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Abstract. We prove that the finite element method for one-dimensional problems yields no
discretization error at nodal points provided the shape functions are appropriately chosen.
Then we consider a biharmonic problem with mixed boundary conditions and the weak
solution u. We show that the Galerkin approximation of u based on the so-called biharmonic
finite elements is independent of the values of u in the interior of any subelement.

Keywords: boundary value elliptic problems, finite element method, generalized splines,
elastic plate

MSC 2000 : 65N30

1. Introduction

In this paper we extend some results of [13] to (bi)harmonic finite elements whose
shape functions are (bi)harmonic on each subelement. In Section 2, we describe
an interesting phenomenon which arises when using a special finite element shape
function for a general one-dimensional boundary value problem described by a system
of linear differential equations with variable coefficients. We find that there is no
discretization error at nodal points, i.e., the interpolant of the true solution is equal
to the Galerkin solution. Such exact results of the finite element method have been
reported in [6], [15], [17], [20], [21], [22]. A similar result for the finite difference
method was derived already in 1966 (see [2], p. 145). In [11], p. 134, solutions of
boundary value problems are approximated by piecewise harmonic functions, which
are not required to be continuous across element boundaries.

* I. Hlaváček was supported by cooperative research project ME 148 (1998).
**M. Křížek was supported by grant No. 201/01/1200 of the Grant Agency of the Czech
Republic.
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In Section 3, we enhance the finite element space by appropriate bubble functions
(see [3], [7]). Then we again obtain that the finite element solution equals the true
solution at all nodal points. For a higher order differential operator a similar assertion
holds for higher order derivatives.
In Section 4, we examine a biharmonic problem with mixed boundary conditions.

We consider finite element shape functions which are biharmonic on each subelement.
This property is satisfied for several kinds of C1-finite elements, e.g., the Heindl
piecewise quadratic triangular element [9], the piecewise biquadratic rectangular ele-
ment [14], the composite Hsieh-Clough-Tocher element or its reduced version [5], [8].
We prove that the values of the weak solution u in the interior of any subelement
have no influence on the Galerkin approximation of u.
Throughout the paper we use the standard Sobolev space notation (see [8]),

i.e., Hk(Ω) with the norm ‖·‖k,Ω stands for the Sobolev space of functions whose gen-
eralized derivatives up to order k are square integrable over the domain Ω, (·, ·)0,Ω is
the scalar product in L2(Ω). The space of polynomials of degree j is denoted by Pj .

2. Two-point boundary value problems

Let us consider vector-functions v : Ω→ �
m , v = (v1, ..., vm)�, m � 1, Ω = (a, b),

−∞ < a < b <∞. Consider differential operators

Lj(v) =
m∑

s=1

∑

α��s

njsα(x)v(α)s , j = 1, . . . , k,

where �s � 0 are integers for s = 1, . . . ,m; v(α)s ≡ dαvs/dxα in Ω and njsα are
bounded measurable functions. Let Aij(x) form a symmetric k × k matrix A(x)
satisfying the condition

(2.1) ξ�A(x)ξ � c0|ξ|2 ∀ξ ∈ �k and for a.a. x ∈ Ω,

where |·| is the Euclidean norm and c0 > 0 is a constant. Let

W =
m∏

s=1

H�s(Ω)

with the standard Sobolev norm ‖·‖W . Let V ⊂W be a subspace of vector functions
satisfying some boundary conditions at the end points a and b such that

(2.2)
k∑

j=1

‖Lj(v)‖20,Ω � c‖v‖2W ∀v ∈ V.
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������ 2.1. Inequality (2.2) may be called the inequality of Korn’s type. The
original Korn’s inequality in the theory of elasticity concerns the case when Lj(v) are
identified as the strain tensor components εst. For sufficient conditions guaranteeing
the validity of (2.2) see e.g. [10] or [18], Theorem 11.3.2 and Lemma 11.3.2.

We will consider weak solutions of the following boundary value problem: Find
u ∈ V such that

(2.3) L∗ALu = f,

where

Lu = [L1(u), . . . , Lk(u)]�, L∗w =
k∑

j=1

L∗j (wj),

where w = (w1, . . . , wk)�, f ∈ V ′ and L∗j are operators formally adjoint to Lj.

�����	� 2.1.

−(p(x)u′)′ + q(x)u = f in Ω,

u(a) = u(b) = 0.

We put m = 1, �1 = 1, k = 2, W = H1(Ω), V = H10 (Ω),

Lv =

[
v′

v

]
, A(x) =

[
p(x) 0

0 q(x)

]
.

Then L∗w = −w′1 + w2. The condition (2.1) is fulfilled if and only if both p(x)
and q(x) are positive and bounded away from zero. The condition (2.2) is satisfied
with c = 1.

�����	� 2.2.

(EI(x)u′′)′′ = f in Ω ≡ (0, �),
u(0) = u′(0) = u(�) = u′(�) = 0.

This is a classical model of bending of an elastic beam clamped at both ends, where
I(x) is the moment of inertia and E denotes Young’s modulus of elasticity. We
set m = 1, �1 = 2, k = 1, W = H2(Ω), V = H20 (Ω), Lv = v′′, A = EI(x)
and L∗w = w′′. The condition (2.1) is satisfied if and only if I(x) is positive and
bounded away from zero. Condition (2.2) holds as well.
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�����	� 2.3.

(EI(x)u′1)
′ +KGA(x)(u′2 − u1) = 0 in Ω ≡ (0, �),
(KGA(x)(u′2 − u1))

′ = F in Ω,

u1(0) = u2(0) = u1(�) = u2(�) = 0.

This is the Timoshenko-Mindlin model for bending of a clamped elastic beam (see
e.g. [16]). Here A(x) is the area, u1 the rotation and u2 the deflection of its cross-
section, K denotes the shear correction factor (K = const > 0), G = E(1 + σ)−1/2
and σ is the Poisson constant. We set m = 2, �1 = �2 = 1, k = 2, W = [H1(Ω)]2,
V = [H10 (Ω)]

2,

Lv =

[
v′1

v′2 − v1

]
, A(x) =

[
EI(x) 0
0 KGA(x)

]
,

F (x) = f0(x) +
J∑

j=1

Fjδ(x− xj),

where f0 ∈ L1(Ω), Fj are constants, δ is the Dirac function and xj ∈ Ω are given.
Since I(x) and A(x) are positive and bounded away from zero in practice, condi-
tion (2.1) is fulfilled. Condition (2.2) follows from the well-known inequality

(2.4) ‖v′‖0,Ω � C‖v‖0,Ω ∀v ∈ H10 (Ω).

Indeed, we may write

(2.5)
1
2
‖v′2‖20,Ω � ‖v′2 − v1‖20,Ω + ‖v1‖20,Ω � ‖L2v‖20,Ω + C−2‖L1v‖20,Ω

and (2.2) follows from (2.5) and (2.4).

A weak formulation of the general problem (2.3) reads: Find u ∈ V such that

(2.6) a(u, v) = 〈f, v〉 ∀v ∈ V,

where 〈f, v〉 denotes the value of a linear continuous functional f ∈ V ′ for the
function v,

a(u, v) = ((ALu,Lv))0,Ω

and

((w, z))0,Ω =
k∑

r=1

(wr , zr)0,Ω.
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By (2.1) and (2.2), we find that a(·, ·) is a symmetric V -elliptic bilinear form, i.e.,

a(w, v) = a(v, w),(2.7)

a(v, v) � C‖v‖2W
holds for all v, w ∈ V , where C is a positive constant. As a consequence, there exists
a unique weak solution for any f ∈ V ′.
Next, let Th be a finite (in general nonuniform) partition a = x0 < x1 < . . . <

xN < xN+1 = b of the interval [a, b]. Consider a finite element space

Vh = {vh ∈ V | L∗AL(vh

∣∣
K
) = 0 ∀K ∈ Th},

where K stands for a subinterval [xe, xe+1] for e = 0, . . . , N .
By a finite element solution of problem (2.6) we mean a function uh ∈ Vh such

that

(2.8) a(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh.

Theorem 2.4. Assume that nsjα ∈ C�s−1(Ω) for all s, j, α under consideration
and Ajr ∈ Cω(Ω) for all j, r � k, where ω = max

s�m
�s − 1. Let (2.1) and (2.2)

hold. Denote by 1u and 2u the weak solutions of (2.6) corresponding to f1 and f2,
respectively. Let 1uh and 2uh be the associated finite element solutions. Let

1u
(�s−j−1)
s (xe) = 2u(�s−j−1)

s (xe), s = 1, . . . ,m, j = 0, . . . ,�s − 1

hold for all nodal points xe, e = 0, . . . , N + 1. Then

1uh = 2uh

holds in the whole interval [a, b].


����. Using (2.6), (2.8) and the definition of Vh, for

w = 1u− 2u, wh = 1uh − 2uh

and any vh ∈ Vh we may write

a(wh, vh) = a(w, vh) =
∑

K∈Th

((ALw,Lvh))0,K

=
∑

K∈Th

k∑

r=1

( k∑

j=1

ArjLjw,Lrvh

)

0,K

=
N∑

e=0

∫ xe+1

xe

k∑

j,r=1

Ljw(AjrLrvh) dx

=
N∑

e=0

[ m∑

s=1

�s−1∑

β=0

w(�s−β−1)
s

k∑

j=1

β∑

t=0

(−1)t(njs(�s−β+t)

k∑

r=1

AjrLrvh)(t)
]xe+1

xe

= 0.

Therefore, a(wh, wh) = 0 and (2.7) implies that ‖wh‖W = 0. �
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Corollary 2.5. Denote by uI the Vh-spline interpolant of the weak solution u,
i.e., uI ∈ Vh, such that

u(�s−j−1)
s (xe) = u

(�s−j−1)
Is (xe), s = 1, . . . ,m, j = 0, . . . ,�s − 1, e = 0, . . . , N +1.

Then

(2.9) uh = uI

holds in the whole interval [a, b].


����. In Theorem 2.4 we put 1u = u and 2u = uI , f1 = f and f2 = L∗ALuI .
Since

a(uI − 2uh, vh) = 0 ∀vh ∈ Vh

by (2.6) and (2.8), we have uI = 2uh due to (2.7). Now Theorem 2.4 yields

uh = 1uh = 2uh = uI in [a, b].

�

������ 2.6. Corollary 2.5 states that there is no discretization error at nodal
points when the above-mentioned finite element method is applied.

�����	� 2.7. For simplicity, let us take p(x) ≡ 1 and q(x) = q20 = const in
Example 2.1. Then the general solution of the equation

L∗ALv ≡ −v′′ + q20v = 0

is

v(x) = C1 cosh q0x+ C2 sinh q0x.

For any Y1, Y2 ∈ R there exists a unique pair {C1, C2} such that v(xe) = Y1
and v(xe+1) = Y2. Indeed, the determinant of the corresponding matrix equals
sinh q0(xe+1 − xe) 
= 0. The finite element space Vh is formed by continuous func-
tions which belong to span{cosh q0x, sinh q0x} on each subinterval [xe, xe+1].

�����	� 2.8. Let us take EI(x) ≡ 1 and f ∈ [C1(Ω)]′ in Example 2.2. The
space Vh consists of cubic Hermite splines on Th, i.e.,

Vh = {vh ∈ C1(Ω) | vh

∣∣
K
∈ P3(K) ∀K ∈ Th}.

From Theorem 2.4 we know that if

1u(xe) = 2u(xe), 1u
′(xe) = 2u′(xe), e = 0, . . . , N + 1,
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then the associated finite element solutions coincide, i.e.,

1uh = 2uh in [a, b].

Let uI be the cubic Hermite interpolant of the true solution u. Then by Corollary 2.5
we have uh = uI in the whole interval [a, b]. This means that the finite element
solution produces exact values of the true solution and its first derivatives at all
nodal points,

(2.10) u
(j)
h (xe) = u

(j)(xe), j = 0, 1, e = 0, . . . , N + 1.

Another proof of (2.10) is given in [15], p. 110. (See also [4] and [12].)

�����	� 2.9. Consider the beam from Example 2.3 of a rectangular cross-
section, the height t of which is variable, namely t ∈ C(Ω) (e.g., piecewise linear).
Then I(x) = I0t

3(x), A(x) = A0t(x), where I0 and A0 are positive constants. The
solution of the corresponding homogeneous system has the form

u1 = C1

∫ x

0
zt−3(z) dz + C2

∫ x

0
t−3(z) dz + C3,

u2 = C1

(∫ x

0
(x− z)zt−3(z) dz − 2(1 + σ)I0A0K

∫ x

0
zt−1(z) dz

)

+ C2

∫ x

0
(x− z)t−3(z) dz + C3x+ C4.

By means of these formulae we can construct basis functions of the space Vh,
i.e. {ϕie}, i = 1, 2, e = 0, 1, . . . , N + 1, such that

ϕie(xr) = δer, e, r = 0, . . . , N + 1.

Then we may write the finite element solutions in the form

vih(x) =
N+1∑

e=0

vih(xe)ϕie(x), i = 1, 2.

By Corollary 2.5, the finite element solution is exact at all nodal points xe,
i.e., uh(xe) = u(xe) for e = 0, . . . , N + 1.
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3. Exact results for enhanced finite element spaces

Let us consider again the general problem (2.3). We can prove that the same exact
results at the nodal points as those in Section 2 are valid, if we enhance the space
Vh by the space of “bubble functions”, i.e., if we replace Vh by the space

Ṽh = span{ϕ1, . . . , ϕn;ψ01, ψ02, . . . , ψNm},

where
Vh = span{ϕ1, . . . , ϕn}

and ψis ∈ V , i = 0, . . . , N , s = 1, . . . ,m, are vector bubble functions such that their
all components are zeros except the sth component,

suppψi,s ⊂ [xi, xi+1] for i = 0, . . . , N, s = 1, . . . ,m,

and

ψ
(j)
is (xe) = 0 for j = 0, . . . ,�s − 1, i = 0, . . . , N, s = 1, . . . ,m, e = 0, . . . , N + 1.

Let
U0h = span{ψ01, . . . , ψNm}.

The subspaces Vh and U0h are a-orthogonal, i.e.,

(3.1) a(vh, u
0
h) = 0 ∀vh ∈ Vh and ∀u0h ∈ U0h .

Indeed, arguing as in the proof of Theorem 2.4, we have (cf. also [1])

a(vh, u
0
h) =

N∑

e=0

∫ xe+1

xe

k∑

j,r=1

Lju
0
h(AjrLrvh) dx

=
N∑

e=0

[ m∑

s=1

�s−1∑

β=0

(u0hs)
(�s−β−1)

k∑

j=1

β∑

t=0

(−1)t
(
njs(�s−β+t)

k∑

r=1

AjrLrvh

)(t)]xe+1

xe

= 0,

since

(
u0hs

)(�s−β−1)
(xe) = 0 for e = 0, . . . , N + 1, β = 0, . . . ,�s − 1, s = 1, . . . ,m.

Any function ṽh ∈ Ṽh can be decomposed into the form

ṽh = vI + v0h,
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where vI ∈ Vh is the Vh-spline interpolant introduced in Corollary 2.5 and v0h ∈ U0h
is a bubble function. Therefore, we can write

(3.2) Ṽh = Vh ⊕ U0h ,

making use of (3.1).
Let uI be the Vh-spline interpolant of the weak solution u and let ũh ∈ Ṽh be the

finite element solution, i.e.,

a(ũh, ṽh) = 〈f, ṽh〉 ∀ṽh ∈ Ṽh.

Since Vh ⊂ Ṽh, the relation

(3.3) a(ũh − uI , vh) = a(u− uI , vh) = 0 ∀vh ∈ Vh

can be derived by an argument parallel to that in the proof of Theorem 2.4. Setting
wh = ũh − uI ∈ Ṽh, we may use the decomposition (3.2) to obtain

wh = whI + w0h, whI ∈ Vh, w0h ∈ U0h .

Then (3.3) yields that

0 = a(whI + w0h, whI) = a(whI , whI)

and whI = 0 follows from (2.7). As a consequence,

(3.4) ũh − uI = w0h ∈ U0h ,

so that
ũ
(�s−j−1)
hs (xe) = u

(�s−j−1)
s (xe)

holds for s = 1, . . . ,m, j = 0, . . . ,�s − 1 and e = 0, . . . , N + 1.

������ 3.1. Note that at nodal points, we have obtained the same exact results
as in Corollary 2.5.

�����	� 3.2. Consider the Dirichlet boundary value problem for the equa-
tion −u′′ = f , i.e., m = �1 = k = 1. Let Vh be the space of continuous piecewise
linear functions. If U0h consists of piecewise quadratic bubbles, then the Galerkin
approximation ũh equals the true solution u at all nodal points xe, e = 0, . . . , N +1.
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4. Biharmonic problem in the plane

Let Ω ⊂ �
2 be a bounded domain with a Lipschitz-continuous boundary ∂Ω (see

[18]) and the outward unit normal n = (nx, ny). Let ∂Ω be piecewise smooth with a
finite number of corners. Consider a model of an elastic plate

∆2w = (wxx + σwyy)xx + (wyy + σwxx)yy + 2(1− σ)wxyxy = f in Ω,

where σ ∈
[
0, 12

)
is the Poisson constant. The associated bilinear form reads

a(u, v) =
∫

Ω
[(uxx + σuyy)vxx + (uyy + σuxx)vyy + 2(1− σ)uxyvxy] dxdy.

For all u ∈ H4(Ω) and v ∈ H2(Ω) we have (see [19], Chapt. 23)

(4.1) a(u, v) = (∆2u, v)0,Ω+

〈
∂v

∂n
,M(u)

〉

0,∂Ω

+〈v, T (u)〉0,∂Ω+
J∑

j=1

v(sj)[H(u)](sj),

where sj are corner points of the domain Ω, J denotes the number of corners,

M(u) = σ∆u + (1− σ)
∂2u

∂n2
(bending moment),

T (u) = − ∂(∆u)
∂n

+
∂(H(u))
∂s

(effective force),

H(u) = (1 − σ)
(
(uxx − uyy)nxny + uxy(n2y − n2x)

)
(twisting moment),

and [H(u)](sj) = H(sj+)−H(sj−) is a jump of the twisting moment.
Let us point out that [H(u)](sj) = 0 for all j = 1, . . . , J if u = 0 on ∂Ω.
Consider the so-called intermediate boundary value problem, which corresponds

to a simply supported elastic plate, i.e.,

∆2u = f in Ω,

u =M(u) = 0 on ∂Ω.

Introduce the space V = H2(Ω) ∩ H10 (Ω). We look for a weak solution u ∈ V

satisfying

(4.2) a(u, v) = 〈f, v〉 ∀v ∈ V,

where f ∈ [C(Ω)]′ is a given load. The approximate solution is searched in the finite
element space

Vh = {vh ∈ C1(Ω) | vh

∣∣
Ki

∈ b(Ki) ∀Ki ∈ Th, vh = 0 on ∂Ω},

where vh ∈ b(Ki) are biharmonic functions on each subelement Ki (i = 1, . . . , r) of
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the element K ∈ Th, i.e.,

(4.3) vh ∈ H4(Ki), ∆2vh = 0 in Ki.

Define the finite element solution uh ∈ Vh by the equation

(4.4) a(uh, vh) = 〈f, vh〉, vh ∈ Vh.

Theorem 4.1. Let u1 and u2 be two solutions of (4.2) corresponding to two
right-hand sides f1 and f2. Denote by u1h and u2h their finite element solutions,
i.e., solutions of (4.4) for f1 and f2, respectively. If

u1
∣∣
Bh
= u2

∣∣
Bh
,

∂u1
∂n

∣∣∣
Bh

=
∂u2
∂n

∣∣∣
Bh

,

where

Bh =
⋃

K∈Th

r⋃

i=1

∂Ki,

then u1h = u2h on the whole Ω.


����. By (4.2) and (4.4), relations (4.1) and (4.3) can be written as

a(u1h − u2h, vh) = a(u1 − u2, vh) =
∑

K∈Th

r∑

i=1

a(u1 − u2, vh)Ki(4.5)

=
∑

K∈Th

r∑

i=1

[
(u1 − u2,∆2vh)0,Ki +

〈
∂

∂n
(u1 − u2),M(vh)

〉

0,∂Ki

+ 〈u1 − u2, T (vh)〉0,∂Ki +
J∑

j=1

(u1 − u2)(sj)[H(vh)](sj)

]
= 0

for any vh ∈ Vh. Here a(·, ·)Ki is defined similarly to a(·, ·), where integration is
taken over Ki. By [10], the following Korn’s inequality holds:

(4.6) a(v, v) � (1− σ)(‖vxx‖20,Ω + ‖vyy‖20,Ω + ‖vxy‖20,Ω) � C‖v‖22,Ω ∀v ∈ V,

where C is a positive constant. Since Vh ⊂ V , from (4.5) and (4.6) we arrive at
C‖wh‖22,Ω � a(wh, wh) = 0 for wh = u1h − u2h. Hence, u1h − u2h = 0 in Ω. �
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