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ABSTRACT
The black box algorithm for separating the numerator from
the denominator of a multivariate rational function can be
combined with sparse multivariate polynomial interpolation
algorithms to interpolate a sparse rational function. Ran-
domization and early termination strategies are exploited
to minimize the number of black box evaluations. In addi-
tion, rational number coefficients are recovered from modu-
lar images by rational vector recovery. The need for separate
numerator and denominator size bounds is avoided via self-
correction, and the modulus is minimized by use of lattice
basis reduction, a process that can be applied to sparse ra-
tional function vector recovery itself. Finally, one can deploy
the sparse rational function interpolation algorithm in the
hybrid symbolic-numeric setting when the black box for the
rational function returns real and complex values with noise.
We present and analyze five new algorithms for the above
problems and demonstrate their effectiveness on a bench-
mark implementation.

Categories and Subject Descriptors: I.2.1 [Symbolic
and Algebraic Manipulation]: Algorithms

General Terms: algorithms, experimentation

Keywords: sparse rational function interpolation, early
termination, hybrid symbolic-numeric computation, ratio-
nal vector recovery, lattice basis reduction

1. INTRODUCTION
In [16] Kaltofen and Trager present a general method for

evaluating separately the numerator and denominator of a
rational function in n variables given by “black box” pro-
cedure that evaluates the rational function at a point (see
Figure 1).

It is assumed that the black box procedure returns ∞ if
g(p1, . . . , pn) = 0. The separation algorithm computes the
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f, g ∈ K[x1, . . . , xn],GCD(f, g) = 1
K an arbitrary field

f

g
(p1, . . . , pn) ∈ K ∪ {∞}

−−−−−−−−−−−−−−−−−−−→

Figure 1: Black box for rational function evaluation

values of f(p1, . . . , pn)/c ∈ K and g(p1, . . . , pn)/c ∈ K for
p1, . . . , pn in the coefficient field K, where c ∈ K \ {0} is a
fixed constant that selects the same associates of the numer-
ator and denominator polynomials for all evaluations. It is
observed in [16] that the evaluation procedure can be com-
bined with any sparse polynomial interpolation algorithm to
compute the sparse representations of f and g, namely

f/c =

tf
X

j=1

ψjx
dj,1

1 · · ·xdj,n
n , g/c =

tg
X

k=1

χkx
ek,1

1 · · ·xek,n
n ,

where ψj , χk ∈ K \ {0}. Here we consider the sparse poly-
nomial interpolation algorithm in [13], which minimizes the
number of polynomial evaluations using the early termina-
tion paradigm. Our goal is to minimize the number of ratio-
nal function evaluations in practice. Other work on sparse
rational function interpolation is [8], which focuses on gen-
eral decidability and complexity questions.

The combination of both the separation and the early ter-
mination algorithms allows two major speedups. First, in
[16] a homotopy is used so that the value of f/c(p1, . . . , pn)
can be computed even when g(p1, . . . , pn) = 0. However, the
algorithm in [13] can be performed for points pτ

1 , . . . , p
τ
i−1, p

κ
i ,

pi+1, . . . , pn where pi (1 ≤ i ≤ n) that are uniformly ran-
domly selected from a sufficiently larger finite subset S ⊆ K.
We present the probabilistic analysis for a separation pro-
cedure without a homotopy for such random points (see
Lemma 2.2). The change avoids the interpolation of a sec-
ond variable. Second, the sparse interpolation algorithm of
[13] is executed simultaneously on f/c and g/c. Thus the
early termination pruning techniques can be extended for
obtaining numerator and denominator values: if a (partial)
numerator or denominator polynomial is known to be com-
plete, further polynomial values can be computed directly
without rational recovery (see Section 3).

In the spirit of the early termination paradigm, we also
improve our technique for determining the numerator de-
gree deg(f) and the denominator degree deg(g) (see Case d̄ ≥
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deg(f) and ē ≥ deg(g) on page ). We have implemented our
algorithm and demonstrate the performance on a selection
of sparse rational functions (see Section 5). An additional
place for improvement arises when recovering numerator and
denominator polynomials with integer coefficients, i.e., the
case K = Q. The algorithm in [13] uses modular arith-
metic (K = ZM , where M is prime) and rational number
recovery [27, 15]. It is possible to probabilistically recover
the common denominator of the rational coefficients with-
out individual numerator and denominator bounds [21], but
then M needs to be larger than is necessary with accurate
bounds. Here we take advantage of the fact that several
rational numbers are recovered simultaneously and employ
the algorithm by [15] in a self-correcting manner, again with-
out any individual numerator and denominator size bounds.
Furthermore, we have implemented a rational vector recov-
ery procedure based on Largarias’s [20] good simultaneous
diophantine approximation algorithm. Via lattice basis re-
duction, we can for certain inputs further reduce the size
of the modulus M . We describe our two algorithms in Sec-
tion 4.

Finally, we investigate how numerical sparse interpola-
tion algorithms [7] can be used together with our approach
on numerical rational function black boxes, i.e., procedures
that return the value of the rational function at a point as
a floating point number that is an approximation of the ex-
act value (contains “noise”). By making necessary changes
in the procedure for separately evaluating the numerator
and denominator, we are able to recover low degree sparse
numerator and sparse denominator polynomials from ap-
proximate values. We describe our approximate algorithm
and some remaining issues in Section 6. Our approximate
algorithm is related to numeric multivariate rational inter-
polation (see, e.g., [1]). We note that our methods do not
fit a set of given data points, which in the multivariate case
leads to multiple solutions, but recovers a sparse rational
function uniquely by evaluating at certain points.

2. EVALUATION OF THE NUMERATOR
AND DENOMINATOR

We first present an algorithm that returns the values at
certain random points of fixed associates of the numerator
and denominator polynomial for the black box of the ratio-
nal function f/g. The algorithm makes use of a univariate
rational function recovery procedure, which we summarize
for later reference in the following lemma [16, Lemma 1 on
p. 315]

Lemma 2.1. Let d̄ and ē be non-negative integers, and let
F (X), G(X), H(X) ∈ K[X], K an arbitrary field, deg(H) <
d̄+ē+1, gcd(F,G) = 1; furthermore, let ik, 1 ≤ k ≤ d̄+ē+1,
be not necessarily distinct elements in K such that

F ≡ GH (mod (X − i1) · · · (X − id̄+ē+1)).

Define h0(X) := (X − i1) · · · (X − id̄+ē+1), δ0 := d̄+ ē+ 1,
and h1(X) := H(X), δ1 := deg(H). Now let hl(X), ql(X) ∈
K[X] be the l-th remainders and quotients respectively, in
the Euclidean polynomial remainder sequence

hl−2(X)=ql(X)hl−1(X)+hl(X), δl:= deg(hl) < δl−1, l ≥ 2.

In the exceptional case H = 0 the sequence is defined to be
empty.

Finally, let wl(X), gl(X) ∈ K[X] be the multipliers in the
extended Euclidean scheme wlh0 + glh1 = hl, namely,

w0 := g1 := 1, w1 := g0 := 0,

wl := wl−2 − qlwl−1, gl := gl−2 − qlgl−1 for l ≥ 2.

Then there exists an index j, 1 ≤ j, such that δj ≤ d̄ < δj−1.
For that index we have

hj ≡ gjH (mod (X − i1) · · · (X − id̄+ē+1))
and deg(gj) ≤ ē.

ff

(1)

Furthermore, if d̄ ≥ deg(F ) and ē ≥ deg(G) then F =
chj, G = cgj for some c ∈ K.

Our idea is similar to the one in [10, 16]. We obtain
the values f(p1, . . . , pn)/c ∈ K and g(p1, . . . , pn)/c ∈ K at
p1, . . . , pn ∈ K by selecting once and for all random shift
values B2, . . . , Bn ∈ K and by performing univariate rational
function recovery for

f(X,B2X −B2p1 + p2, . . . , BnX −Bnp1 + pn)

g(X,B2X −B2p1 + p2, . . . , BnX −Bnp1 + pn)
. (2)

Here the shift values Bi with high probability guarantee
that the leading coefficient of the denominator g(X,B2X −
B2p1 + p2, . . . , BnX − Bnp1 + pn), say, is independent of
the pi. By making that leading coefficient monic one then
can select the same associates for any point p1, . . . , pn. The
values are computed by the evaluation X = p1. Aside from
our condition for the Bi, we also need to guarantee that
the fraction (2) cannot be reduced by a univariate polyno-
mial GCD (and hence the denominator does not evaluate
to 0). That we can enforce probabilistically by choosing the
points p1, . . . , pn randomly. The sparse polynomial interpo-
lation algorithm in [13], which we will deploy in Section 3, re-
quires the polynomial values at pτ

1 , . . . , p
τ
i−1, p

κ
i , pi+1, . . . , pn

as well. Our next lemma shows that those also remain us-
able with high probability.

Lemma 2.2. Let f, g ∈ K[x1, . . . , xn] with GCD(f, g) = 1,
let d = deg(f) and e = deg(g) and let t ≥ 1. Further-
more, let B2, . . . , Bn ∈ K be such that λ1(B2, . . . , Bn) 6=
0 where λ1(β2, . . . , βn) is the leading coefficient in X of
g(X,β2X, . . . , βn X) ∈ (K[β2, . . . , βn])[X]. Finally, for J ≥
1 and t ≥ 1 let

{(τj,1, . . . , τj,n) | 1 ≤ τj,k ≤ t for all 1 ≤ j ≤ J, 1 ≤ k ≤ n},
(τ1,1, . . . , τ1,n) = (1, . . . , 1)

be a set of J distinct exponent vectors. Suppose p1, . . . , pn ∈
S are chosen randomly and uniformly from a finite set S ⊆ K

of cardinality |S|. In addition, for j ≥ 1 let

f1, j(X) = f(X,B2X −B2p
τj,1

1 + p
τj,2

2 , . . . ,
BnX −Bnp

τj,1

1 + p
τj,n
n ),

g1, j(X) = g(X,B2X −B2p
τj,1

1 + p
τj,2

2 , . . . ,
BnX −Bnp

τj,1

1 + p
τj,n
n ).
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>

>

=

>

>

;

(3)

Then we have the following probability estimate:

Prob(GCD(f1, j(X), g1, j(X)) = 1 for all 1 ≤ j ≤ J)

≥ 1− 2((J−1)t+1) deg(f) deg(g)

|S|
Proof: We first settle the case J = 1. For new variables

X, α1, . . . , αn we define the map:

φ1 : K[x1, x2, . . . , xn, α1]→ K[X,α1, . . . , αn]



where

x1 7→ X,

xi 7→ Bi(X − α1) + αi for all 2 ≤ i ≤ n,
α1 7→ α1.

Namely,

φ1(h(x1, x2, . . . , xn, α1))

= h(X,B2(X − α1) + α2, . . . , Bn(X − α1) + αn, α1).

The map φ1 is a ring isomorphism by virtue of the inverse
map

φ−1
1 (X) = x1,

φ−1
1 (α1) = α1,

φ−1
1 (αi) = xi −Bi(x1 − α1) for all 2 ≤ i ≤ n.

Namely,

φ−1
1 (h(X,α1, . . . , αn))

= h(x1, α1, x2 −B2(x1 − α1), . . . , xn −Bn(x1 − α1)).

Next, we prove that GCD(φ1(f), φ1(g)) = 1. Suppose

GCD(φ1(f), φ1(g)) = ĥ1. Then we have φ1(f) = f̂1ĥ1,

φ1(g) = ĝ1ĥ1, for f̂1, ĝ1, ĥ1 ∈ K[X,α1, . . . , αn]. We know

that f = φ−1
1 (f̂1)φ

−1
1 (ĥ1) and g = φ−1

1 (ĝ1)φ
−1
1 (ĥ1). Now the

variable α1 vanishes in the polynomials f and g. Therefore,
α1 also vanishes in the polynomials φ−1

1 (f̂1), φ
−1
1 (ĝ1), φ

−1
1 (ĥ1),

i.e, φ−1(f̂1), φ
−1(ĝ1), φ

−1(ĥ1) ∈ K[x1, . . . , xn]. Since f and

g just have trivial GCD, we must have that φ−1
1 (ĥ1) ∈ K

and thus ĥ1 ∈ K.
Now consider the Sylvester resultant

ρ1(α1, . . . , αn) = ResX(φ1(f), φ1(g)) ∈ K[α1, . . . , αn].

Because GCD(φ1(f), φ1(g)) = 1, even in K[X,α1, . . . , αn],
we have ρ1 6= 0. Now suppose that for p1, . . . , pn ∈ K

we have ρ1(p1, . . . , pn) 6= 0. First, we have f1,1 6= 0 and
g1,1 6= 0, where f1,1 and g1,1 are defined in (3). We claim
that GCD(f1,1, g1,1) = 1. Here we need the condition on the
Bi, since that condition guarantees that the leading coeffi-
cient λ1(B2, . . . , Bn) of g1,1 is independent of p1, . . . , pn and
therefore, considering the corresponding Sylvester matrices,
we get

ResX(f1,1, g1,1) = ± ρ1(p1, . . . , pn)

λ1(B2, . . . , Bn)ν
6= 0,

where ν = degX(φ1(f))− degX(f1,1), which establishes our
claim.

The probability estimate for t = 1 now follows from the
Schwartz-Zippel lemma [28, 24, 3] and the degree estimate
deg(ρ1) ≤ 2 deg(f) deg(g).

Finally, we consider arbitrary J . As before, for j ≥ 1 and
h ∈ K[x1, x2, . . . , xn, α1] we introduce the map

φj(h(x1, x2, . . . , xn, α1)) = h(X,B2(X − ατj,1

1 ) + α
τj,2

2 , . . . ,

Bn(X − ατj,1

1 ) + α
τj,n
n , α

τj,1

1 ).

and the resultant

ρj(α1, . . . , αn) = ResX(φj(f), φj(g)) ∈ K[α1, . . . , αn].

Now suppose that the leading coefficient in X of φ1(f) is
σ ∈ K[α1, . . . , αn] \ {0}. Then the leading coefficient in X

of φj(f) is σ(α
τj,1

1 , . . . , α
τj,n
n ), because the latter polyno-

mial remains non-zero. Thus degX(φj(f)) = degX(φ1(f)),
ρj(α1, . . . , αn) = ρ1(α

τj,1

1 , . . . , α
τj,n
n ) 6= 0 and

ResX(f1, j , g1, j) = ±ρj(p1, . . . , pn)/λ1(B2, . . . , Bn)µ

= ±ρ1(p
τj,1

1 , . . . , p
τj,n
n )/λ1(B2, . . . , Bn)µ,

where µ = degX(φj(f))− degX(f1, j). Therefore, any point

p1, . . . , pn satisfies our lemma if
QJ

j=1 ρ1(p
τj,1

1 , . . . , p
τj,n
n ) 6=

0. The probability estimate follows from the degree estimate
deg(ρ1(α

τj,1

1 , . . . , α
τj,n
n )) ≤ 2tdeg(f) deg(g) for j ≥ 2. 2

We can now state our evaluation algorithm, which includes
a method for determining the degrees of the numerator and
denominator polynomials.

Algorithm Evaluation of Numerator and Denominator

Input: ◮
f(x1,x2,...,xn)
g(x1,x2,...,xn)

∈ K(x1, x2, . . . , xn) input as a black

box (see above)
◮ B2, . . . , Bn: n − 1 shift elements that are ran-

domly chosen from a sufficiently large finite set
S1 ⊆ K

◮ p1, . . . , pn: n evaluation points that are randomly
chosen from a sufficiently large finite set S2 ⊆ K

◮ d̄, ē: degree bounds d̄ ≥ deg(f) and ē ≥ deg(g)
◮ d, e (optional): the degrees of f and g, respec-

tively (with high probability)
◮ τ1, . . . , τn: a given exponent vector with 1 ≤ τi ≤

min(d̄, ē)
Output: ◮ the value of f(pτ1

1 , . . . , p
τn
n )/c and g(pτ1

1 , . . . , p
τn
n )

/c (with high probability), where c is the leading
coefficient of g(X,B2X, . . . , BnX)
(with high probability)

◮ or “failure,” in which case the random values
input are diagnosed as unusable

The algorithm performs a Cauchy interpolation (rational
function recovery) for

f1, j(X)/g1, j(X) mod (X − i1) · · · (X − id+e+1),

where f1, j and g1, j are defined in (3) for (τj,1, . . . , τj,n) =
(τ1, . . . , τn) and il ∈ K are suitable values. After mak-
ing g1, j monic, the numerator and denominator values are
f1, j(p

τ1

1 ) and g1, j(p
τ1

1 ). From Lemma 2.2, we know that
GCD(f1, j , g1, j) = 1 in K[X] and therefore the Cauchy in-
terpolation algorithm recovers the proper images with high
probability.

Case deg(f) and deg(g) are given:

ev1 Compute (possibly in parallel) d+e+1 distinct elements
i1, . . . , id+e+1 ∈ K and

Al =
f

g
(il, B2(il−pτ1

1 )+pτ2

2 , . . . , Bn(il−pτ1

1 )+pτn
n ) 6=∞

for all 1 ≤ l ≤ d+e+1.

If deg(g1, j) = deg(g), i.e., the shift points B2, . . . , Bn

preserve the denominator degree, at most d + 2e + 1
elements in K need to be tried since there are at most
e roots of g1, j(X).

If more than e values in K yield∞ when evaluating the
rational function black box return with “failure.” Ei-
ther the degrees are incorrect, or the projection points
B2, . . . , Bn and pτ1

1 , . . . , p
τn
n are unlucky, or the black

box does not evaluate a rational function.



ev2 By interpolation, compute a polynomial h1(X) ∈ K[X]
such that h1(il) = Al for all 1 ≤ l ≤ d + e + 1 and
deg(h1) < d+ e+ 1.

ev3 By the extended Euclidean algorithm in Lemma 2.1
compute ĝ, ĥ such that

ĥ ≡ ĝh1 (mod (X−i1) · · · (X−id+e+1)), deg(ĥ) ≤ d.
By construction we have deg(ĝ) ≤ e. If deg(ĝ) < e then
return “failure.”

If GCD(ĝ, ĥ) 6= 1 then return “failure.” In this case,
there is no rational function for the computed points
(see [6, Corollary 5.18]), so again the degrees are in-
correct or the black box does not evaluate a rational
function.

ev4 Return ĥ(pτ1

1 )/c and ĝ(pτ1

1 )/c where c is the leading
coefficient of ĝ.

Case d̄ ≥ deg(f) and ē ≥ deg(g) are given:
We determine the actual degrees by iterating on k = d+e+
1 = 1, 2, . . . In the previous case, e is used to terminate the
search for values il on which g1, j does not vanish. For this
we use the bound ē instead. The numerator degree d is used
in Step ev3. Here we make the following change. First, we
precompute for the threshold η ≥ 1 the rational function
values

Um=
f

g
(um, B2(um−pτ1

1 )+pτ2

2 , . . . , Bn(um−pτ1

1 )+pτn
n )6=∞

for all 1 ≤ m ≤ η,
where um are uniformly randomly chosen from a sufficiently
large finite subset S3 ⊆ K. Again, only η + ē values are
tried before reporting “failure.” Then for each k we con-
sider all remainder/co-factor pairs produced by the extended
Euclidean algorithm, and which satisfy the degree bounds.
A pair is accepted as f1, j/g1, j if it satisfies the input de-
gree bounds, co-primeness, and the corresponding fraction is
equal to Um when evaluating X at um, that for all 1 ≤ m ≤
η. In addition to returning the numerator and denominator
values as in Step ev4, we also return their degrees. The
interpolant h1 of Step ev2 can be incrementally computed
from k to k + 1 using Newton interpolation (the method of
divided differences). Note that the iteration is terminated
in failure if k > d̄+ ē, in which case the inputs are unlucky
or wrong. 2

We have the following probabilistic analysis for our algo-
rithm. Suppose the above algorithm is called J ≥ 1 times,
using a single list of random shift elements B2, . . . , Bn, a
single point p1, . . . , pn and the degrees d, e computed by the
first call with (τ1, . . . , τn) = (1, . . . , 1) and correct degree
bounds d̄, ē. Then the algorithm does not return “failure”
and the returned values are equal the values of f/c and g/c
for all J calls with probability no less than

“

1− deg(g)

|S1|
”

bounds the probability that λ1(B2, . . . , Bn) 6=
0 (see Lemma 2.2)

×
“

1− 2((J−1)t+1) deg(f) deg(g)

|S2|
”

bounds the probability

that all points are usable (Lemma 2.2), conditional on
the event that the shifts Bi work

×
“

1− θ2(d, e, d̄)
“θ1(d, e, d̄, ē)

|S3|
”η”

, where θ1 and θ2 are de-

fined below, bounds the probability that the correct
degrees d, e are computed, conditional on good shifts
and points. A wrong degree is returned if a false uni-
variate continued fraction ĥ/ĝ is accepted as f1,j/g1,j ,
that is we have

(ĥg1,j − f1,j ĝ)(um) = 0 for all 1 ≤ m ≤ η. (4)

The largest degrees which need to be considered are
deg(ĥ) ≤ min(d̄, d+ e) and deg(ĝ) ≤ min(ē, d+ e− 1),
the latter for the last false k = d + e. Now the left
polynomial in (4) has degree no more than

θ1(d, e, d̄, ē) = max(min(d̄, d+e)+e, d+min(ē, d+e−1))

so all um accept one false ĥ/ĝ with probability no
more than (θ1(d, e, d̄, ē)/|S3|)η. There are no more

than θ2(d, e, d̄) =
Pd+e+1

k=1 min(k, d̄ + 1) such fraction
candidates to be considered (for certain cases, one can
lessen the bound using ē). The probability that at
least one such event, namely acceptance of a false can-
didate, occurs is then bounded from above by the sum
of the probabilities for each event.

3. EARLY TERMINATION IN SPARSE RA-
TIONAL FUNCTION INTERPOLATION

We now describe the combination of the early termina-
tion version [13] of Zippel’s [29] sparse multivariate interpo-
lation algorithm with Algorithm Evaluation of Numerator
and Denominator on page . Early termination is used to
minimize the number of polynomial evaluations while keep-
ing the size of the intermediate evaluation points small.
Zippel’s algorithm reconstructs a sparse polynomial, h ∈
K[x1, . . . , xn] say, one variable at a time. A so-called an-
chor point p2, . . . , pn ∈ K is chosen. For i = 1, 2, . . . , n
the univariate images ψe1,...,ei−1

(xi, pi+1, . . . , pn) ∈ K[xi] of
the coefficients ψe1,...,ei−1

(xi, . . . , xn) ∈ K[xi, . . . , xn] of the

non-zero terms xe1

1 · · ·x
ei−1

i−1 in h, viewed as a polynomial in
x1, . . . , xi−1 with coefficient in K[xi, . . . , xn], are computed

by interpolation from values ψe1,...,ei−1
(b

[κ]
i , pi+1, . . . , pn) ∈

K, where b
[κ]
i ∈ K for κ = 1, 2, . . . Those values are found

from h(pτ
1 , . . . , p

τ
i−1, b

[κ]
i , pi+1, . . . , pn) for τ = 0, 1, . . . by

solving a transposed Vandermonde system [2]. Zippel’s [28]
ingenious observation is that for random pi any zero coeffi-
cient of ψe1,...,ei−1

(xi, pi+1, . . . , pn) is with high probability
the value of a zero polynomial, thus reducing the size of the
transposed Vandermonde system to the number of non-zero
terms at stage i− 1. Dı́az and Kaltofen [4] introduce a ho-

mogenizing variable x0 and interpolate h̃(x0, x1, . . . , xn) =
h(x0x1, . . . , x0xn). Then it is known from their degrees in
x0 and x1, . . . , xi, respectively, that terms that do not de-
pend on xi+1, . . . , xn are complete and need not be inter-
polated any further (are “permanently pruned”). Kaltofen
and Lee [13] perform the interpolation of each ψe1,...,ei−1

(xi,
pi+1, . . . , pn) by “racing” both the early termination version
of Newton interpolation and the early termination version
of sparse univariate Ben-Or/Tiwari interpolation [14], that

on the same evaluation points b
[κ]
i = pκ

i . Then low degree
or sparse ψe1,...,ei−1

(xi, pi+1, . . . , pn) can be “temporarily”
or permanently pruned from the interpolation problems at
state i.



When combining the algorithm in [13] with Algorithm
Evaluation of Numerator and Denominator on page we can
take further advantage of temporary pruning and early ter-
mination, namely when all terms of one of the numerator or
denominator polynomials are completed (either temporarily
or permanently). Because in that case, no univariate ratio-
nal fraction recovery is needed for computing the values of
the other remaining polynomial, and a single evaluation of
the black box of the rational function suffices. We present a
brief sketch of our algorithm.

Algorithm Sparse Rational Function Interpolation

Input: ◮
f(x1,x2,...,xn)
g(x1,x2,...,xn)

∈ K(x1, x2, . . . , xn) input as a black

box
◮ (x1, . . . , xn): an ordered list of variables in f/g.
◮ d̄, ē: degree bounds d̄ ≥ deg(f) and ē ≥ deg(g)

Output: ◮ f(x1, . . . , xn)/c and g(x1, . . . , xn)/c (with high
probability), where c ∈ K.

◮ Or “failure”, in which case unlucky random el-
ements have been selected (one can rerun the
algorithm with new random values) or the black
box does not evaluate a rational function of the
given degree bounds.

et1 Sample shift elements B2, . . . , Bn randomly from a suf-
ficiently large finite set S1 ⊆ K;

Initialize the anchor points: choose p0, p1, . . . , pn ran-
domly from a sufficiently large finite set S2 ⊆ K;

Introduce the homogenizing variable x0 into f and g,
define

f̃(x0, x1, . . . , xn)

g̃(x0, x1, . . . , xn)
=
f(x0x1, x0x2, . . . , x0xn)

g(x0x1, x0x2, . . . , x0xn)
.

et2 Interpolate Homogenizing Variable x0:

Inputting the shift elements B2, . . . , Bn and d̄, ē to Al-
gorithm Evaluation of Numerator and Denominator on
page , compute evaluations of f̃ and g̃. The first such
call returns degrees d, e that with high probability are
the degrees of f and g. Note that for each evaluation
one only needs deg(f) + deg(g) + 1 black box probes.

With the obtained values, interpolate the polynomials
f0 = f̃(x0, p1, . . . , pn)/c and g0 = g̃(x0, p1, . . . , pn)/c,
simultaneously using the racing algorithm described as
above. Here c is the leading coefficient of the polyno-
mial g(X,B2X, . . . , BnX).

If Algorithm Evaluation of Numerator and Denomina-
tor on page or racing algorithm fail, then return “fail-
ure”.

et3 Interpolate Next Variable xi:

Casef̃(x0, x1, . . . , xn)/c or g̃(x0, x1, . . . , xn)/c is com-
pleted:

The values of the yet-to-be complete polynomial is com-
puted directly by the black box and the completed poly-
nomial in place of Algorithm Evaluation of Numerator
and Denominator on page , and a stage i sparse poly-
nomial interpolation is performed as described above.

Casef̃(x0, x1, . . . , xn)/c and g̃(x0, x1, . . . , xn)/c are not
completed:

Interpolate fi = f̃(x0, x1, . . . , xi, pi+1, . . . , pn)/c and
gi = g̃(x0, x1, . . . , xi, pi+1, . . . , pn)/c simultaneously, wh-
ich is similar to Step et2. As in the previous case, the
numerator or denominator may be completed early.

et4 Recover f(x1, . . . , xn)/c and g(x1, . . . , xn)/c from fn

and gn, respectively. This step is non-trivial for certain
fields such as K = Q, when the scalar coefficients of
both numerator and denominator can be reduced. See
also Section 4. 2

Note that our algorithm essentially performs simultaneous
interpolation of two sparse polynomials, which are given by a
black box that evaluates both at a given point. In our case,
the black box operates differently when early termination
has occurred, either temporarily or for the rest of the inter-
polation task. One can naturally generalize our techniques
to interpolating an entire vector of multivariate sparse poly-
nomials and rational functions. In the latter case, additional
savings are possible (see the end of Section 4).

4. RATIONAL VECTOR RECOVERY
We now turn to the problem of recovering rational num-

bers from their modular images. The constructive version
[15, Theorem 5.1] of Axel Thue’s theorem establishes what
is the corresponding integral property of the polynomials in
Lemma 2.1.

Theorem 4.1. Let a residue H ≥ 1, a modulus M , and
bounds D,E ≥ 2 be integers such that H < M , (D− 1)(E−
1) < M < DE. Then the problem

F ≡ GH (mod M), |F | < D, F 6= 0, 0 < G < E (5)

is solvable in integers F,G if and only if ∆ = GCD(H,M) <
D. Furthermore, assuming that this is the case, let

U0

V0
=

0

1
,
U1

V1
, . . . ,

UN

VN

=
H/∆

M/∆
, VN ≥

M

D − 1
> E − 1,

be the continued fraction approximations of H/M and choose
l such that Vl < E ≤ Vl+1. Then G1 = Vl, F1 = HVl −
MUl is a solution for (5). The set of all solutions for (5)
exclusively either consists of λG1, λF1, where 1 ≤ λ <
min(E/G1, D/|F1|) or else consists of G1, F1 and G2, F2

with F1F2 < 0. In the latter case we can determine G2, F2

from Ul−1/Vl−1 or Ul+1/Vl+1 in O((logM)2) binary steps.

Note that D,E are bounds. In [15] examples for all three
cases are given. If GCD(G,M) = 1 then F/G ≡ H (mod M)
and a rational number F/G is recovered from its modulus.
In modular arithmetic it is often known that such a solution
exists. The exceptional case of two rational number candi-
dates can be then resolved as in [27], by using a modulus
M so that E is at least twice the denominator and selecting
the solution with the smaller denominator as the recovered
rational number, which is then F1/G1. If we choose the
modulus even larger, the last denominator Vl < E must
then be substantially smaller than E and a large quotient
must occur. In [21] this observation is used to determine
l without E, assuming that the previous quotients in the
continued fraction approximation are small.

We discuss simultaneous recovery Fi/G ≡ Hi (mod M)
for given H1, . . . , Ht ∈ ZM . Again we wish to determine l
without E, while keeping M as small as possible.



Algorithm Rational Vector Recovery 1

Input: ◮ M ≥ 2: a modulus; H1, . . . , Ht ∈ ZM

◮ s (optional): the range of small random residues;
the number of random trials (optional)

Output: ◮ G,D ∈ Z≥2 that satisfy

GCD(G,M) = 1,
(D − 1)G < M < D(G+ 1),
|GHi smod M | < D for all 1 ≤ i ≤ t,

9

=

;

(6)

where smod denotes the absolutely smallest re-
mainder (symmetric residue).

◮ or “failure,” in which case either the random-
ization was unlucky or no G,D that satisfy (6)
exist.

For a given number of trials, repeat the following recovery
procedure. Then return “failure.”

vr1 Compute a random linear combination H ≡ γ1H1 +
· · · + γtHt ∈ ZM where −s ≤ γi ≤ s are uniformly
randomly chosen. If H = 0 go to next trial.

vr2 For each continued fraction Ul/Vl where l = 1, 2, . . . of
H/M perform the tests in Steps vr3 and vr4

vr3 Set E ← Vl + 1. If GCD(H,M) ≥ E go to next trial.
Compute the maximum bound D that satisfies (D −
1)(E − 1) < M < DE. Set G to G1 and possibly G2

as computed by Theorem 4.1. Note that for the second
case in the proof of [15, Theorem 5.1], we currently
assume the bound E. If GCD(G,M) > 1 go to next
value or trial.

vr4 Compute the maximum bound D that satisfies (D −
1)(E − 1) < M < DE. If |GHi smod M | < D for all
1 ≤ i ≤ t return G,D. Otherwise go to next trial. 2

Step vr1 is necessary because G is the least common mul-
tiple of the individual rational denominators. Our formula-
tion of the problem is different from [22]. And our algorithm
produces the first of potentially multiple solutions to (6).
Any solution, including H1, . . . , Ht and H1 smod M, . . . ,
Ht smod M , i.e., G = 1 is a rational vector satisfying the
congruences for certain bounds. Note that the case H1 =
· · · = Ht naturally leads to multiple rational solutions. For
a given problem, a unique correct vector needs to be selected
by other means. For the linear system problem [22], this can
done by adjusting the bound D downward.

In test trials, the Algorithm Rational Vector Recovery 1
above performs unexpectedly well. Provided M is suffi-
ciently large to accommodate the numerator and denomina-
tor sizes of the rational preimage and the size of the linear
coefficients γi of Step vr1, the preimage is almost always re-
turned. This is because false denominators are removed in
the self-correction test vr4. However, if the least common
denominator is substantially larger than the denominators of
the individual components, a number of trials is sometimes
needed.

It is possible to replace the scalar continued fraction ap-
proximation algorithm by a variant of the simultaneous dio-
phantine approximation algorithm [20]. For a given vector
α = (A1/B1, . . . , At/Bt) and a given bound E one seeks a
denominator G with 1 ≤ G ≤ E such that

max
1≤i≤t



ρi | ρi = min
ζi∈Z

˛

˛

˛

˛

G
Ai

Bi

− ζi

˛

˛

˛

˛

ff

(7)

is minimized. Applying the minimization problem to α =
(H1/M, . . . ,Ht/M), one minimizes simultaneously |GHi −
ζiM |, i.e., the numerators Fi = ±Mρi with Fi ≡ GHi

(mod M). In [20] an algorithm, which iteratively performs
several lattice basis reductions, is described that for the

minimum distance ρ
[min]
E of (7) among any G in the range

1 ≤ G ≤ E computes a G∗ with

1 ≤ G∗ ≤
√

2t · E and

max
1≤i≤t



ρ∗i | ρ∗i = min
ζi∈Z

˛

˛

˛

˛

G∗Hi

M
− ζi

˛

˛

˛

˛

ff

≤
√

5t 2t−1 · ρ[min]
E .

One recovers F ∗
i = ±Mρ∗i ≡ G∗Hi (mod M). In order to

keep t small, one can use several random linear combinations
of the Hi instead of the entire vector.

Example 4.2. Consider the rational vector V and two
different modular images H = V mod M1 and H̄ = V mod
M2 with moduli M1 = 225 and M2 = 217 given in Figure 2.

V =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

103
5003

1847
5003

− 339
5003

− 3772
5003

1060
5003

2234
5003

3085
5003

4826
5003

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, H =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

19919381

18718853

12950951

10677324

25821420

30361966

127431

16264142

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, H̄ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

127509

106629

105895

60492

236

84334

127431

11214

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Figure 2: Example vectors for rational recovery

Now we recover the vector V from the two images using
both algorithms:

Case 1 M1 = 225 = 33554432. Applying Algorithm Ra-
tional Vector Recovery 1 on page to H, we need for
s = 5 from 1 to 6 trials to recover V. Using the si-
multaneous diophantine approximation algorithm with
E = ⌈

√
M1 ⌉, we need a single lattice basis reduction

to recover the rational numbers vector V.

Case 2 M2 = 217 = 131072. We fail to recover V using
Algorithm Rational Vector Recovery 1. However, we
succeed to recover V with E = ⌈

√
M2 ⌉ after 5 itera-

tions using our variant of the simultaneous diophantine
approximation algorithm. 2

The problem of rational vector recovery of course applies
also to our sparse rational function interpolation problem.
Like in Algorithm Evaluation of Numerator and Denomina-
tor on page and Algorithm Sparse Rational Function Inter-
polation on page , for interpolating a vector of sparse ratio-
nal functions with common denominator we can employ si-
multaneous recovery of univariate fractions Fj/G from their
modular images Hj with

Fj ≡ GHj (mod (X − i1) · · · (X − iκ)).

Olesh and Storjohann [22] show that for a number of points
κ less than d+ e+1 fractions of numerator degree d and de-
nominator degree e can be recovered in certain cases, now by



a minimal polynomial basis algorithm. Thus the combined
number of black box evaluations is reduced.

5. EXPERIMENTS
Algorithm Sparse Rational Function Interpolation on page

has been implemented in Maple. We report the results of the
experiments using our algorithm which are shown in Table 1
below. For each example, we construct two relatively prime
polynomials with random integer coefficients in the given
range as the numerator and denominator. Here Coeff.Range
is the range of the coefficients of the numerator and the de-
nominator; df and dg are the degrees of the numerator and
the denominator of the rational function respectively; n de-
notes the number of the variables of the rational function; tf
and tg are the number of the terms of the numerator and the
denominator respectively; mod is the integer of the modu-
lus; N1 denotes the number of the evaluations to interpolate
the rational function; N2 denotes the number of the black
box probes to interpolate the rational function. In all cases,
for Algorithm Evaluation of Numerator and Denominator
we use a threshold value η = 3 in the first call.

Ex. Coeff.Range df , dg n tf , tg mod N1 N2

1 [-10,10] 3, 3 2 6, 6 503 31 221
2 [-10,10] 5, 2 4 6, 3 1009 65 339
3 [-20,20] 2, 4 6 2, 5 120011 62 357
4 [-20,20] 1, 6 8 4, 8 8009 141 777
5 [-30,30] 10, 5 10 7, 4 4001 164 2246
6 [-10,10] 15, 15 15 15, 15 50021 555 17120
7 [-10,10] 20, 20 20 20, 20 50021 968 38682
8 [-30,30] 30, 15 5 20, 10 10007 326 12896
9 [-10,10] 100, 60 20 100, 60 1000003 5597 873843

10 [-50,50] 50, 50 50 50, 50 1000003 6075 603638
11 [-10,10] 2, 8 90 10, 50 1000003 7135 75082

Table 1: Algorithm performance on benchmarks

6. SPARSE NUMERICAL INTERPOLATION
OF RATIONAL FUNCTIONS (SNIPR)

In [7] a numerical algorithm is given to interpolate the
sparse multivariate polynomial from a multivariate approxi-
mate black-box polynomial, making use of approximate eval-
uations at random primitive roots of unity. In order to in-
terpolate the approximate sparse rational functions from the
black box with noisy outputs, it is necessary to compute the
numerator and denominator evaluations at a random prim-
itive roots of unity.

In the exact case, the univariate rational function can
be recovered by padé approximation. From Lemma 2.1 we
know that the degree of the numerator and denominator
can be determined by extended Euclidean schemes when the
bound of the rational function is given. However, in the ap-
proximate case, the polynomial H in Lemma 2.1 is not exact
because of the approximate black box. So it is difficult to
determine the degrees of F and G, i.e. the degrees of the
numerator and denominator. It is a remaining problem we
have not completely addressed. For simplicity, we assume
that the degree of rational function is known. In section 2,
our exact algorithm performs a Cauchy interpolation for

f1, j(X)/g1, j(X) mod (x− i1) · · · (x− id+e+1),

where f1, j , g1, j are defined in (3). After making g1, j monic,
the numerator and denominator values are f1, j(p

j
1), g1, j(p

j
1).

Now we describe our method to compute the numerical
evaluation of the numerator and denominator in detail. Ac-
cording to our exact algorithm and the numerical algorithm
for multivariate polynomial interpolation in [7], we choose
the shift elements and variable values to be the roots of
unity, namely Bj = exp(2sjπi /bj) ∈ C (i =

√
−1 and

2 ≤ j ≤ n) and pk = exp(2sn+kπi /bn+k) ∈ C (1 ≤ k ≤ n)
where b2, . . . , b2n ∈ Z>0 are pairwise relatively prime such
that bl > max(d, e) (d, e the numerator and denominator
degrees) and where sl are random integers with 1 ≤ sl < bl.
In order to recover the univariate polynomials f1, j , g1, j , in
place of extended Euclidean schemes we apply to solve the
Toeplitz-like linear system like Example on page 302 in [11]:

w(x)h0(X) + g1, j(X)h1(X)− f1, j(X) = 0 (8)

where h0(X) = (X − i1) · · · (X − id+e+1), h1(X) is a inter-
polant such that h1(ik) = f1, j(ik)/g1, j(ik) for all 1 ≤ k ≤
d + e + 1, and the degrees of f1, j , g1, j are d, e respectively.
From the equation (8) we get a (2d + e + 1) × (2d + e + 2)
matrix called M . Since the row dimension of M is one less
than the column dimension M . The system (8) always have
a solution. f1, j , g1, j are obtained from the null space of M .
Then we get the numerator and denominator values from
f1, j , g1, j .

In order to obtain a better solution, we can oversample at
d + e + 1 + ζ points, where ζ ≥ 1, compute the polynomi-
als h0(X) and h1(X), and then compute the approximate
solution x of the overdetermined system: M · x ≈ 0. This
problem is a structured total squares problem since the ma-
trix A has a Toeplitz-block structure (cf. [9]). We apply the
Structured Total Least Norm (STLN) [23] method to obtain
the approximate solution. As [19, 17] described, b can be
chosen a column of M and A are formed by the remaining
columns. We seek to compute the minimal structure pre-
serving perturbation h, E such that (A + E) · x = b + h.
Then we obtain the coefficients of univariate numerator and
denominator from x.

Example 6.1. Consider the rational function f/g:

f = x3+y3+3x y+4x+1 and g = 3x3+2xy2+5xy+4x+5.

The noise for the black box of f/g is in the range of 10−9 ≈
10−7. Choose p1 = exp(2πi /5), p2 = exp(2πi /11) and B2 =
exp(2πi /13). We seek to compute the approximate evalua-
tion of the numerator and denominator: f1, j(p

j
1), g1, j(p

j
1),

1 ≤ j ≤ 9. We use STLN method to solve the overdeter-
mined system and then obtain two lists of the values of the
numerator and denominator Cj , Dj , 1 ≤ j ≤ 9. Now we
check the backward error of our evaluation:

9
X

j=1

‖Cj − f(pj
1)/c‖2 + ‖Dj − g(pj

1)/c‖2 = 3.45097× 10−11

where c = 4.13613+1.64597i is the leading coefficient of the
polynomial g(X,B2X).

Using the algorithm in [7] the approximate numerator and
denominator is interpolated according to the above evalua-
tion Cj , Dj :



f̃ = (0.20872− 0.08306i )y3 + (0.20872− 0.08305i )x3

+ (0.62616− 0.24918i )x y + 0.83487− 0.33224i )x
+ 0.20872− 0.08306i ,

g̃ = (0.62616− 0.24918i )x3 + (0.41744− 0.16612i )xy2

+ (1.04359− 0.41529i )xy + (0.83487− 0.33224i )x
+ 1.04356− 0.41529i .

The backward error is ‖f̃ − f/c‖22 + ‖g̃− g/c‖22 = 5.08936×
10−14. 2

In the exact case, we require that the polynomials f1, j and
g1, j are relatively prime. Now one approach is to check
whether f1, j and g1, j have an approximate GCD. First, for
the given map and the input degrees of the rational function
(d, e) we use our STLN method to compute f1, j , g1, j from
(8), and compute the backward error:

error1 = ‖w(X)h0(X) + g1, j(X)h1(X)− f1, j(X)‖.

Then decreasing the input degrees as (d− 1, e− 1), we con-
struct the overdetermined system from (8), where the de-

grees of f̂1, j , ĝ1, j are d − 1, e − 1 respectively. Then we

compute f̂1, j and ĝ1, j and compute the backward error:

error2 = ‖ŵ(X)h0(X) + ĝ1, j(X)h1(X)− f̂1, j(X)‖.

Suppose the ratio Υ = error2/error1 is sufficient large, that
is Υ > ε where ε is a chosen large value. We can declare that
f1, j and g1, j have no approximate GCD, that is f1, j(p

j
1) and

f1, j(p
j
1) are the approximate evaluation f(pj

1, . . . p
j
n)/c and

f(pj
1, . . . p

j
n)/c. Otherwise, f1, j and g1, j have a nearby ap-

proximate GCD. Then we start fresh and select new B2, . . . ,
Bn or new p1, . . . , pn to construct the new map. There-
fore, we need to find B2, . . . , Bn and p1, . . . , pn, and com-
pute f1, j , g1, j such that they are relatively prime for all
1 ≤ j ≤ J . In the exact case, from Lemma 2.2 we know
that f1, j and g1, j are relatively prime with high probability
for all 1 ≤ j ≤ J . In the approximate case it seems difficult
to have J consecutive approximately relatively prime pairs
f1, j and g1, j . We have overcome those difficulties by per-
forming Zippel’s sparse interpolation method [29] directly
on sparse rational functions with noisy values [18].
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