waters [24]. Both methods returned more use-

ful results then plain randomly-generated trajectories, at the

cost of consuming more computational time. In particular,

the computational complexity of methods working on raster

grids is always at least O(N), where N is the number of

points in a grid [1]. The third type of individuals (randomly

modified individuals of the previous two types) was used to

generate the majority of a diverse initial population and thus

to ensure a vast searching space.

However, with the development of specialized collision-

avoidance operators, it turned out that randomly generated

initial population can bring equally good final results. Also,

in some cases (restricted waters with multiple stationary

constraints combined with multi-ship encounters) it is either

impossible or too time-costly to find safe sets of trajectories

deterministically, prior to the evolution. Therefore, we have

completely abandoned previously used deterministic meth-

ods of generating the initial population in favor of spending

this amount of computational time on additional generations

of evolution and more refined problem-dedicated operators.



On evolutionary computing in multi-ship trajectory planning 163

5.2 Reproduction: crossover of whole individuals,

crossover of single trajectories and crossover of nodes

In the crossover phase pairs of individuals (parents) are

crossed to generate new individuals (offspring). Three types

of crossover operators have been designed and imple-

mented:

(a) An offspring inherits whole trajectories from both par-

ents and the higher-valued of the two possible trajecto-

ries is chosen.

(b) An offspring inherits whole trajectories from both par-

ents and the choice of a particular trajectory (from the

first or the second parent) is done randomly.

(c) Each of the trajectories of the offspring is a crossover of

the appropriate trajectories of the parents.

(d) Each node of a trajectory is an arithmetical crossover of

the nodes in the parents’ trajectories.

The above listed crossover operators are shown in Fig. 5.

Of these operators, the first one (a)—inheriting the higher

valued of the two possible trajectories—was designed to

combine the best features of two parent individuals. Thus,

it is the only operator which should statistically produce the

offspring higher valued than the parents. Unfortunately, us-

ing this operator has to be preceded by the evaluation phase,

which enforces applying the evolutionary scheme with dou-

bled evaluation phase. Therefore, during experiments, de-

scribed later in the paper, it will be tested whether its ad-

vantages compensate for the additional computational time,

which results in a lesser number of possible generations.

As for the other operators, there is no guarantee or even

high probability that offspring of two highly valued parents

will be highly valued itself. For example, in case of random

trajectory inheriting (b), the resulting trajectories may not fit

to other trajectories (collisions between ships). Therefore, to

make sure, that the best individuals will not be lost (the par-

ents might be better fitted than their offspring), the overlap-

ping populations are used. As a result, reproduction doubles

the temporary population size.

5.3 Specialized operators

We have decided to differ between typical random mutation

(the next subsection) and problem-dedicated specialized op-

erators, described in this section. Specialized operators, re-

sponsible for more conscious improving of trajectories (as

opposed to random mutation) can result in a faster conver-

gence to a solution. Instead of mixed mutation approach, fa-

vored by some researchers [9], we made the choice of a par-

ticular specialized operator dependant on the current state

instead of previous states.

The evolutionary operators, which have been used here,

can be divided into three groups, with group 1 only applied

for restricted waters. On restricted waters, the order of ap-

plying collision avoidance operators for collisions with land-

masses and other ships is such that operators handling vio-

lations of stationary constraints precede operators handling

violations of other ships’ domains. The reason for this or-

der is as follows: a violation of stationary constraint must

always be handled, since it is disastrous regardless of other

ships’ behavior. However, violation of other ships’ domains

may be no longer valid after violations of stationary con-

straints have been handled, because the operators respon-

sible for avoiding violations of stationary constraints may

have changed the trajectories in such a way that previously

detected ship-to-ship collisions would not occur.

The following operators have been used:

(1) Operators avoiding collisions with stationary obstacles

(restricted waters only). If a segment of a trajectory

crosses a landmass or other stationary obstacle the

amount of time remaining to collision and time remain-

ing to reaching the next node is checked. A succession

of small alterations of course should be avoided (COL-

REGS, Rule 8 b). We also assume that a new course

should be kept for at least 3 minutes to be “readily ap-

parent” to other ships’ ARPA systems and navigators.

Therefore, a new node or a segment can only be inserted

in such a way that 3 minute intervals between course

changes are kept. Thus one of the five operators is cho-

sen based on the following rules:

(a) Segment insertion—if only there is enough time for

three course alterations, a new segment is inserted.

(b) Node insertion—if there is not enough time for a

whole new segment (additional three course alter-

ations), a single node is inserted.

(c) First node shift—if there is not enough time for a

node insertion (additional two course alterations)

and the collision point is much closer to the first

node of a segment, the first node is moved away

from the collision point.

(d) Second node shift—if there is not enough time for

a node insertion (additional two course alterations)

and the collision point is much closer to the second

node of a segment, the second node is moved away

from the collision point.

(e) Segment shift—if there is not enough time for a

node insertion (additional two course alterations)

and the collision point is close to the middle of a

segment, the whole segment is moved away from

the collision point.

The operators are shown in Fig. 6. The direction of

a maneuver is here chosen deterministically (away from

the collision point) and its size is chosen randomly from

a range computed on the basis of the length of the part

of the segment, which violates a constraint.



164 R. Szlapczynski, J. Szlapczynska

Fig. 5 Reproduction: inheriting

whole trajectories (a) and (b),

crossover of trajectories (c) and

crossover of nodes (d)

Fig. 6 Specialized operators:

avoiding collisions with

stationary obstacles

(2) Operators avoiding collisions with prioritized ships.

Five types of these operators have been used, all operat-

ing on single trajectories and similar to those avoiding

collisions with static obstacles. If a collision with a pri-

oritized ship has been registered, one of five possible

operators is selected depending on the values of a time

remaining to a collision and a time remaining to reach-

ing the next node, similarly as for group 1.

These operators are shown in Fig. 7.

(3) Validations and fixing. This group includes three opera-

tors, shown in Fig. 8.

(a) Node reduction—its purpose is to eliminate all the

unnecessary nodes. If a segment, which bypasses a

given node by joining its neighbors, is safe, the node

is deleted. This procedure is repeated iteratively un-

til there are no unnecessary nodes in a trajectory.

(b) Smoothing—if a course alteration is larger than

30 degrees, a node is replaced with a segment to

smoothen the trajectory.

(c) Adjusting maneuvers—each trajectory of an indi-

vidual is analyzed and in case of unacceptable ma-

neuvers (such as slight course alterations), the nodes



On evolutionary computing in multi-ship trajectory planning 165

Fig. 7 Specialized operators:

avoiding collisions with targets

Fig. 8 Validations and fixing

operators: node reduction (a),

trajectory smoothing (b) and

trajectory adjusting (c)

Fig. 9 Random mutation

operators

being responsible are moved so as to round a ma-

neuver up or down to an acceptable value.

In general, none of the operations described above guar-

antees success (avoiding the collision with a given target,

avoiding a collision with an obstacle etc.), but they all are

likely to do so and therefore are highly effective statistically,

which is enough for evolutionary purposes.

We have decided, that all the above listed operators would

be used whenever needed (fixing probability parameter set

to 1), as opposed to mutation. There is no risk of spoiling,

and thus losing, a high valued individual, because overlap-

ping populations are used and the specialized operators work

on individuals’ copies, increasing the temporary population

size.

5.4 Mutation

The mutation operations are applied to an individual’s copy.

Four types of these random operators have been used, all

operating on single trajectories. These operators are:

(a) node insertion: a node is inserted randomly into the tra-

jectory,

(b) node joining: two neighboring nodes are joined, the

new node being the middle point of the segment join-

ing them,

(c) node shift: a randomly selected node is moved (its polar

coordinates are altered),

(d) node deletion: a randomly selected node is deleted.

They are shown in Fig. 9.

Since not all of the nodes can be subject to modifications,

instead of traditional mutation probability typical for genetic

algorithms [7, 32] we introduce the term of trajectory muta-

tion probability. By trajectory mutation probability we mean

the conditional probability of using any of the mutation op-

erators on a trajectory, provided that no specialized operator

has been used for this trajectory before in this generation.

A trajectory mutation probability mtr decreases with the in-

crease of the trajectory fitness value fitnesstr i (6), so as to

mutate the worst trajectories of each individual first, with-

out spoiling its best trajectories. It is computed according to

the formula below:

mtr = mb · (1 − fitnesstr i), (7)

where mb: basic mutation probability, a configuration pa-

rameter, usually set to a value from range [0.05,0.2], thus



166 R. Szlapczynski, J. Szlapczynska

Fig. 10 Evolutionary

algorithms—traditional scheme

Fig. 11 Modified evolutionary

algorithm—early version

Fig. 12 Modified evolutionary

algorithm—final version

larger than typically in genetic algorithms, where mutation

is usually secondary to crossover [8].

In the early generations of the evolution all random op-

erators: the node insertion, deletion, joining and shift are

equally probable. In the later generations node shift domi-

nates with its course alteration changes and distance changes

decreasing with the number of generations. For node inser-

tion and node shift instead of Cartesian coordinates x and y,

the polar coordinates (course alteration and distance) are

mutated in such a way that the new maneuvers are between

15 and 60 degrees. As a result, fruitless mutations (the ones

leaving to invalid trajectories) are avoided for these two op-

erators.



On evolutionary computing in multi-ship trajectory planning 167

5.5 Selection: two different methods

The next phase of our interest is selection. We have decided

to use various selection methods [10] for reproduction and

succession for the following reasons:

1. In case of crossover: a low-valued individual may have

one of its trajectories of a high value and therefore may

be a much better parent than it is an individual. In early

phase of evolution such individual might also be a bet-

ter parent than one with all trajectories acceptable, but

not any of them outstanding. An individual excelling in

one aspect (one perfect trajectory) may be a better par-

ent than another, having balanced trajectory values. Also,

crossover is done directly after succession, when the ma-

jority of the weakest individuals (products of previous

crossover) have been eliminated anyway, as opposed to

succession when much larger population is a subject to

selection and some of the individuals may have low fit-

ness.

2. In case of succession: it is absolutely necessary to rely

on fitness function value to progress, therefore, higher

valued individuals must be favored.

5.6 A new scheme of the evolutionary process

The traditional evolutionary cycle is presented in Fig. 10.

Unfortunately, it is not possible to incorporate specialized

operators described in Sect. 5.3 directly into this cycle.

These operators use the information returned by evaluation

(fitness function values as well as the data on detected colli-

sions of ships with other ships or with landmass) to improve

the trajectories (eliminate some of the constraint violations,

etc.). By doing this they raise the rate of progress per gen-

eration, which allows for a much lesser number of gener-

ations to obtain the same results. But using the evaluation

data means that evaluation has to be performed prior to the

specialized operations work and therefore the evolutionary

algorithm has to be modified as shown in Fig. 11.

However, since the evaluation requires collision detec-

tion, it is the most time consuming phase of the cycle. In

the modified evolutionary algorithm shown above it would

be performed twice: once for a doubled population (after

reproduction) and again after mutation, for population four

times the size of the original one. Therefore, doubling the

evaluation phase in a cycle increases the total computational

time approximately 1.5 times (the extra evaluation after re-

production is done for a population half the size of the

one after mutation). To shorten the process, we have de-

cided to apply a radical change in the order of operations

within the algorithm. The reproduction phase and special-

ized operations/mutation phase have changed places with

each other and the evaluation is done only once for each

cycle—directly preceding succession. The result is shown

in Fig. 12. By applying this we have managed to combine

the potentially higher rate of fitness function progress per

generation with an unaffected computational time for each

generation.

6 Visualisation of an exemplary result

Below we present an exemplary ESoSST method’s result for

a scenario of an encounter of 6 ships on restricted waters.

The result (set of six trajectories) was obtained for a single

evolutionary run (with parameters presented in Table 2). It

illustrates how the solution avoids all of the penalties de-

scribed in Sect. 4, while minimizing the way loss. Ship po-

sitions for the selected moments between the start and finish

time of the ship movement (0%, 20%, 40%, 60%, 80% and

100%) are presented in Figs. 13–18 respectively.

To shorten analysis of the scenario presented in Figs. 13–

18 (with ship positions given in Table 3) let us group the

ships as follows:

– ship 3, ship 4 & ship 5, forming group 1, heading west-

bound,

– ship 2 and ship 6, forming group 2, heading eastbound,

– ship 1 heading southbound.

All ships from group 1 must avoid collision with an obsta-

cle and do that by maneuvering to port which additionally

results in their crossing astern of the ships from group 2.

Of these ships, ship 5 performs the largest course alteration,

to pass safely ahead of ship 4, which is on its starboard.

Ships from group 2, which would normally give way to ships

from group 1, benefit from the maneuvers of the ships from

group 1. The only course changes of the ships from group 2

are due to landmass avoiding after passing ahead of the ships

from group 1. Ship 1 has to avoid collision with the obstacle

and with ships from group 2. The shortest way to do that is

to alter its course to port, which results in crossing safely

ahead of ships from group 2. The solution avoids all of the

penalties described in Sect. 3. No ship domain or static con-

straint has been violated and the COLREGS violation penal-

ties have not been applied either because the maneuvers to

port have been done or to avoid collisions with landmass.

Choosing the maneuvers to starboard by ship 1 or ships from

group 1 would result in a much larger way loss and thus

smaller fitness function value.

7 Simulation experiments and discussion of their

results

For all simulation experiments presented in this section, a set

of 100 test scenarios were used. 50 of the scenarios were

encounter situations on open waters and the other 50—on



168 R. Szlapczynski, J. Szlapczynska

restricted waters. The number of ships ranges from 2 to 6.

For each number of ships 10 scenarios have been generated

covering all basic encounter types (head-on, overtaking and

crossing with various combinations of courses). We have

used a random generator, whose parameters included:

– water region type (open or restricted),

– the longitude/latitude frame,

– number of ships,

– encounter type,

– the option of generating a group of ships.

The generator works as follows. Motion parameters of the

first ship are always generated randomly for the given frame

(repeated, if start point or destination point are not on wa-

ter). The initial positions of the subsequent ships are also

generated randomly, but other parameters are computed au-

tomatically so as to make sure that ships will crash if none

of them maneuvers. As for the encounter type parameter, it

specifies the relation between the first two of the generated

ships and limits the possible range of courses for the sec-

ond ship. The option of generating a group of ships is used

for larger total numbers of ships (5 or 6) to generate 2 or 3

ships of the same courses and close initial positions. For a

ship, whose course collides with such a group of ships, it is

harder to maneuver because usually such an encounter can-

not be decomposed to a series of ship-to-ship encounters.

A single, larger course change has to be applied then, which

transfers to a larger way loss. In case of 5 or 6 ships, 2 out

of 10 scenarios have included groups of ships.

Table 2 Parameters of the ESoSST utilized or obtaining the exem-

plary result

Generations 100

Population size 100

Basic mutation probability 0.05

Probability of applying a specialized operator in case

of collision

1.00

Table 3 Restricted water complex scenario—ship positions & resulting fitness values

Origin position Destination position V [kn] Resulting trajectory Resulting average

fitness value fitness value

Ship 1 21◦ 29′ 58′′ E 21◦ 39′ 13′′ E 13.18 0.9137

59◦ 58′ 05′′ N 59◦ 44′ 44′′ N

Ship 2 21◦ 25′ 45′′ E 21◦ 43′ 24′′ E 14.54 0.9909

59◦ 45′ 05′′ N 59◦ 57′ 44′′ N

Ship 3 21◦ 51′ 33′′ E 21◦ 17′ 38′′ E 17.67 0.9139

59◦ 54′ 51′′ N 59◦ 47′ 58′′ N 0.9565

Ship 4 21◦ 45′ 43′′ E 21◦ 23′ 26′′ E 12.43 0.9004

59◦ 48′ 07′′ N 59◦ 54′ 42′′ N

Ship 5 21◦ 42′ 05′′ E 21◦ 27′ 15′′ E 14.61 0.9374

59◦ 44′ 35′′ N 59◦ 58′ 17′′ N

Ship 6 21◦ 19′ 24′′ E 21◦ 44′ 04′′ E 13.32 0.9893

59◦ 47′ 39′′ N 59◦ 53′ 56′′ N

Fig. 13 Restricted water

scenario—dotted areas depict

shallow waters (initial positions)



On evolutionary computing in multi-ship trajectory planning 169

Fig. 14 Restricted water

scenario—dotted areas depict

shallow waters (positions after

20% of the animation time)

Fig. 15 Restricted water

scenario—dotted areas depict

shallow waters (positions after

40% of the animation time)

Fig. 16 Restricted water

scenario—dotted areas depict

shallow waters (positions after

60% of the animation time)

7.1 Comparing the performance of post-selection

(succession) algorithms

The purpose of this test was choosing the best of the post-

selection algorithms taken into account. The following types

of selections have been tested here:

(a) Truncation: the highest valued individuals are selected.

(b) Random proportional with threshold: probability of be-

ing selected is proportional to fitness function value, but

only the upper percentage of individuals can be selected

(the lowest valued are eliminated).

(c) Modified random proportional with threshold: similar to

random proportional with threshold but probability of

being selected is proportional to scaled fitness function

value (8) for increasing selective pressure.

scaled_fitnessi = fitnessi − min
k=1..j

(fitnesstr k), (8)

where j : number of all individuals.



170 R. Szlapczynski, J. Szlapczynska

Fig. 17 Restricted water

scenario—dotted areas depict

shallow waters (positions after

80% of the animation time)

Fig. 18 Restricted water

scenario—dotted areas depict

shallow waters (destinations

reached—100% of the

animation time)

Additionally, various values of elite size—the number of

highest-valued individuals which are automatically selected

for succession—have been tested in case of random propor-

tional and modified random proportional selection. The elite

individuals can either be removed from the population af-

ter selecting them for the next generation or can be addi-

tionally included for proportional or modified proportional

method (returned to the pool) to have a chance of being se-

lected again. As for the threshold, its sizes of 50% and 100%

have been tested. In case of threshold equal to 50%, only the

higher valued half of the population is included for further

proportional or modified proportional selection. In case of

100% all of the individuals take part (have a chance of being

selected). The test parameters and the test results have been

gathered in Tables 4–10.

For 100 generations (Tables 5–7) basic truncation selec-

tion turned out to be more effective than most variants of

random proportional and modified random proportional se-

lections. The reason is probably the superiority of fast con-

vergence over diverse population for such a small number

of generations. Very few variants of random selections ob-

tained better results than truncation selection and all of them

featured large elite sizes, which practically meant an ap-

proach very similar to truncation selection, with only a nar-

Table 4 Test parameters for simulation experiments

Test scenarios 100

Runs for each combination of scenario and selection

method

10

Generations 100/200

Population size 100

Basic mutation probability 0.05

Probability of applying a specialised operator in case

of collision

1.00

Table 5 Average fitness function value (truncation succession) for 100

generations

Average fitness function value 0.9725

row margin left for real random selection. The best results

were returned by random proportional selection with an elite

consisting of 80 individuals and the remaining 20 individu-

als chosen randomly from whole population.

For 200 generations (Tables 8–10) basic truncation selec-

tion was also competitive and the best results were reached

by selections, whose elite sizes exceeded half of their pop-



On evolutionary computing in multi-ship trajectory planning 171

Table 6 Average fitness function values (random proportional succes-

sion) for 100 generations

Elite size Threshold

50% (only better half

allowed)

100% (all allowed)

Elite returned Elite returned

Yes No Yes No

0 0.9386 0.8298

5 0.9656 0.9652 0.9618 0.9625

10 0.9659 0.9685 0.9645 0.9667

20 0.9664 0.9700 0.9673 0.9699

40 0.9682 0.9717 0.9697 0.9703

60 0.9680 0.9722 0.9727 0.9728

80 0.9719 0.9730 0.9731 0.9730

Table 7 Average fitness function values (modified random propor-

tional succession) for 100 generations

Elite size Threshold

50% (only better half

allowed)

100% (all allowed)

Elite returned Elite returned

Yes No Yes No

0 0.9436 0.8931

5 0.9638 0.9665 0.9619 0.9632

10 0.9648 0.9678 0.9640 0.9665

20 0.9670 0.9698 0.9660 0.9676

40 0.9681 0.9710 0.9682 0.9688

60 0.9707 0.9725 0.9695 0.9699

80 0.9721 0.9728 0.9709 0.9713

Table 8 Average fitness function value (truncation succession) for 200

generations

Average fitness function value 0.9741

ulations. The highest fitness function value was again ob-

tained for random proportional selection with elite of 80 in-

dividuals and the remaining 20 individuals chosen randomly

from the whole population. This time however, the results

indicate that with the growing number of generations the

elite should not be returned to the population for random

selection of the remaining part of the next generation.

Generally, this comparative simulation has shown that for

this particular optimization problem, where operating in real

time drastically limits the number of possible generations to

about 100–200, the simplest truncation selection is highly

competitive. It is also more flexible, since it does not need

adjusting the values of parameters depending on the situa-

tion.

Table 9 Average fitness function values (random proportional succes-

sion) for 200 generations

Elite size Threshold

50% (only better half

allowed)

100% (all allowed)

Elite returned Elite returned

Yes No Yes No

0 0.9476 0.8290

5 0.9677 0.9699 0.9673 0.9560

10 0.9696 0.9710 0.9701 0.9710

20 0.9706 0.9722 0.9710 0.9719

40 0.9718 0.9739 0.9716 0.9731

60 0.9725 0.9740 0.9727 0.9747

80 0.9730 0.9741 0.9737 0.9748

Table 10 Average fitness function values (modified random propor-

tional succession) for 200 generations

Elite size Threshold

50% (only better half

allowed)

100% (all allowed)

Elite returned Elite returned

Yes No Yes No

0 0.9559 0.9201

5 0.9702 0.9700 0.9652 0.9649

10 0.9706 0.9714 0.9671 0.9672

20 0.9717 0.9722 0.9700 0.9705

40 0.9722 0.9736 0.9709 0.9729

60 0.9727 0.9739 0.9719 0.9740

80 0.9730 0.9741 0.9725 0.9741

7.2 Comparing the performance of pre-selection (mating)

algorithms

The purpose of this test was choosing the best of the pre-

selection algorithms taken into account. The following types

of selections have been tested:

(a) Threshold,

(b) Random proportional,

(c) Modified random proportional,

(d) Uniform—all individuals have the same chance of being

selected as parents.

Similarly as in post-selection, various values of the elite size

have been tested in case of uniform, random proportional

and modified random proportional selections. The differ-

ences between results for various methods were insignificant

and therefore it has been decided to apply uniform selection

for pre-selection, because it enabled us to eliminate the ad-

ditional evaluation directly preceding the crossover (scheme

from Fig. 12 instead of Fig. 11).



172 R. Szlapczynski, J. Szlapczynska

Table 11 Average fitness function values for ESoSST method with

and without specialized operators (100 generations for full evolution-

ary method with all operators)

The method Number of

generations

Average fitness

function

Method with all

operators

100 0.9725

Method without

specialized operators

(basic mutation only)

105 0.9585

Table 12 Average fitness function values for ESoSST method with

and without specialized operators (200 generations for full evolution-

ary method with all operators)

The method Number of

generations

Average fitness

function

Method with all

operators

200 0.9741

Method without

specialized operators

(basic mutation only)

210 0.9618

7.3 Investigating the impact of specialized operators

The purpose of this test was deciding whether the benefits of

specialized operators outweigh their computational cost and

the necessity to change the evolutionary scheme (Fig. 12 in-

stead of Fig. 10). Specialized, problem-dedicated operators

only make sense here if they considerably improve ship tra-

jectories. In Sect. 5.6 we showed how a new evolutionary

scheme had to be introduced, to avoid doubling the evalu-

ation phase. But, even without additional evaluation, an it-

eration of the cycle with the operators takes approximately

1.05 of the time spent on the same iteration without them.

If running 100 generations with reversed order of reproduc-

tion and specialized operators/mutation consumes approxi-

mately the same time as running the 105 generations without

specialized operations and the reproduction directly preced-

ing mutation, it is worth checking which option returns bet-

ter solutions. The results of such comparative experiments

are given below, with the test parameters given previously

in Table 4 (except that the number of generations was ei-

ther 100/200 for the method with all operators and 105/210

for the method with basic mutation only). The numbers of

generations have been set to such values that the total com-

putational time is the same.

As can be seen, the method with specialized operators

is superior to the one without them. Even with the number

of generations doubled, the method with only the mutation

operations cannot reach the results of its fully equipped ri-

val (comparing Table 11 with Table 12). Therefore the tradi-

tional evolutionary scheme (Fig. 10) will be no longer taken

into account and further experiments will focus on compar-

ing evolutionary schemes from Figs. 11 and 12.

7.4 Comparing competitive evolutionary schemes

The purpose of this test was choosing the best of the compet-

itive versions of the method, namely of the ones having dif-

ferent evolutionary schemes and different combinations of

crossover operators applied. The basic test parameters have

already been given in Table 4.

The test results for various combinations of method’s

settings are provided in Table 13. For each of the consid-

ered sets of crossover operators both evolutionary schemes

(from Figs. 11 and 12) were tried. It is assumed, that the

method would normally run for 100 generations, but the

tests were also run for 200 generations to find out what

further progress is possible. For both evolutionary schemes

two sets of crossover operators were tried: basic one (b)

and (c)—crossover of individuals and crossover of tra-

jectories and extended one (additionally (d)—crossover of

nodes). For evolutionary scheme with doubled evaluation

phase also the special set of four crossover operators was

tested—the extra operator was (a)—the one using informa-

tion from evaluation to choose the better of the two trajec-

tories from two parent sets. The last operator could not be

tested for evolutionary scheme with single evaluation, be-

cause of the lack of up-to-date evaluation data between mu-

tation and crossover phases.

The results led the authors to the following conclusions:

1. The differences in average fitness function values be-

tween the tested versions are insignificant, when com-

pared to the differences obtained when testing the method

with various fixing operators and mutation settings.

When combined with generally high fitness function val-

ues, this suggests that the designed crossover operators

(Sect. 5.2, (b), (c) and (d)) are effective enough and it is

unlikely to improve the method’s effectiveness by exper-

imenting with new ones.

2. The extended set of crossover operators (a), (b), (c) and

(d) brings only minor rise in fitness function and is not

worth the additional computational time spent on the ex-

tra evaluation phase preceding crossover phase.

3. The set of three operators brings minor progress when

compared with a set of two operators only, but it is

obtained at no additional cost (the same computational

time), so it might be considered an improvement over the

basic set.

4. The experimental evolutionary scheme with mutation

and fixing operators preceding crossover phase returned

better average results for all combinations of crossover

operators and maximum generation numbers. Thus, this

scheme of evolutionary algorithm may be considered not

only more efficient (saving on computational time due to



On evolutionary computing in multi-ship trajectory planning 173

Table 13 Statistical test results

for various versions of the

method

Crossover operators used Evolutionary scheme Number of

generations

Average fitness

function values

Crossover operators (b) and (c)
Mutation and fixing

operators preceding

crossover,

single evaluation phase

(Fig. 12)

100 0.9756

200 0.9764

Crossover operators (b), (c) and (d) 100 0.9768

200 0.9773

Crossover operators (b) and (c) Crossover preceding

mutation and fixing

operators, evaluation

phase doubled

(Fig. 11)

100 0.9743

200 0.9749

Crossover operators (b), (c) and (d) 100 0.9754

200 0.9762

Crossover operators (a), (b), (c) and (d) 100 0.9770

200 0.9774

single valuation phase), but also more effective and gen-

erally better suited for the method.

5. As expected, the average fitness function values were al-

ways higher for 200 generations than for 100 generations

but the difference was always below 0.1% of the average

fitness function values. This shows that the progress is

still possible with growing number of generations but the

solutions returned for 100 generations are close enough

to the optimal ones to be accepted and recommended by

the system.

6. The favorable version of the method is the one with a set

of three crossover operators and modified evolutionary

scheme (Fig. 12).

8 Summary

In the paper a method of solving encounter situations—

Evolutionary Sets of Safe Ship Trajectories (ESoSST)—has

been presented. The method is a generalization of evolution-

ary trajectory finding. A set of trajectories of all the ships

involved, instead of just the own trajectory, is determined.

The method avoids violating ship domains and stationary

constraints while obeying the COLREGS and minimizing

total way loss computed over all trajectories. While develop-

ing the method it turned out that some evolutionary mecha-

nisms had to be adjusted to the particular problem. For some

of the optimization constraints gathering the data on their

violations for evaluation purposes is time consuming (col-

lisions with other ships and static obstacles), which heavily

affects total computational time. When combined with the

strict time limit for computations it results in limiting the

number of possible generations and population size. This

led us to designing specialized operators dedicated to the

problem, which speed up the progress made in each gener-

ation. Using these operators enforced radical changes of the

traditional evolutionary algorithm’s scheme.

The full version of the method has been compared with

the basic one by means of a series of simulation experi-

ments. As expected, the results have shown superiority of

the extended version over the one devoid of specialized op-

erators, even when the latter was run for a much larger num-

ber of generations and consequently—much longer time.

More surprising was the outcome of comparing chosen se-

lection methods. It turned out that some very generic selec-

tion methods achieved better results than the more refined

ones. However this can be explained by the fact that in our

case the benefits of fast convergence to a solution (large

progress per generation) outweigh its risks (probability of

stopping at a local optimum due to a loss of diversity within

population). Similarly to specialized operators different sets

of crossover operators have been tested. This time though

it turned out that a set including more conscious crossover

(using the data returned by the additional evaluation phase)

does not bring a rise in fitness function values sufficient to

justify the greatly increased computational time. In general,

the experiments resulted in choosing the best suited version

of the ESoSST method: the one which relies on advanced

specialized operators, while using a set of three specialized

crossover operators and very generic selection methods: uni-

form for pre-selection and truncation for post-selection.

Two issues still need to be solved before verifying

the ESoSST method effectiveness in the real environment

(a VTS center). First, a more advanced model of ship

dynamics has to be applied. The reason is that the cur-

rent model, while sufficient for open waters, is not pre-

cise enough for restricted water regions, where distances

between ships are smaller. Second, we need to extend the

COLREGS-compliance to support additional Traffic Sepa-

ration Schemes (TSS) rules, which are used to regulate the

high density traffic at confined waterways, often supervised

by VTS centers. The research on both aspects is currently

in progress. Once it is completed, the extended ESoSST

method will be evaluated with the assistance of VTS Gulf of

Gdansk operators.



174 R. Szlapczynski, J. Szlapczynska

Acknowledgements We thank the Polish Ministry of Science

and Higher Education for funding this research under grant no.

N N516 186737.

Open Access This article is distributed under the terms of the Cre-

ative Commons Attribution Noncommercial License which permits

any noncommercial use, distribution, and reproduction in any medium,

provided the original author(s) and source are credited.

References

1. Bayrak AG, Polat F (2010) Formation preserving path find-

ing in 3-D terrains. Appl Intell. Published online: 27.11.2010.

doi:10.1007/s10489-010-0265-9

2. Cheng X, Liu Z (2007) Trajectory optimization for ship navigation

safety using genetic annealing algorithm. In: ICNC 2007. Third

international conference on natural computation, vol 4, pp 385–

392

3. Cockroft AN, Lameijer JNF (1993) A guide to collision avoidance

rules. Butterworth-Heinemann Ltd, Stoneham

4. Coldwell TG (1983) Marine traffic behaviour in restricted waters.

J Navig 36:431–444

5. COLREGS (1972) Convention on the international regulations for

preventing collisions at sea

6. Davis PV, Dove MJ, Stockel CT (1982) A computer simulation of

multi-ship encounters. J Navig 35:347–352

7. Deep K, Thakur M (2007) A new mutation operator for real coded

genetic algorithms. Appl Math Comput 193:211–230

8. De Falco I, Della Cioppa A, Tarantino E (2002) Mutation-based

genetic algorithm: performance evaluation. Appl Soft Comput

1:285–299

9. Dong H, He, Huang JH, Hou W (2007) Evolutionary program-

ming using a mixed mutation strategy. Inf Sci 177:312–327

10. Eiben AE, Schoenauer M (2002) Evolutionary computing. Inf Pro-

cess Lett 82:1–6

11. Fuji J, Tanaka K (1971) Traffic capacity. J Navig 24:543–552

12. Goodwin EM (1975) A statistical study of ship domains. J Navig

28:329–341

13. Ito M, Feifei Z, Yoshida N (1999) Collision avoidance control of

ship with genetic algorithm. In: Proceedings of the 1999 IEEE

international conference on control applications, vol 2, pp 1791–

1796

14. Jozwiak L, Postula A (2002) Genetic engineering versus natural

evolution: genetic algorithms with deterministic operators. J Syst

Archit 48:99–112

15. Linhares A, Yanasse HH (2010) Search intensity versus search di-

versity: a false trade off? Appl Intell 32:279–291

16. Lisowski J (2005) Dynamic games methods in navigator decision

support system for safety navigation. In: Proceedings of the Euro-

pean safety and reliability conference, vol 2, pp 1285–1292

17. Michalewicz Z, Fogel DB (2004) How to solve it: modern heuris-

tics. Springer, Berlin

18. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms

for constrained parameter optimization problems. J Evol Comput

4(1):1–32

19. Pradhan SK, Parhi DR, Panda AK, Behera RK (2006) Poten-

tial field method to navigate several mobile robots. Appl Intell

25:321–333

20. Smierzchalski R, Michalewicz Z (2000) Modeling of a ship trajec-

tory in collision situations at sea by evolutionary algorithm. IEEE

Trans Evol Comput 3(4):227–241

21. Statheros T, Howells G, McDonald-Maier K (2008) Autonomous

ship collision avoidance navigation concepts, technologies and

techniques. J Navig 61:129–142

22. Szlapczynski R (2006) A unified measure of collision risk derived

from the concept of a ship domain. J Navig 59:477–490

23. Szlapczynski R (2006) A new method of ship routing on raster

grids, with turn penalties and collision avoidance. J Navig 59:27–

42

24. Szlapczynski R (2008) A new method of planning collision avoid-

ance manoeuvres for multi target encounter situations. J Navig

61:307–321

25. Szlapczynski R (2011) Evolutionary sets of safe ship trajectories:

a new approach to collision avoidance. J Navig 64:169–181

26. Tam CK, Bucknall R (2010) Path-planning algorithm for ships in

close-range encounters. J Mar Sci Technol 15:395–407

27. Tsou MC, Hsueh CK (2010) The study of ship collision avoid-

ance route planning by ant colony algorithm. J Mar Sci Technol

18(5):746–756

28. Tsou M-C, Kao S-L, Su C-M (2010) Decision support from ge-

netic algorithms for ship collision avoidance route planning and

alerts. J Navig 63:167–182

29. Xue Y, Lee BS, Han D (2009) Automatic collision avoidance of

ships. Proc Inst Mech Eng, Part M J Eng Marit Environ, 33–46

30. Yang LL, Cao S-H, Li BZ (2006) A summary of studies on the

automation of ship collision avoidance intelligence. J Jimei Univ

(Nat Sci):2

31. Zeng X (2003) Evolution of the safe path for ship navigation. Appl

Artif Intell 17:87–104

32. Zhao X, Gao XS, Hu ZC (2007) Evolutionary programming based

on non-uniform mutation. Appl Math Comput 192:1–11

Rafal Szlapczynski M.Sc. Eng. in

computer science, holds a Ph.D. in

technical sciences since 2007. Cur-

rently works as an assistant profes-

sor at Gdansk University of Tech-

nology, Faculty of Ocean Engineer-

ing and Ship Technology. His sci-

entific research focuses on appli-

cation of various AI methods and

heuristics to solving navigational

problems, mostly in ship collision-

avoidance. In 2009–2011 has been a

project manager of research project

for Polish Ministry of Science and

Higher Education entitled “Evolu-

tionary Sets of Safe Ship Trajectories in solving multiple ship collision

situations”.

Joanna Szlapczynska M.Sc. Eng.

in computer science, holds a Ph.D.

in technical sciences since 2009.

Currently works as an assistant pro-

fessor at Gdynia Maritime Univer-

sity, Faculty of Navigation. Her sci-

entific research has been focused on

multi-criteria optimisation of ship

routes (weather routing) and appli-

cation of AI methods to various nav-

igational problems.

http://dx.doi.org/10.1007/s10489-010-0265-9

	On evolutionary computing in multi-ship trajectory planning
	Abstract
	Introduction
	Comparing two different evolutionary approaches
	Optimization problem and its implications
	Detecting static constraint violations (collisions with landmasses and safety isobath)
	Detecting ship domain violations
	Detecting COLREGS violations
	High cost of evaluation and other consequences

	Formulating fitness function
	Basic criterion-minimizing way loss
	Penalizing static constraint violation
	Penalizing collisions with other ships
	Penalizing COLREGS violations
	Fitness function value

	Evolutionary algorithm
	Generating the initial population: randomly generated trajectories or strong pre-processing?
	Reproduction: crossover of whole individuals, crossover of single trajectories and crossover of nodes
	Specialized operators
	Mutation
	Selection: two different methods
	A new scheme of the evolutionary process

	Visualisation of an exemplary result
	Simulation experiments and discussion of their results
	Comparing the performance of post-selection (succession) algorithms
	Comparing the performance of pre-selection (mating) algorithms
	Investigating the impact of specialized operators
	Comparing competitive evolutionary schemes

	Summary
	Acknowledgements
	References


