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ON EVOLVING NATURAL CURVATURE FOR AN

INEXTENSIBLE, UNSHEARABLE, VISCOELASTIC ROD

K. R. RAJAGOPAL AND C. RODRIGUEZ

Dedicated to the memory of Prof. J. L. Ericksen.

Abstract. We formulate and consider the problem of an inextensible,
unshearable, viscoelastic rod, with evolving natural configuration, mov-
ing on a plane. We prove that the dynamic equations describing qua-
sistatic motion of an Eulerian strut, an infinite dimensional dynamical
system, are globally well-posed. For every value of the terminal thrust,
these equations contain a smooth embedded curve of static solutions
(equilibrium points). We characterize the spectrum of the linearized
equations about an arbitrary equilibrium point, and using this informa-
tion and a convergence result for dynamical systems due to Brunovský
and Polácik, we prove that every solution to the quasistatic equations
of motion converges to an equilibrium point as time goes to infinity.

1. Introduction

In an influential paper concerning the equilibrium of rods, Ericksen [4]
considered the equilibrium states of a straight, extensible Green elastic rod,
whose constitutive relation for the stored energy is a non-convex function
of the deformation gradient.1 This authoritative paper has motivated nu-
merous studies which purport to study phase transition in solids but are
really concerned with equilibrium states composed of co-existent parts with
distinct deformation gradients. The problem studied by Ericksen concerns
the equilibrium of a rod with juxtaposed parts with distinct constant de-
formation gradients, a purely static consideration and a purely kinematic
consideration.2

The one-sentence abstract to his paper states “For elastic bars, we discuss
some material instabilities”, the study that is carried out is purely within
the purview of elastostatics. Ericksen recognizes that in order to discuss
“instabilities” one needs to study the problem within a dynamical context,

1The more geometric problem of bending of an inextensible, unshearable rod whose
constitutive relation for the stored energy is a non-convex function of the rod’s curvature
was later treated by Fosdick and James [5].

2A lengthy discussion as to why these studies do not concern the actual process of
phase transition but are merely concerned with a static deformed body comprised of elastic
bodies with two distinct microstructures juxtaposed to each other in equilibrium, that is,
they are concerned with the arrangement of a mixture of elastic materials with no phase
change taking place, can be found in Rajagopal and Srinivasa [12].
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as he states “For our purposes, it is essential to employ a stability criterion,
and we employ the traditional energy criterion. As is well known, it is not
completely reliable, but it is hard to improve upon it, without specifying
constitutive equations which are to apply out of equilibrium.”

A little later in the introduction he makes the comment “In one sense,
ours is an elementary study of phase transformations that are shear induced,
i.e., induced by stresses which are not hydrostatic pressures”, and follows
this up subsequently with the remark “In the analog of van der Waals’ fluid,
we would be in a range where a fixed volume contains a mixture of liquid
and vapor phases, when the equation of state exhibits a similar oscillation” .
This remark of Ericksen’s concerning the equilibrium of distinct phases has
been picked up by numerous researchers who have generalized this study
to what they refer to as the problem of phase transition in elastic solids,
purely within an elastostatic context wherein the elastic body is described
by a non-convex stored energy function. This is an unfortunate circum-
stance for a variety of reasons. First, just from the viewpoint of English,
it is incorrect. The term “transition” refers to a dynamic situation. As
one gathers from the Oxford English Dictionary [15], the word “transition”
means “A passing or passage from one condition, action, or (rarely) place,
to another: change”. Thus, if one is to study phase transition, it has to
be within a dynamical context. Second, “phase transitions” are entropy
producing. Without knowing the constitutive relation for the rate of en-
tropy production, and merely knowing how the material stores energy, we
cannot describe the phenomenon of “phase transition”. Third, even when
there is no “phase transition”, such energy-based studies do not necessarily
work and Ericksen was clearly aware of it and mentions it in the comment
quoted above. Fourth, just because the governing equations are similar in
totally distinct physical problems, one cannot conclude the physical quan-
tities being described share identical attributes. Such flawed thinking can
lead to disastrous consequences in physics. There are many more reasons
why one ought not to interpret Ericksen’s study as being relevant to “phase
transformations”, but we shall not get into a discussion of them here. Erick-
sen’s study reveals that there are equilibrium states of a purely elastic rod,
wherein the deformation gradient could be discontinuous, no more and no
less. The lack of relevance to phase transition notwithstanding, Ericksen’s
study was thought provoking and opened up a fertile area for further study
in nonlinear elasticity.

There are two important attributes to an elastic body, it is incapable of
dissipating energy, that is, converting work into energy in its thermal form
(heat), and it has a unique “natural configuration”. The notion of a natural
configuration seems to have been discussed first by Eckart [3]. One could
view the natural configuration of a body to be the configuration in which it
would exist on the removal of all external stimuli.3 From a purely mechanical

3The notion of a natural configuration is a local notion. When the external stimuli on
a body that has been inhomogeneously deformed, are removed, the body might not attain
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perspective, it would be the configuration that the body would take if all
the external loads were removed (see Rajagopal [8] for a discussion of the
notion of natural configuration).

Unlike elastic bodies that are characterized by a single natural configu-
ration, bodies such as viscoelastic and inelastic bodies are characterized by
multiple natural configurations, and the body’s natural configuration can
evolve when the body is undergoing a thermodynamic process. The man-
ner in which the natural configuration evolves is determined by the way in
which entropy is produced by the body. In bodies capable of producing en-
tropy, entropy production could be due to various causes, due to dissipation
(work being converted to thermal energy), due to conduction, due to mix-
ing, due to phase transition, due to growth, etc. If we restrict our attention
to purely mechanical processes, then the only source of entropy production
is that due to dissipation. In the case of an elastic body, within a purely
mechanical context, no entropy is produced, and hence its natural config-
uration does not evolve. However, in the case of a viscoelastic body, even
within a purely mechanical context, the natural configuration can evolve,
as the body is capable of producing entropy. The study of phase transition
would have to take this evolution of the natural configuration of the body
into consideration.

Based on these considerations of Ericksen’s work, we study the problem
of an inextensible, unshearable, viscoelastic rod with evolving natural con-
figuration, moving on a plane, with one end fixed and the other end free.
Because of the symmetry of the problem, the rod’s configuration, a planar
curve s 7→ r(s, t), is determined uniquely4 by one scalar function; the rod’s
curvature µ(·, t) at time t. At each time t, we posit a second configuration
r◦(·, t), referred to as the natural configuration, with curvature µ◦(t). We
refer to the curvature µ◦(t) determining the rod’s natural configuration as
its natural curvature. Our terminology is based on the fact that in our model
the contact couple vanishes throughout the rod, at time t, precisely when
µ(·, t) = µ◦(t) and µt(·, t) = 0 (see (2.4)). While it would be tempting to
think of each natural configuration as characterizing a different “phase” of
the rod, it would not be sensible to do so as there are not really any different
phases of the material present.

Our viscoelastic rod is characterized by two scalar functions, a stored
energy and a rate of total entropy production. The stored energy

(EI)

2
(µ(s, t)− µ◦(t))2 + κ(µ◦(t))

a configuration which coheres properly. This is precisely the situation in an inelastic solid
that has yielded. We can either consider the unloaded configuration in a non-Euclidean
space, as considered by Eckart, or merely consider small locally homogeneously deformed
neighborhoods that are unloaded in an Euclidean space as the local “natural configura-
tion”.

4Uniqueness holds up to a rigid motion of the plane containing the center line of the
rod.
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is the sum of two contributions. The first contribution is stored energy due
to deformation. The second contribution is stored energy due to the rod’s
natural curvature µ◦(t) being different from other fixed preferred natural
curvatures. For example, it seems plausible to assume that the preferred
natural curvature of a virgin straight rod is zero. However, this object may
be bent (with enough force) changing its current natural curvature to an-
other value. With respect to entropy production and unlike most studies in
continuum thermodynamics which appeal to the Clausius-Duhem inequal-
ity locally, we only require the condition that the total entropy of the rod is
non-increasing in time,

d

dt

ˆ L

0
η(s, t)ds ≥ 0,

where η(·, t) is the entropy per unit reference length at time t. In the purely
mechanical setting that we consider, the rate of total entropy production has
two contributions (see (2.9)). The first contribution is due to the viscoelastic
nature of the rod. The second contribution to the total entropy production
is due to a difference in the averaged curvature of the rod’s current config-
uration and the curvature of the rod’s current natural configuration. The
form of this term we posit determines the evolution equation for the nat-
ural curvature (see (2.10)). In particular, this second contribution to the
total entropy production is positive if and only if the natural curvature is
changing. Moreover, a nontrivial threshold of energy is required to produce
a change in the rod’s natural curvature.

In this work we consider the quasistatic motion of a viscoelastic rod,
with evolving natural curvature, with one fixed end and with one free end
subjected to a terminal thrust (an Eulerian strut). The structure and main
results of our study are as follows.

In Section 2 we first review the general equations of motion for an in-
extensible, unshearable special Cosserat rod moving on a plane. Next we
develop the constitutive relations and evolution equation for the natural cur-
vature µ◦(t) based on thermodynamic considerations. We emphasize here

that we require that the total entropy of the rod,
´ L

0 η(s, t)ds, rather than
the pointwise value of the entropy η(s, t), is increasing in time (see (2.7)). A
nice feature of this weaker requirement is that we can make the simplifying
geometric and logically consistent assumption that the natural curvature
µ◦ is independent of the variable s for each t.5 If instead we require the
entropy to be pointwise increasing in time, then we could not make this
assumption. Of course, many rods can and do have a non-uniform natural
curvature evolving in time, and we intend to investigate the more general
model in future work.

5Equivalently, we assume that the possible natural configurations of the rod are seg-
ments of circles of varying radii.
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In Section 3, we specialize our study to the equations describing qua-
sistatic motion of an Eulerian strut (see (3.2) and (3.3)). These equations
can be written as a differential equation on L2(0, 1) × R

∂t(µ(s, t), µ
◦(t)) = F (µ(·, t), µ◦(t))(s)

for the pair (µ(·, t), µ◦(t)), where F (µ, µ◦) is given by (3.5). Our thermo-
dynamic considerations from Section 2 imply the existence of a Liapunov
function for this infinite dimensional dynamical system (see (3.11)), and by
the standard theory of differential equations in Banach spaces, we conclude
global well-posedness for the quasistatic equations of motion (see Theorem
3.1). We then consider equilibrium points, (ν, ν◦) ∈ L2(0, 1) × R satisfying
F (ν, ν◦) = (0, 0). This subset of L2(0, 1)×R always contains a smooth em-
bedded curve through the trivial equilibrium point (0, 0).6 We characterize
the spectrum σ(DF (ν, ν◦)) of the linearization about a given equilibrium
point (ν, ν◦). In particular, σ(DF (ν, ν◦)) = σu ∪ {0} ∪ σs where σu is a
finite subset of (0,∞), σs is a closed subset of (−∞, 0), and 0 is a sim-
ple eigenvalue (see Proposition 3.2). In the generic case that |D| < Θ(ν◦),
kerDF (ν, ν◦) is tangent to a smooth embedded curve through (ν, ν◦) in
L2(0, 1) × R consisting entirely of equilibrium points (see Proposition 3.3).

Finally, in Section 4 we prove that an arbitrary solution to the qua-
sistatic equations of motion converges to an equilibrium point, as t→ ∞, in
L2(0, 1) × R. We first show that the trajectory of a solution is precompact
in L2(0, 1)×R (see Lemma 4.2). Next, we show that the set of limit points
of the trajectory consists entirely of equilibrium points (see Lemma 4.3).
Finally, using the spectral information from Section 3 (in particular that
the center space is one dimensional) and a convergence result for dynamical
systems due to Brunovský and Polácik [2], we show that the set of limit
points of the trajectory is a singleton and conclude (see Theorem 4.4).

2. Equations of Motion

In this section we formulate the theory for an inextensible, unshearable
rod with evolving (uniform) natural curvature, moving on a plane. For a
complete introduction to rods in general, we refer the reader to the author-
itative treatise by Antman [1].

2.1. Preliminaries. Let E3 be Euclidean space, and let {i, j,k} be a fixed
right-handed orthonormal basis for the vector space R

3. We identify E
2 =

{(x1, x2, 0) ∈ E
3 | x1, x2 ∈ R}. Let [0, L] be the reference interval parame-

terizing the particles or material points of the rod. The planar configuration
of a uniform, inextensible, unshearable special Cosserat rod at time t is given
by a curve

[0, L] ∋ s 7→ r(s, t) ∈ E
2.

6The equilibrium point (0, 0) corresponds to the straight configuration of the rod.
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with

rs(s, t) = cos θ(s, t)i+ sin θ(s, t)j.

The curve r(·, t) is the center line of the rod and the vector

b(s, t) = − sin θ(s, t)i+ cos θ(s, t)j

is the director at (s, t), a unit vector normal to r(·, t) at r(s, t). We set

a(s, t) = rs(s, t) = cos θ(s, t)i+ sin θ(s, t)j,

so {a(s, t), b(s, t)} is a right-handed orthonormal basis for R2, for each (s, t).
We note that

µ(s, t) = θs(s, t)

is the curvature of the curve r(·, t) at s and is the sole measure of strain for
an inextensible, unshearable special Cosserat rod.

At each time t during the motion of the rod, we specify a scalar µ◦(t). The
specification of µ◦(t) determines a configuration r◦(·, t) via r◦(s, t) = (s, 0, 0)
if µ◦(t) = 0 and

r◦(s, t) =
(sin(µ◦(t)s)

µ◦(t)
,
1− cos(µ(t)s)

µ◦(t)
, 0
)

, s ∈ [0, L],

if µ◦(t) 6= 0. This configuration has curvature µ◦(t) and is unique up to
a rigid displacement in E

2. We refer to µ◦(t) as the natural curvature at
time t and r◦(·, t) as the associated natural configuration at time t. Why
we refer to µ◦(t) as the natural curvature is discussed in the next subsection
(see (2.4)). In the classical theory of rods a single natural configuration is
fixed for all time, µ◦(t) = µ◦(0) for all t. In general micro-structural changes
may result in µ◦(t) 6= µ◦(0) at some t > 0 so that the natural configuration
evolves in time.

2.2. Balance laws and entropy production. Let [a, b] ⊆ [0, L]. We
denote the contact force by n(s, t) ∈ span{i, j} so that at each time t, the
resultant force on the material segment [a, b] by [0, a) ∪ (b, L] is given by

n(b, t) −n(a, t).

We denote the contact couple by m(s, t) ∈ span{k} so that at each time
t, the resultant contact couple about o = (0, 0, 0) on the material segment
[a, b] by [0, a) ∪ (b, L] is given by

m(b, t) + (r(b, t)− o)×n(b, t)−m(a, t)− (r(a, t)− o)× n(a, t).

If there are no external body forces or body couples, then the classical
equations expressing balance of linear momentum and angular momentum
are given by: for (s, t) ∈ [0, L] × (0,∞)

(ρA)rtt(s, t) = ns(s, t), (2.1)

(ρJ)b(s, t)× btt(s, t) = ms(s, t) + rs(s, t)× n(s, t), (2.2)
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where (ρA) and (ρJ) are the constant mass and first moment of mass per
unit reference length. Expressing n = Na + Hb, m = Mk, we see that
(2.1) and (2.2) are equivalent to

(ρA)rtt · a = Ns,

(ρA)rtt · b = Hs,

(ρJ)θtt =Ms +H.

The functions N and H act as Lagrange multipliers enforcing the constraint
rs = a and are unknowns. For M we assume an Euler-Bernoulli relation:

M(s, t) = (EI)[(µ(s, t) − µ◦(t)) + νµt(s, t)], (2.3)

where (EI) > 0 and ν > 0 are constants. In particular,

M(·, t) = 0 ⇐⇒ µ(·, t) = µ◦(t), ∂tµ(·, t) = 0. (2.4)

It is (2.4) that encapsulated why we refer to µ◦(t) as the natural curvature
at time t. All that remains to close the system of equations is to posit an
evolution equation for the curvature of the natural configuration, µ◦(s, t).
This will be obtained via the following thermodynamic considerations.

We assume that the rod is held at a fixed absolute temperature τ and is
nonconducting, and the internal energy per unit reference length e(s, t) is
given by

e(s, t) = τη(s, t) +
(EI)

2
(µ(s, t)− µ◦(t))2 + κ(µ◦(t)) (2.5)

where η(s, t) is the entropy per unit reference length, and κ satisfies:

• κ is twice continuously differentiable on R, non-negative, and even,
• κ(µ◦) → ∞ as |µ◦| → ∞,
• κ(0) = κ′(0) = 0.

The final condition on κ can be interpreted as the straight configuration
being a preferred natural configuration of the rod. We remark that if in
addition,

• there exists µ◦1 > 0 such that κ(µ◦) = 0 if and only if µ◦ ∈ {0,±µ◦1},
• κ′(±µ◦1) = 0,

then we can formally interpret the configuration with µ◦ ∈ [0, µ◦1] as a juxta-
position at the microscopic level of the two “phases” determined by µ◦ = 0
and µ◦ = 1 as follows.7 For α ∈ [0, 1], we define the configuration r◦α of the
intermediate state with volume fraction α of the product phase via specify-
ing its curvature:

µ◦α = (1− α)0 + αµ◦1 = αµ◦1.

7As discussed in the introduction, the rod with natural curvatures 0 and µ
◦

1 should
not really be considered as two different “phases” since there are not really any different
phases of the material present.
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In particular, the configuration with µ◦ ∈ [0, µ◦1] corresponds to an interme-
diate state with volume fraction α = µ◦/µ◦1. The strain of the configuration
r(·, t) relative to r◦α at (s, t) is defined to be

µα(s, t) := µ(s, t)− µ◦α.

Then for µ◦(t) ∈ [0, µ◦1] with α(t) =
µ◦(t)
µ◦

1

∈ [0, 1] we can write the internal
energy as

e(s, t) = τη(s, t) +W (µα(t)(s, t)) + J(α(t))

whereW (µα) :=
(EI)
2 µ2α and J(α) := κ(αµ◦1). This is the form of the internal

energy used by Rajagopal and Srinivasa (see e.g. [14], [9], [10], [12], [13])),
and one can then obtain equations of motion in terms of α instead of µ◦ (for
µ◦ ∈ [0, µ◦1]). In this case, one should interpret the term κ as accounting for
energy due to the rod being a mixture of the two “phases” with mismatching
curvatures.

The classical equation expressing balance of energy reduces to

et(s, t) =M(s, t)µt(s, t). (2.6)

We assume that the total entropy is non-decreasing in time:

d

dt

ˆ L

0
η(s, t)ds =

ˆ L

0
ηt(s, t)ds ≥ 0. (2.7)

We note that (2.7) is weaker than the form most often assumed: ηt(s, t) ≥ 0
for all (s, t). Also, in the approach adopted by Green and Naghdi [6], the en-
tropy inequality is expressed as an equality, a constitutive relation is assumed
for the entropy production, and the thermodynamic process is determined
by maximizing the entropy production (see Rajagopal and Srinivasa [11]).
Then (2.3), (2.5) and (2.6) imply that

ˆ L

0
ηt(s, t)ds =

ˆ L

0
(EI)ν(µt(s, t))

2ds+D(t)µ◦t (t), (2.8)

D(t) =

ˆ L

0
(EI)(µ(s, t) − µ◦(t))ds − Lκ′(µ◦(t)).

We specify the form of the rate of total entropy production:
ˆ L

0
ηt(s, t)ds =

ˆ L

0
(EI)ν(µt(s, t))

2ds

+|D(t)|[f(D(t)−Θ(µ◦(t))) + f(−Θ(µ◦(t)) −D(t))], (2.9)

where

• f is continuously differentiable on R and non-negative,
• if x ≤ 0 then f(x) = 0,

and

• Θ is continuously differentiable on R, positive and even,
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• Θ is bounded from below,

inf
µ◦∈R

Θ(µ◦) > 0.

Then (2.7) is automatically ensured and (2.8) is equivalent to

µ◦t = f(D −Θ(µ◦))− f(−Θ(µ◦)−D). (2.10)

We note that (2.10) can be written as

µ◦t =











f(D −Θ(µ◦)) if D > Θ(µ◦),

0 if |D| ≤ Θ(µ◦),

−f(−Θ(µ◦)−D) if D < −Θ(µ◦),

and thus, D and µ◦t always have the same sign. Moreover, µ◦ is constant
in time and the rod’s response is purely viscoelastic (with natural curvature
µ◦) as long as

|D| ≤ Θ(µ◦).

In particular, the conditions imposed on the functions f and Θ can be in-
terpreted as the physical assumptions that if the rod is in its natural config-
uration, then there is a positive threshold for the magnitude of the driving
force |D| required to change its natural configuration, and this threshold
grows as the magnitude of the natural curvature |µ◦| grows. In particular,
if the driving force D is positive (negative) and large enough in magnitude,
then a positive (resp. negative) change in µ◦ occurs.

3. Quasi-static Eulerian Strut

In this section we specialize our study of the general equations of motion
to those modeling the quasistatic motion of an Eulerian strut.

3.1. Nondimensionalization. Let T and F be the time and force scales
used. We define the following dimensionless variables:

s̄ =
1

L
s, t̄ =

1

T
t, r̄(s̄, t̄) =

1

L
r(s, t), n̄(s̄, t̄) =

1

F
n(s, t),

µ̄(s̄, t̄) = Lµ(s, t), µ̄◦(t̄) = Lµ(t), M̄(s̄, t̄) =
L

(EI)
M(s, t),

κ̄(µ̄◦) =
L2

(EI)
κ(µ◦), D̄(t̄) =

ˆ 1

0
(µ̄(s̄, t̄)− µ̄◦(t̄))ds̄ − κ̄′(µ̄◦(t)),

Θ̄(µ̄◦) =
1

(EI)
Θ(µ◦), f̄(x) = LTf((EI)x̄).

Then the equations of motion are equivalent to: for all (s̄, t̄) ∈ [0, 1] ×
[0,∞),

ǭ1r̄t̄ t̄ · a = N̄s̄,

ǭ1r̄t̄ t̄ · b = H̄s̄,

ǭ0θt̄ t̄ = ᾱM̄s̄ + H̄,
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where (upon choosing appropriate units of time)

M̄ = (µ̄− µ̄◦) + µ̄t̄,

and ǭ0, ǭ1, ᾱ are positive dimensionless constants. The evolution for the
natural curvature is given by

µ̄◦t̄ = f̄(D̄ − Θ̄(µ̄◦))− f̄(−Θ̄(µ̄◦)− D̄).

Moreover, an assumption in rod theory is that a typical transversal length
of the rod’s cross section is much smaller than the length of the rod which
implies that ǭ0 ≪ ǭ1. In the remainder of this work, we will study the above
system of equations in the quasi-static limit

ǭ0 = ǭ1 = 0,

and we will drop the over bars on the remaining variables.

3.2. Eulerian strut. We consider the boundary conditions corresponding
to an Eulerian strut:

r(0, t) = o, θ(0, t) = 0, n(1, t) = −βi, M(1, t) = 0, (3.1)

where β ≥ 0. Then n(s, t) = −βi which implies that

H(s, t) = n(s, t) · b(s, t) = β sin θ(s, t) = β sin
(

ˆ s

0
µ(ζ, t)dζ

)

.

We have αMs(s, t) = −H(s, t) which along with (3.1) and integration im-

plies that αM(s, t) =
´ 1
s
H(σ, t)dσ. The equations of motion and boundary

conditions reduce to the following coupled differential equations with initial
conditions: for all (s, t) ∈ [0, 1] × [0, T )

µt(s, t) = −µ(s, t) + µ◦(t) + γ

ˆ 1

s

sin
(

ˆ σ

0
µ(ζ, t)dζ

)

dσ, (3.2)

µ◦t (t) = f
(

D̂(µ(·, t), µ◦(t))−Θ(µ◦(t))
)

− f
(

−Θ(µ◦(t))− D̂(µ(·, t)
)

, (3.3)

µ(s, 0) = µ0(s), µ◦(0) = µ◦0, (3.4)

where γ = β/α and D̂(µ(·, t), µ◦(t)) =
´ 1
0 µ(s, t)ds − µ◦(t) − κ′(µ◦(t)). For

(µ, µ◦) ∈ L2(0, 1) × R, let

F (µ, µ◦)(s) =
(

µ◦ − µ(s) + γ

ˆ 1

s

sin
(

ˆ σ

0
µ(ζ)dζ

)

dσ,

f
(

D̂(µ(·, t), µ◦(t))−Θ(µ◦(t))
)

(3.5)

− f
(

−Θ(µ◦(t))− D̂(µ(·, t)
)

)

.
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Then (3.2), (3.3) and (3.4) can be written as the ordinary differential equa-
tion in L2(0, 1) × R:

∂t
(

µ(·, t), µ◦(t)
)

= F (µ(·, t), µ◦(t)), (3.6)

(µ(·, 0), µ◦(0)) = (µ0, µ
◦
0).

It is straightforward to verify that F : L2(0, 1) × R → L2(0, 1) × R is con-
tinuously Fréchet differentiable with Fréchet derivative [DF (µ, µ◦)](ξ, ξ◦) =

(

ξ◦ − ξ(s) + γ

ˆ 1

s

cos
(

ˆ σ

0
µ(ζ)dζ

)

ˆ σ

0
ξ(ζ)dζdσ,

f
(

D̂(µ(·, t), µ◦(t))−Θ(µ◦(t))
)

[

ˆ 1

0
ξ(s)ds− κ′′(µ◦)ξ◦ −Θ′(µ◦)ξ◦

]

(3.7)

+ f
(

−Θ(µ◦(t))− D̂(µ(·, t), µ◦(t))
)

[

ˆ 1

0
ξ(s)ds− κ′′(µ◦)ξ◦ +Θ′(µ◦)ξ◦

])

.

Indeed, writing θ(σ) =
´ σ

0 µ(ζ)dζ and φ(σ) =
´ σ

0 ξ(ζ)dζ we have that the
first component of F satisfies

F1(µ+ ξ, µ◦ + ξ◦) = F1(µ, µ
◦) + ξ◦ − ξ(s)

+ γ

ˆ 1

s

[sin(θ(σ) + φ(σ))− sin θ(σ)]dσ.

By trigonometric identities and Cauchy-Schwarz we have

∣

∣

∣

ˆ 1

s

[sin(θ(σ) + φ(σ)) − sin θ(σ)]dσ −

ˆ 1

s

cos θ(σ)φ(σ)dσ
∣

∣

∣

=
∣

∣

∣

ˆ 1

s

sin θ(σ)[cos φ(σ)− 1]dσ +

ˆ 1

s

cos θ(σ)[sinφ(σ)− φ(σ)]dσ
∣

∣

∣

≤ C(‖φ‖2L∞(0,1) + ‖φ‖3L∞(0,1))

≤ C(‖ξ‖2L2(0,1) + ‖ξ‖3L2(0,1))

where C is an absolute constant. Thus,

F1(µ+ ξ, µ◦ + ξ◦)− F1(µ, µ
◦) +

(

ξ◦ − ξ(s)γ +

ˆ 1

0
φ(σ) cos θ(σ)dσ

)

= o(‖ξ‖L2(0,1))
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as ‖ξ‖L2(0,1) → 0. Similarly, by using the smoothness assumptions for κ, f
and Θ, we conclude that the second component of F satisfies

F2(µ+ ξ, µ◦ + ξ◦) = F2(µ, µ
◦)

= f ′
(

D̂(µ(·, t), µ◦(t))−Θ(µ◦(t))
)

[

ˆ 1

0
ξ(s)ds− κ′′(µ◦)ξ◦ −Θ′(µ◦)ξ◦

]

+ f ′
(

−Θ(µ◦(t))− D̂(µ(·, t), µ◦(t))
)

[

ˆ 1

0
ξ(s)ds− κ′′(µ◦)ξ◦ +Θ′(µ◦)ξ◦

]

+ o(‖ξ‖L2(0,1) + |ξ◦|)

as ‖ξ‖L2(0,1) + |ξ◦| → 0, proving (3.7).

3.3. Global well-posedness for the quasistatic equations of motion.

Theorem 3.1. Let (µ0, µ
◦
0) ∈ L2(0, 1)×R. Then there exists unique (µ, µ◦) ∈

C1([0,∞);L2(0, 1) × R) satisfying (3.2), (3.3) and (3.4).
Moreover, there exists a constant C(µ0, µ

◦
0, γ) > 0 such that for all t ∈

[0,∞)

‖µ(·, t)‖L2(0,1) + |µ◦(t)| ≤ C. (3.8)

Proof. Since (3.2) and (3.3) can be written as the differential equation
(3.6) with F continuously differentiable on L2(0, 1) × R, the standard well-
posedness theory for differential equations in Banach spaces implies that
there exist T+ > 0 and unique (µ, µ◦) ∈ C1([0, T+);L

2(0, 1) × R) solving
(3.2), (3.3) and (3.4) on a maximal time of interval of existence [0, T+) (see
e.g. Chapter 3 of [7]). Moreover, we have the breakdown criterion

T+ <∞ =⇒ lim sup
t→T+

[‖µ(·, t)‖L2(0,1) + |µ◦(t)|] = ∞, (3.9)

and we have continuous dependence on initial conditions: if

lim
n→∞

∥

∥(µ0,n, µ
◦
0,n)− (µ0, µ

◦
0)
∥

∥

L2(0,1)×R
= 0,

then for all n sufficiently large, the unique solution

(µn, µ
◦
n) ∈ C1([0, T+,n);L

2(0, 1) ×R)

to (3.2) and (3.3) with (µn(·, 0), µ
◦
n(0)) = (µ0,n, µ

◦
0,n) exists on [0, T+), and

for all 0 ≤ T < T+,

lim
n→∞

sup
t∈[0,T ]

∥

∥(µn(·, t), µ
◦
n(t))− (µ(·, t), µ◦(t))

∥

∥

L2(0,1)×R
= 0. (3.10)

For t ∈ [0, T+) define

V (µ(·, t), µ◦(t)) =
1

2

ˆ 1

0
(µ(s, t)− µ◦(t))2ds+ κ(µ◦(t))

+ γ

ˆ 1

0
cos θ(s, t)ds
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where θ(s, t) =
´ s

0 µ(ζ, t)dζ. We note that V is the difference of the total
energy stored by the rod and the total work done by the terminal thrust.
Then (3.2), (3.3), the relation θts = θst = µt and integration by parts imply
that

d

dt
V (µ(·, t), µ◦(t)) =

ˆ 1

0
(µ(s, t)− µ◦(t))µt(s, t)ds

−
[

ˆ 1

0
µ(s, t)ds− µ◦(t)− κ′(µ◦(t))

]

µ◦t (t)

− γ

ˆ 1

0
sin θ(s, t)θt(s, t)ds

= −

ˆ 1

0
µ2t (s, t)ds + γ

ˆ 1

0

[

ˆ 1

s

sin θ(σ, t)dσ
]

θst(s, t)ds

− D̂(µ(·, t), µ◦(t))µ◦t (t)− γ

ˆ 1

0
sin θ(s, t)θt(s, t)ds

= −

ˆ 1

0
µ2t (s, t)ds − |D̂(µ(·, t), µ◦(t))µ◦t (t)| (3.11)

where the last equality follows from the fact that D̂(µ(·, t), µ◦(t)) and µ◦t (t)
have the same sign via (3.3). Thus, for all t ∈ [0, T+)

1

2

ˆ 1

0
(µ(s, t)− µ◦(t))2ds+ κ(µ◦(t))

≤ V (µ(·, t), µ◦(t))− γ

ˆ 1

0
cos θ(s, t)ds

≤ V (µ0, µ
◦
0) + γ.

By our assumptions on κ we conclude that µ◦ : [0, T+) → R is bounded
whence µ(·, t) : [0, T+) → L2(0, 1) is bounded as well. By (3.9) we conclude
that T+ = ∞ as well as (3.8). �

3.4. Equilibrium points. The equilibrium points (ν, ν◦) ∈ L2(0, 1)×R of
the evolution equation (3.6) satisfy F (ν, ν◦) = (0, 0) i.e.

ν◦ − ν(s) + γ

ˆ 1

s

sin
(

ˆ σ

0
ν(ζ)dζ

)

dσ = 0, s ∈ [0, 1], (3.12)

|D̂(ν, ν◦)| ≤ Θ(ν◦). (3.13)

We observe that (3.12) implies that ν ∈ C1([0, 1]) and ν(1) = ν◦. Defining
φ(s) =

´ s

0 ν(ζ)dζ ∈ C2([0, 1]), we see that

(ν, ν◦) = (φ′, φ′(1)),

and (3.12), (3.13) are equivalent to

φ′′(s) + γ sinφ(s) = 0, s ∈ [0, 1], (3.14)
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φ(0) = 0, φ′(1) = ν◦, and
∣

∣

∣
φ(1) − φ′(1)− κ′(φ′(1))

∣

∣

∣
≤ Θ(φ′(1)).

The trivial equilibrium point

ν = 0, ν◦ = 0

gives the configuration of a straight rod. We note that since D̂(0, 0) =
0 and Θ is bounded from below there always exist nontrivial equilibrium
points. Indeed, by continuous dependence on initial conditions for (3.14),
there exists δ > 0 such that for all α ∈ (−δ, δ) the unique solution φα ∈
C2([0, 1]) to (3.14) satisfying the initial conditions φα(0) = 0, φ′α(0) = α
also satisfies

|D̂(φ′α, φ
′
α(1))| < min

ν◦∈R
Θ(ν◦) ≤ Θ(φ′α(1)).

Then (φ′α, φ
′
α(1)) is a nontrivial equilibrium point of (3.6) for α ∈ (−δ, δ)\{0}.

We now turn to the stability properties of equilibrium points, and in
what follows, (ν, ν◦) ∈ C1([0, 1])×R is a fixed equilibrium point and φ(s) =
´ s

0 ν(ζ)dζ. The linearization of (3.6) about (ν, ν◦) is given by

∂t(µ(s, t), µ
◦(t)) = [DF (ν, ν◦)](µ(s, t), µ◦(t))

=
(

µ◦(t)− µ(s, t) +

ˆ 1

s

ˆ σ

0
µ(ζ, t) cos φ(σ)dζdσ, 0

)

=
(

µ◦(t)− µ(s, t) +

ˆ 1

0
K(s, ζ)µ(ζ, t)dζ, 0

)

where K(s, ζ) =
´ 1
max(s,ζ) cosφ(σ)dσ. We denote L = DF (ν, ν◦) : L2(0, 1) ×

R → L2(0, 1) × R. Since L is bounded, the solution to the linearized equa-
tions about (ν, ν◦) can be written succinctly as

(µ(·, t), µ◦(t)) = etL(µ(·, 0), µ◦(0)). (3.15)

The next proposition shows that there are only finitely many unstable di-
rections when perturbing (ν, ν◦) (at the linearized level) and 0 is always a
simple eigenvalue for L.

Proposition 3.2. The spectrum

σ(L) = {λ ∈ C | L − λI does not have a bounded inverse }

satisfies

(1) σ(L) ⊂ R is countable,

(2) −1 ∈ σ(L) and −1 is the only possible limit point of σ(L),

(3) every λ ∈ σ(L)\{−1, 0} is an eigenvalue with associated one dimen-
sional eigenspace,
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(4) 0 ∈ σ(L) and

kerL = span(θ′0, θ
′
0(1))

where θ0 ∈ C2([0, 1]) is the unique solution to

θ′′(s) + γ[cos φ(s)]θ(s) = 0,

θ(0) = 0, θ′(0) = 1. (3.16)

Proof. We first consider the invertibility properties of L − λI : L2(0, 1) ×
R → L2(0, 1) × R for λ ∈ C\{0}. For (ξ, ξ◦) ∈ L2(0, 1) × R, we have
(L − λI)(µ, µ◦) = (ξ, ξ◦) if and only if µ◦ = − 1

λ
ξ◦ and

−(1 + λ)µ(s) +

ˆ 1

0
K(s, ζ)µ(ζ)dζ = ξ(s) +

1

λ
ξ◦. (3.17)

Denote the integral operator Kµ(s) =
´ 1
0 K(s, ζ)µ(s)ds. Then (3.17) is

solvable for arbitrary (ξ, ξ◦) ∈ L2(0, 1) × R if and only if −(1 + λ)I + K :
L2(0, 1) → L2(0, 1) has a bounded inverse. Thus, λ ∈ σ(L)\0 if and only if

1 + λ ∈ σ(K)\{1}. Since K(s, ζ) = K(ζ, s) = K(ζ, s) and K ∈ C([0, 1] ×
[0, 1]), K is a self-adjoint compact operator. By the spectral theorem for
compact self-adjoint operators, we can immediately conclude (1), (2) and
λ ∈ σ(L)\{−1, 0} if and only if there exists µ ∈ L2(0, 1)\{0} satisfying

−(1 + λ)µ(s) +

ˆ 1

0
K(s, ζ)µ(ζ) = 0. (3.18)

But for λ ∈ C\{0}, (L − λI)(µ, µ◦) = (0, 0) if and only if µ◦ = 0 and µ
satisfies (3.18). Thus, every λ ∈ σ(L)\{−1, 0} is an eigenvalue.

Let λ ∈ σ(L)\{−1, 0}. We claim that dimker(L − λI) = 1. Let θλ, ψλ ∈
C2([0, 1]) be the fundamental system for the linear differential equation

(1 + λ)θ′′(s) + γ[cos φ(s)]θ(s) = 0, (3.19)

satisfying

θλ(0) = 0, θ′λ(0) = 1,

ψλ(0) = 1, ψ′
λ(0) = 0.

By linearity, every solution to (3.19) is a linear combination of θλ and ψλ.
If (µ, µ◦) ∈ L2(0, 1) × R satisfies (L − λI)(µ, µ◦) = (0, 0), then µ◦ = 0 and
µ satisfies (3.18). Thus, µ ∈ C1([0, 1]) and θ(s) =

´ s

0 µ(σ)dσ verifies (3.19)
(by differentiating (3.18)) and θ(0) = 0. Thus, θ = θ′(0)θλ so µ = θ′(0)θ′λ
and ker(L − λI) ⊂ span (θ′λ, θ

′
λ(1)). This proves the claim (and thus, (3)).

What remains is to prove (4). Let θ0 ∈ C2([0, 1]) be the solution to (3.16).
Then (µ0, µ

◦
0) = (θ′0, θ

′
0(1)) verifies

−µ0(s) + µ◦0 +

ˆ 1

0
K(s, ζ)µ0(ζ)dζ = 0,
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which proves kerL 6= {0}. The proof that kerL = span(θ′0, θ
′
0(1)) is nearly

identical to that showing ker(L−λI) = span(θ′λ, θ
′
λ(1)) for λ /∈ σ(L)\{−1, 0}

and is omitted. �

The following proposition elucidates the underlying source of the kernel
of L and provides a simple orbital asymptotic stability statement.

Proposition 3.3. Assume that |D̂(ν, ν◦)| < Θ(ν◦), and let θ0 be as in
Proposition 3.2.

(1) There exist ǫ > 0 and a smooth embedded curve

(−ǫ, ǫ) ∋ α 7→ (ν(α), ν◦(α)) ∈ L2(0, 1) ×R

such that (ν(0), ν◦(0)) = (ν, ν◦), for all α ∈ (−ǫ, ǫ), (ν(α), ν◦(α)) is
an equilibrium point of (3.6), and d

dα
(ν(α), ν◦(α))|α=0 = (θ′0, θ

′
0(1)).

(2) If σ(L) ∩ {λ | Reλ > 0} = ∅, then there exist δ > 0, C > 0 and
β > 0 such that if

‖(µ0, µ
◦
0)− (ν(0), ν◦(0))‖L2(0,1)×R < δ,

then there exists α∞ ∈ (−ǫ, ǫ) such that the solution (µ, µ◦) ∈
C1([0,∞);L2(0, 1) × R) to (3.6) with initial data (µ0, µ

◦
0) satisfies

‖(µ(·, t), µ◦(t))− (ν(α∞), ν◦(α∞))‖L2(0,1)×R ≤ Cδe−βt.

Proof. (1) For α ∈ R, let φα ∈ C2([0, 1]) be the unique solution to

φ′′α(s) + γ sinφα(s) = 0,

φα(0) = 0, φ′α(0) = φ′(0) + α. (3.20)

We note that φ0(s) = φ(s) =
´ s

0 ν(σ)dσ. Since |D̂(ν, ν◦)| < Θ(ν◦), contin-
uous dependence on initial conditions implies that there exists ǫ > 0 such
that for all α ∈ (−ǫ, ǫ),

|D̂(φ′α, φ
′
α(1))| < Θ(φ′α(1)).

Thus, (ν(α), ν◦(α)) = (φ′α, φ
′
α(1)) : (−ǫ, ǫ) → L2(0, 1) × R is a smooth

embedded curve consisting entirely of equilibrium points of (3.6). Finally,

by (3.20) we see that φ̇ = ∂φ
∂α

|α=0 verifies

φ̇′′(s) + γ[cos φ(s)]φ̇(s) = 0,

φ̇(0) = 0, φ̇′(0) = 1,

and thus, φ̇ = θ0 so d
dα

(ν(α), ν(α)◦)|α=0 = (θ′0, θ
′
0(1)).

(2) The statement follows from (1) and a general asymptotic stability
result discussed on p. 108-109 of [7]. For completeness, we will briefly sketch
the details. By redefining F we may assume without loss of generality that
(ν, ν◦) = (0, 0), and rewrite (3.6) as

∂t(µ(·, t), µ
◦(t)) = L(µ(·, t), µ◦) +G(µ(·, t), µ◦(t)), (3.21)
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where L = DF (0, 0) and G(µ, µ◦) = F (µ, µ◦) − L(µ, µ◦) is continuously
Fréchet differentiable and satisfies G(0, 0) = (0, 0) and DG(0, 0) = 0 (as
operators). We decompose

L2(0, 1) ×R = span(θ′0, θ
′
0(1))⊕H

where H is the image of the spectral projection Π : L2(0, 1)×R → L2(0, 1)×
R associated to σ(L)\{0}. We then write

(µ(·, t), µ◦(t)) = (ν(α(t)), ν◦(α(t))) + (ξ(·, t), ξ◦(t)),

where (ξ, ξ◦) ∈ H, and insert this ansatz into (3.21), obtaining evolution
equations for α and (ξ, ξ◦). Since G(0, 0) = (0, 0), DG(0, 0) = 0 (as op-
erators) and L|H has spectrum contained in a compact subset of (−∞, 0),
Duhamel’s principle applied to the equation satisfied by (ξ, ξ◦)) implies that
if supt∈[0,T ] |α(t)| < 2δ with δ small, then for all t ∈ [0, T ],

‖(ξ(·, t), ξ◦(t))‖L2(0,1)×R ≤ C1e
−βt‖(ξ(·, 0), ξ◦(0))‖L2(0,1)×R,

where C1 is an absolute constant. This then implies via the equation satisfied
by α that |∂tα(t)| ≤ C2e

−βt‖(ξ(·, 0), ξ◦(0))‖L2(0,1)×R where C2 is an absolute
constant. A bootstrap argument then concludes the proof. �

We remark that Proposition 3.3 (1) generalizes our observation at the
start of this subsection that there always exist nontrivial equilibrium points,

and Proposition 3.3 (2) applies to (ν, ν◦) = (0, 0) as long as γ ≤ π2

4 , the
critical value for buckling of the straight rod. An interesting question is
the existence and local structure (in L2(0, 1) × R) of the set of limiting
equilibrium points satisfying

∣

∣

∣

ˆ 1

0
ν(s)ds− ν◦ − κ′(ν◦)

∣

∣

∣
= Θ(ν◦).

The answer should be highly dependent on the specific choices of κ and Θ
and will not be addressed here.

4. Quasi-static Eulerian Strut: Asymptotics

In this final section, we prove that every solution (µ(·, t), µ◦(t)) to (3.6)
converges to an equilibrium point of (3.6) in L2(0, 1) ×R as t→ ∞.

4.1. Liapunov function. In the proof of Proposition 3.1 we used that

V (µ(·, t), µ◦(t)) =
1

2

ˆ 1

0
(µ(s, t)− µ◦(t))2ds+ κ(µ◦(t))

+ γ

ˆ 1

0
cos θ(s, t)ds,
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where θ(s, t) =
´ s

0 µ(σ, t)dσ, is a Liapunov function:

d

dt
V (µ(·, t), µ◦(t)) = −

ˆ 1

0
µ2t (s, t)ds − |D̂(µ(·, t), µ◦(t))||µ◦t (t)| (4.1)

≤ 0.

Lemma 4.1. Let (ν, ν◦) ∈ C1([0,∞);L2(0, 1) × R) satisfy (3.6). If there
exists T > 0 such that for all t ∈ [0, T ]

ˆ 1

0
ν2t (s, t)ds + |D̂(ν(·, t), ν◦(t))||ν◦t (t)| = 0, (4.2)

then (ν(·, t), ν◦(t)) is constant in time, and (ν(·, 0), ν◦(0)) is an equilibrium
point of (3.6).

Proof. It is clear from (4.2) that our assumptions immediately imply that
νt(·, t) = 0 for all t ∈ [0, T ]. Suppose that there exists a time t0 ∈ [0, T ] such
that

|D̂(ν(·, t0), ν
◦(t0))||ν

◦
t (t0)| = 0

but ν◦t (t0) 6= 0. Then |D̂(ν(·, t0), ν
◦(t0))| = 0 which by (3.3) implies that

ν◦t (t0) = 0, a contradiction. Thus, νt(t) = 0 for all t ∈ [0, T ]. By (3.6) we
conclude that (ν(·, 0), ν◦(0)) is an equilibrium point of (3.6), so by unique-
ness of solutions to (3.6), (ν(·, t), ν◦(t)) = (ν(·, 0), ν◦(0)) for all t. �

4.2. Convergence to an equilibrium point. Our first step towards prov-
ing the convergence of a solution to (3.6) to an equilibrium point of (3.6) is
proving the precompactness of the trajectory in L2(0, 1) × R.

Lemma 4.2. Let (µ, µ◦) ∈ C1([0,∞);L2(0, 1) × R) solve (3.6). Then

K = {(µ(·, t), µ◦(t)) | t ∈ [0,∞)}

is precompact in L2(0, 1) × R.

Proof. By (3.8) it follows that {µ◦(t) | t ∈ [0,∞)} is precompact in R. Let

ξ(s, t) =

ˆ t

0
e−(t−τ)µ◦(τ)dτ + γ

ˆ t

0

ˆ 1

s

e−(t−τ) sin θ(σ, τ)dσdτ

where, as before, θ(s, t) =
´ s

0 µ(ζ, t)dζ. Then (3.2) implies that for all (s, t)

µ(s, t) = e−tµ0(s) + ξ(s, t),

so it suffices to show that {ξ(·, t) | t ∈ [0,∞)} is precompact in L2(0, 1).
By (3.8) and repeated use of the triangle inequality we deduce that for

all (s, t)

|ξ(s, t)| ≤

ˆ t

0
e−(t−τ)C + γ

ˆ t

0

ˆ 1

s

e−(t−τ)dσdτ ≤ C + γ.
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For all 0 ≤ s1 ≤ s2 ≤ 1 and t we also obtain

|ξ(s2, t)− ξ(s1, t)| =
∣

∣

∣
γ

ˆ t

0

ˆ s2

s1

e−(t−τ) sin θ(σ, τ)dσdτ
∣

∣

∣

≤ γ

ˆ t

0

ˆ s2

s1

e−(t−τ)dσdτ = γ|s2 − s1|.

By the Arzela-Ascoli theorem we conclude that {ξ(·, t) | t ∈ [0,∞)} is
precompact in C([0, 1]) ⊂ L2(0, 1) as desired. �

Let (µ0, µ
◦
0) ∈ L2(0, 1) × R, and let (µ, µ◦) ∈ C1([0,∞);L2(0, 1) × R) be

the unique solution to (3.2) and (3.3) with (µ(·, 0), µ◦(0)) = (µ0, µ
◦
0). We

denote the evolution operator by S(t)(µ0, µ
◦
0) so that

S(t)(µ0, µ
◦
0) = (µ(·, t), µ◦(t)).

We recall the notion of the ω-limit set relative to the semi-flow S(t): (ν, ν◦) ∈
ω(µ0, µ

◦
0) if and only if there exists a sequence tn ≥ 0 such that tn → ∞ and

S(tn)(µ0, µ
◦
0) → (ν, ν◦) in L2(0, 1) × R. We now show that the ω-limit set

consists of equilibrium points.

Lemma 4.3. For all (µ0, µ
◦
0) ∈ L2(0, 1)×R, ω(µ0, µ

◦
0) is a nonempty subset

of equilibrium points of (3.6).

Proof. By Lemma 4.2 it follows that ω(µ0, µ
◦
0) 6= ∅. Let (ν0, ν

◦
0) ∈ ω(µ0, µ

◦
0).

Then there exists tn → ∞ such that

(µ(·, tn), µ
◦(tn)) = S(tn)(µ0, µ

◦
0) → (ν0, ν

◦
0 ).

By continuous dependence on initial conditions (3.10), for all T ∈ [0,∞),

lim
n→∞

sup
t∈[0,T ]

‖(µ(·, tn + t), µ◦(tn + t))− S(t)(ν0, ν
◦
0)‖L2(0,1)×R

= 0. (4.3)

Let (ν(·, t), ν◦(t)) = S(t)(ν0, ν
◦
0). We now show that (ν0, ν

◦
0 ) is an equilib-

rium point of (3.6) i.e. (ν(·, t), ν◦(t)) = (ν0, ν
◦
0) for all t. By Lemma 4.1

V (µ(·, t), µ◦(t)) is non increasing and bounded below. Thus,

ℓ = lim
t→∞

V (µ(·, t), µ◦(t))

exists. Let t ∈ [0,∞). By (4.3), for all s ∈ [0, 1]

lim
n→∞

ˆ s

0
µ(σ, tn + t)dσ =

ˆ s

0
ν(σ, t)dσ.

By the dominated convergence theorem we conclude that

lim
n→∞

ˆ 1

0
cos θ(s, tn + t)ds = lim

n→∞

ˆ 1

0
cos

(

ˆ s

0
µ(σ, tn + t)dσ

)

ds

=

ˆ 1

0
cos

(

ˆ s

0
ν(σ, t)dσ

)

.
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By (4.3) we also have

lim
n→∞

1

2

ˆ 1

0
(µ(s, tn + t)− µ◦(tn + t))2ds + κ(µ◦(tn + t))

=
1

2

ˆ 1

0
(ν(s, t)− ν◦(t))2ds+ κ(ν◦(t)).

Thus,

ℓ = lim
n→∞

V (µ(·, tn + t), µ◦(tn + t)) = V (ν(·, t), ν◦(t)),

for all t ∈ [0,∞). By (4.1) and Lemma 4.1 we conclude that νt(·, t) = 0 and
ν◦t (t) = 0 for all t ∈ [0,∞) as desired. �

We will use compactness of the trajectory, the spectral information from
Section 3 (Proposition 3.2) and the following convergence theorem for dy-
namical systems to finish the proof of our convergence result for solutions
to (3.6). The general set-up is as follows.

Let X be a Banach space and F ∈ C(X;X). Let x ∈ X, and let ωF (x)
denote the ω-limit set of x relative to F : z ∈ ωF (x) if and only if there exists
nk → ∞ such that Fnk(x) → z. The set of fixed points of F is denoted
Fix(F ) = {y ∈ X | F (y) = y}. We assume the following hypotheses:

• ωF (x) ⊆ Fix(F ),
• y ∈ ωF (x) and there exists a neighborhood U of y such that F |U :
U → X is continuously Fréchet differentiable,

• σ(DF (y)) = σu ∪ σc ∪ σs where, σu, σc, and σs are closed subsets
of {λ ∈ C | |λ| > 1}, {λ ∈ C | |λ| = 1}, and {λ ∈ C | |λ| < 1}
respectively.

Let Xi be the image of the spectral projection of DF (y) associated with
the spectral set σi, i = u, c, s. Brunovský and Polácik proved the following
in [2].

Theorem 4.4 (Theorem B [2]). Assume that either Xu is finite-dimensional
or the trajectory of x, {Fn(x)}∞n=0, is precompact in X and one of the fol-
lowing properties hold:

(a) dimXc = 1 and the trajectory is precompact,
(b) dimXc = m <∞ and there is a submanifold M ⊆ X with dimM =

m such that y ∈M ⊆ Fix(F )

Then ωF (x) = {y}.

We remark that the proof of Theorem 4.4 essentially reduces to the case
of assuming (b). Assuming (b) and ωF (x) 6= {y}, one can prove, using
invariant manifold theory, that the local center manifold W c

loc = M , and
ωF (x) contains a point distinct from y in the local (strong) unstable manifold
W u

loc (see Theorem A of [2]). This contradicts the fact that ωF (x) ⊆ Fix(F ),
and thus, ωF (x) = {y}.
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Theorem 4.5. Let (µ0, µ
◦
0) ∈ L2(0, 1)×R. Then there exists an equilibrium

point (ν, ν◦) ∈ L2(0, 1) × R of (3.6) such that ω(µ0, µ
◦
0) = {(ν, ν0)}, i.e.

lim
t→∞

S(t)(µ0, µ
◦
0) = (ν, ν◦).

Proof. We will apply Theorem 4.4 in conjunction with Proposition 3.2 and
Lemma 4.2. Consider the time-1 map:

Φ(µ0, µ
◦
0) = S(1)(µ0, µ

◦
0), (µ0, µ

◦
0) ∈ L2(0, 1) × R. (4.4)

Let ωΦ(µ0, µ
◦
0) denote the ω-limit set of the trajectory {Φn(µ0, µ

◦
0)}

∞
n=0. By

(4.4) and the semigroup property of S(t), we clearly have ωΦ(µ0, µ
◦
0) ⊆

ω(µ0, µ
◦
0). We claim that ωΦ(µ0, µ

◦
0) ⊇ ω(µ0, µ

◦
0) and thus,

ωΦ(µ0, µ
◦
0) = ω(µ0, µ

◦
0). (4.5)

Suppose that there exist nk ∈ N and tk ∈ [nk − 1, nk] such that tk → ∞ and

S(tk)(µ0, µ
◦
0) → (ν, ν◦).

By Lemma 4.3, (ν, ν◦) is an equilibrium point of (3.6). By continuous de-
pendence on initial conditions (3.10), we have

0 = lim
k→∞

sup
t∈[0,1]

∥

∥S(t)S(tk)(µ0, µ
◦
0)− S(t)(ν, ν◦)

∥

∥

L2(0,1)×R

= lim
k→∞

sup
t∈[0,1]

∥

∥S(tk + t)(µ0, µ
◦
0)− (ν, ν◦)

∥

∥

L2(0,1)×R
.

In particular, we conclude that

0 = lim
k→∞

∥

∥S(nk)(µ0, µ
◦
0)− (ν, ν◦)

∥

∥

L2(0,1)×R

= lim
k→∞

∥

∥Φnk(µ0, µ
◦
0)− (ν, ν◦)

∥

∥

L2(0,1)×R
,

and thus, (ν, ν◦) ∈ ωΦ(µ0, µ
◦
0), proving (4.5).

By Theorem 3.4.4 of [7]) we have that Φ : L2(0, 1) × R → L2(0, 1) × R is
continuously Fréchet differentiable with

[DΦ(µ0, µ
◦
0)](ξ0, ξ

◦
0) = (ξL(·, 1), ξ

◦
L(1)),

where (ξL, ξ
◦
L) ∈ C1([0,∞);L2(0, 1)×R) solve the linearized evolution equa-

tions about (µ(·, t), µ◦(t)) = S(t)(µ0, µ
◦
0):

∂t(ξL(·, t), ξ
◦
L(t)) = [DF (µ(·, t), µ◦(t))](ξL(·, t), ξ

◦
L(t))

with initial conditions (ξL(·, 0), ξL(·, 0)) = (ξ0, ξ
◦
0). In particular, if (ν, ν◦) ∈

L2(0, 1) × R is an equilibrium point of (3.6), then

[DΦ(ν, ν◦)](ξ0, ξ
◦
0) = eL(ξ0, ξ

◦
0) (4.6)

where L = DF (ν, ν◦) is the Fréchet derivative of F discussed in Section 3
(see (3.15)).

Let (µ0, µ
◦
0) ∈ L2(0, 1) × R. By Lemma 4.2, (4.5) and Lemma 4.3 the

trajectory {Φn(µ0, µ
◦
0)}

∞
n=0 is precompact in L2(0, 1) × R and ωΦ(µ0, µ

◦
0) is

a nonempty subset of equilibrium points (3.6) i.e. fixed points of Φ. Let
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(ν, ν◦) ∈ ωΦ(µ0, µ
◦
0) be an equilibrium point. Then by Proposition 3.2 and

(4.6)

σ(DΦ(ν, ν◦)) = eσ(L) = σu ∪ {1} ∪ σs

where σu is a finite subset of (1,∞) and σs is a closed subset of [0, 1).
By Theorem 4.4, we conclude that ω(µ0, µ

◦
0) = ωΦ(µ0, µ

◦
0) = {(ν, ν◦)} as

desired. �
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