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Abstract

The nonlinear fractional Boussinesq equations are known as the fractional differential equation class
that has an important place in mathematical physics. In this study, a method called

(
G′

G2

)
-extension

method which works well and reveals exact solutions is used to examine nonlinear Boussinesq
equations with conformable time-fractional derivatives. This method is a very useful approach
and extremely useful compared to other analytical methods. With the proposed method, there
are three unique types of solutions such as hyperbolic, trigonometric and rational solutions. This
approach can similarly be applied to other nonlinear fractional models.
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(
G′
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)
-expansion method, Exact solutions
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1. Introduction

Nonlinear partial differential equations (NPDEs) are very useful equations that are important in
different fields including engineering sciences, mathematics, fluid dynamics, and physics. Many real
world problems have been modeled thanks to NPDEs. Numerous different and robust mathematical
methods have been used to obtain exact solutions of NPDEs [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
Fractional calculus is also a new field that has grown in popularity over the past few decades.
Various physical phenomena are made easily solvable in fractional differential equations (FDEs),
such as viscoelasticity, plasma, solid mechanics, optical fibers, signal processing, electromagnetic
waves, fluid dynamics, biomedical sciences and diffusion processes. Researchers have made these
equations attractive by using various methods to obtain exact solutions of FDEs. Some of these
methods and the important ones in the literature can be listed as

(
G′

G

)
-expansion method [12], the

improved extended tanh-coth method [13], Lie group analysis method [14], first integral method
[15], exp-function method [16], sub-equation method [17], functional variable method [18].

Boussinesq type equations can be considered as the first model for nonlinear, dispersive wave
propagation and describe the surface water waves whose horizontal scale is much larger than the
depth of the water [19]. They can be noted as a critical class of fractional differential equations
in mathematical physics. Recently, different techniques have been used to find analytical and
numerical solutions of Boussinesq equations. These can be mentioned as invariant subspace method
[20], a newly developed method called the expansion method [21], exp-function method [22].
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Conformable time fractional Boussinesq equations, which can be used to describe the prop-
agation of the wave in the magnetic field, describes surface water waves. In addition, it is an
important nonlinear model that occurs in physics, hydromechanics and optics. It is also known
that it can be used to describe the physical direction of wave propagation in plasma and nonlinear
wave [23, 24, 25, 26, 27]. The coupled Boussinesq equations occur in shallow water waves for bilayer
fluid flow. This happens when there is an accidental oil spill from a ship, which causes a slick of
oil to float above the water slide [28].

The study includes five chapters. In the first chapter, fractional calculations are mentioned
along with brief information about nonlinear partial and fractional differential equations. In addi-
tion, Boussinesq equations and coupled Bousinesq equations that form the basis of the publication
are explained. In the second chapter, definition and theories of comformable fractional derivative
are given. In the third chapter

(
G′

G2

)
-expansion method which is an important method for the

solution is explained. In Chapter four, the application of finding exact solutions of comformable
time fractional Boussinesq equation and coupled conformable time fractional Boussinesq equations
with this method has been made. Finally, an explanation of the results is given in the last section.

2. Conformable fractional derivative and its properties

Various definitions have been introduced for the fractional derivative such as Riemann-Liouville,
Grünwald-Letnikov and Caputo. All fractional derivatives provide linearity, but these definitions
have some flaws. Khalil et al. [29] described a new, simple fractional derivative named the com-
formable fractional derivative that overcomes these shortcomings. The conformable derivative has
the following definitions and properties as given in [29, 30, 31].

Definition: Suppose f : [0,∞) → R be a function. The αth-order conformable fractional
derivative of f is defined by

tD
α(f)(t) = lim

ε→0

f(t+ εt1−α)− f(t)
ε

, t > 0, α ∈ (0, 1).

Theorem1: Suppose α ∈ (0, 1] and f, g be α-differentiable at t > 0. Then,

(1) tD
α(af + bg) = aTα(f) + bTα(g), ∀a, b ∈ R.

(2) tD
α(tp) = ptp−α, ∀p ∈ R.

(3) tD
α(λ) = 0 (λ is any constant).

(4) tD
α(fg) = f(tDα(g)) + g(tDα(f)).

(5) tD
α(fg ) = g(tDα(f))−f(tDα(g))

g2 .

(6) If f is differentiable, then tD
α(f)(t) = t1−α dfdt .

Theorem2: Let f, g : (0,∞)→ R be α-differentiable functions, when 0 < α ≤ 1 . Then,

tD
α(f ◦ g)(t) = t1−αg′(t)f ′(g(t)).
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3. Algorithm of
(

G′

G2

)
-expansion method

In this section, we give an presentation of
(
G′

G2

)
-expansion method for solving a general space time

fractional differential equation as

H
(
u,
∂αu

∂tα
,
∂u

∂x
,
∂2αu

∂t2α
,
∂2u

∂x2 ...
)

= 0, (3.1)

where u is an unknown function and H is a polynomial of u and its partial fractional derivatives
[32]. It can be introduced as follows.

Step1: By applying the transformation

u(x, t) = U(ε),

ε = x+ k
tα

α
,

(3.2)

which k are nonzero constant coefficients, Eq.(3.1) can be reduced into the ordinary differential
equation

Q
(
U,
dU

dε
,
d2U

dε2 ,
d3U

dε3 , ...
)

= 0. (3.3)

Step2: Assume that Eq.(3.3) has the solution

U(ε) = a0 +
M∑
i=1

[
ai

(
G′

G2

)i
+ bi

(
G′

G2

)−i]
, (3.4)

and (
G′

G2

)′
= µ+ λ

(
G′

G2

)2

(3.5)

where λ 6= 0 µ 6= 1 are integers and a0, ai, bi(i = 1, 2, ...,M) are real constants to be determined.
The balancing number M is a positive integer which can be determined balancing the highest
derivative terms with the highest power nonlinear terms in Eq.(3.3).

Step3: Substituting (3.4) into (3.3) using (3.5) and setting the coefficients of all powers of G′

G2

to zero, the system of algebraic equations will be obtained. This algebraic system is solved by using
programs such as Maple to obtain the values of the unknown constants a0, ai and bi(i = 1, 2, ...,M).
More clearly, the value of M can be found from Eq. (3.3) as follows where D(U(ε)) = M is degree
of U(ε).

D

[
dqU

dεq

]
= M + q,

D

[
U r
(
dqU

dεq

)s]
= Mr + s(q +M).

Step4: On the basis of the general solution of Eq. (3.5), the required exact solutions will be
obtained in the following three cases:
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Case 1. If λµ > 0, then

G′

G2 =
√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

)
, (3.6)

Case 2. If λµ < 0, then

G′

G2 = −
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

)
, (3.7)

Case 3. If λ 6= 0 and µ = 0, then
G′

G2 = − C

λ(Cε+D) , (3.8)

where C,D are nonzero constants.

4. Applications

In this section, two important nonlinear fractional differential equations will be solved by
(
G′

G2

)
-

expansion method.

4.1. Conformable time fractional Boussinesq equation
Let us consider the following nonlinear equation [33]:

∂2αu

∂t2α
− ∂2u

∂x2 −
∂2u2

∂x2 + ∂4u

∂x4 = 0, 0 < α ≤ 1. (4.1)

Applying the transformation Eq.(3.2) to this equation, it is obtained the following ordinary differ-
ential equation

(k2 − 1)d
2U

dε2 −
d2(U2)
dε2 + d4U

dε4 = 0. (4.2)

Integrating Eq.(4.2) twice and taking constants of integration as zero, the following equation is
obtained.

d2U

dε2 + (k2 − 1)U − U2 = 0. (4.3)

Balancing the terms of U2 and d2U
dε2 in Eq. (4.3), we get M = 2. For M = 2, solution will get the

form
U(ε) = a0 + a1

(G′
G2

)
+ a2

(G′
G2

)2
+ b1

(G′
G2

)−1
+ b2

(G′
G2

)−2
, (4.4)

where a0, a1, a2, b1 and b2 are unknown constants.
Substituting (4.4) using (3.5) into (4.3), setting the coefficients of all powers of

(
G′

G2

)
to zero,

nonlinear algebraic equations are achieved. The occuring algebraic system is solved by aid of
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Maple to find the values of unknown constants.(G′
G2

)−4
: 6µ2b2 − b2

2 = 0,(G′
G2

)−3
: 2µ2b1 − 2b1b2 = 0,(G′

G2

)−2
: 8µλb2 + (k2 − 1)b2 − b2

1 − 2b2a0 = 0,(G′
G2

)−1
: 2µλb1 + (k2 − 1)b1 − 2b2a1 − 2b1a0 = 0,(G′

G2

)0
: 2λ2b2 + 2µ2a2 + (k2 − 1)a0 − a2

0 − 2b2a2 − 2b1a1 = 0,(G′
G2

)1
: 2µλa1 + (k2 − 1)a1 − 2b1a2 + 2a1a0 = 0,(G′

G2

)2
: 8µλa2 + (k2 − 1)a2 − a2

1 − 2a2a0 = 0,(G′
G2

)3
: 2λ2a1 − 2a1a2 = 0,(G′

G2

)−4
: 6λ2a2 − a2

2 = 0.

Solving this system of equations through Maple, we get the following results;

Set1: k = ∓
√

16λµ+ 1, a0 = 12λµ, a1 = b1 = 0, a2 = 6λ2, b2 = 6µ2,
Set2: k = ∓

√
4λµ+ 1, a0 = 6λµ, a1 = b1 = b2 = 0, a2 = 6λ2,

Set3: k = ∓
√

4λµ+ 1, a0 = 6λµ, a1 = b1 = a2 = 0, b2 = 6µ2,
Set4: k = ∓

√
1− 4λµ, a0 = 2λµ, a1 = b1 = b2 = 0, a2 = 6λ2,

Set5: k = ∓
√

1− 4λµ, a0 = 2λµ, a1 = b1 = a2 = 0, b2 = 6µ2,
Set6: k = ∓

√
1− 16λµ, a0 = −4λµ, a1 = b1 = 0, a2 = 6λ2, b2 = 6µ2.

The above set of values gives the following exact solutions for conformable time fractional Boussi-
nesq equation

Solution 1:

(i) If λµ > 0, the trigonometric solution is found

u1(x, t) = U11(ε) = 12λµ+ 6λ2
(√

µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

+ 6µ2
(√

µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2

.

(ii) If λµ < 0, the hyperbolic solution is obtained

u2(x, t) = U12(ε) = 12λµ+ 6λ2
(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

+ 6µ2
(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2

.
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(iii) If λ 6= 0, µ = 0, the rational solution is found

u3(x, t) = U13(ε) = 6
(

C

Cε+D

)2

In (i)-(iii), ε = x∓
√

16λµ+ 1
(
tα

α

)
.

Solution 2:

(i) If λµ > 0, the trigonometric solution is found

u4(x, t) = U21(ε) = 6λµ+ 6λ2
(√

µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

.

(ii) If λµ < 0, the hyperbolic solution is obtained

u5(x, t) = U22(ε) = 6λµ+ 6λ2
(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

.

(iii) If λ 6= 0, µ = 0, the rational solution is found

u6(x, t) = U33(ε) = 6
(

C

Cε+D

)2

In (i)-(iii), ε = x∓
√

4λµ+ 1
(
tα

α

)
.

Solution 3:

(i) If λµ > 0, the trigonometric solution is found

u7(x, t) = U31(ε) = 6λµ+ 6µ2
(√

µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2

.

(ii) If λµ < 0, the hyperbolic solution is obtained

u8(x, t) = U32(ε) = 6λµ+ 6µ2
(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2

.

In (i)-(ii), ε = x∓
√

4λµ+ 1
(
tα

α

)
.

Solution 4:

(i) If λµ > 0, the trigonometric solution is found

u9(x, t) = U41(ε) = 2λµ+ 6λ2
(√

µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

6



(ii) If λµ < 0, the hyperbolic solution is obtained

u10(x, t) = U42(ε) = 2λµ+ 6λ2
(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

(iii) If λ 6= 0, µ = 0, the rational solution is found

u11(x, t) = U43(ε) = 6
(

C

Cε+D

)2

In (i)-(iii), ε = x∓
√

1− 4λµ
(
tα

α

)
.

Solution 5:

(i) If λµ > 0, the trigonometric solution is found

u12(x, t) = U51(ε) = 2λµ+ 6µ2
(√

µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2

.

(ii) If λµ < 0, the hyperbolic solution is obtained

u13(x, t) = U52(ε) = 2λµ+ 6µ2
(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2

.

In (i)-(ii), ε = x∓
√

1− 4λµ
(
tα

α

)
.

Solution 6:

(i) If λµ > 0, the trigonometric solution is found

u14(x, t) = U61(ε) = −4λµ+ 6λ2
(√

µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

+ 6µ2
(√

µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2

.

(ii) If λµ < 0, the hyperbolic solution is obtained

u15(x, t) = U62(ε) = −4λµ+ 6λ2
(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

+ 6µ2
(
−
√
|µλ|
λ

(
− C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2

.

(iii) If λ 6= 0, µ = 0, the rational solution is found

u16(x, t) = U63(ε) = 6
(

C

Cε+D

)2

In (i)-(iii), ε = x∓
√

1− 16λµ
(
tα

α

)
.

In Figure 1, the physical properties of Eq. (4.1) whose solutions are used in Solution 2 have been
shown for α = 0.5 with some special values.
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Figure 1: (a) The trigonometric solution of u(x, t) when λ = µ = C = D = 1. (b) The hyperbolic solution of u(x, t)
when λ = 0.5, µ = −0.3, C = D = 1. (c) The rational solution of u(x, t) when λ = 1, µ = 0, C = D = 1.
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4.2. Coupled conformable time fractional Boussinesq equations
Let us consider the following nonlinear equation system[33]:

∂αu

∂tα
+ ∂v

∂x
= 0,

∂αv

∂tα
+ β

∂

∂x
(u2)− γ ∂

3u

∂x3 = 0,
(4.5)

where the time fractional derivative is αth order and 0 < α ≤ 1.
Applying the transformation Eq.(3.2) to this system, it is found the following ordinary differential
equation system

k
dU

dε
+ dV

dε
= 0,

k
dV

dε
+ β

d

dε
(U2)− γ d

3U

dε3 = 0.
(4.6)

Integrating Eq.(4.6) once and taking constant of integration as zero, the following equations are
found:

kU + V = 0, (4.7a)

kV + βU2 − γ d
2U

dε2 = 0. (4.7b)

From Eq.(4.7a), we get
V = −kU. (4.8)

Substituting Eq.(4.8) into Eq. (4.7b), it is obtained the following differential equation

− k2U + βU2 − γ d
2U

dε2 = 0. (4.9)

Balancing the terms of U2 and d2U
dε2 in Eq. (4.9), we get M = 2. For M = 2, solution will obtain

the form

U(ε) = a0 + a1
(G′
G2

)
+ a2

(G′
G2

)2
+ b1

(G′
G2

)−1
+ b2

(G′
G2

)−2
, (4.10)

where a0, a1, a2, b1 and b2 are unknown constants.
Substituting (4.10) using (3.5) into (4.9), setting the coefficients of all powers of

(
G′

G2

)
to zero,

nonlinear algebraic equations are obtained. The occurring algebraic system is solved by help of

9



Maple to find the values of unknown constants.(G′
G2

)−4
: βb2

2 − 6γµ2b2 = 0,(G′
G2

)−3
: 2βb1b2 − 2γµ2b1 = 0,(G′

G2

)−2
: − k2b2 + βb2

1 + 2βb2a0 − 8γµλb2 = 0,(G′
G2

)−1
: − k2b1 + 2βb2a1 + 2βb1a0 − 2γµλb1 = 0,(G′

G2

)0
: − k2a0 + βa2

0 + 2βb2a2 + 2βb1a1 − 2γλ2b2 − 2γµ2a2 = 0,(G′
G2

)1
: − k2a1 + 2βb1a2 + 2βa1a0 − 2γµλa1 = 0,(G′

G2

)2
: − k2a2 + βa2

1 + 2βa2a0 − 8γµλa2 = 0,(G′
G2

)3
: 2βa1a2 − 2γλ2a1 = 0,(G′

G2

)4
: βa2

2 − 6γλ2a2 = 0.

Solving this system of equations through Maple, we get the following results;

Set1: k = ∓2
√
λγµ, a0 = 6λγµ

β , a1 = 0, a2 = 6λ2γ
β , b1 = 0, b2 = 0,

Set2: k = ∓2
√
λγµ, a0 = 6λγµ

β , a1 = 0, a2 = 0, b1 = 0, b2 = 6µ2γ
β ,

Set3: k = ∓2
√
−λγµ, a0 = 2λγµ

β , a1 = 0, a2 = 6λ2γ
β , b1 = 0, b2 = 0,

Set4: k = ∓2
√
−λγµ, a0 = 2λγµ

β , a1 = 0, a2 = 0, b1 = 0, b2 = 6µ2γ
β ,

Set5: k = ∓4
√
λγµ, a0 = 12λγµ

β , a1 = 0, a2 = 6λ2γ
β , b1 = 0, b2 = 6µ2γ

β ,
Set6: k = ∓4

√
−λγµ, a0 = −4λγµ

β , a1 = 0, a2 = 6λ2γ
β , b1 = 0, b2 = 6µ2γ

β .

The above set of values gives the following exact solutions for conformable time fractional coupled
Boussinesq equation.

Solution 1:

(i) If λµ > 0, the trigonometric solution is found

u1(x, t) = U11(ε) = 6λγµ
β

+ 6λ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

.

From Eq.(4.8),

v1(x, t) = −k
[

6λγµ
β

+ 6λ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2]
.

(ii) If λµ < 0, the hyperbolic solution is obtained

u2(x, t) = U12(ε) = 6λγµ
β

+ 6λ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

.
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From Eq.(4.8),

v2(x, t) = −k
[

6λγµ
β

+ 6λ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2]
.

(iii) If λ 6= 0, µ = 0, the rational solution is found

u3(x, t) = U13(ε) = 6γ
β

(
C

Cε+D

)2

.

From Eq.(4.8),

v3(x, t) = −k
[

6γ
β

(
C

Cε+D

)2]
,

where ε = x∓ 2
√
λγµ

(
tα

α

)
.

Solution 2:

(i) If λµ > 0, the trigonometric solution is found

u4(x, t) = U21(ε) = 6λγµ
β

+ 6µ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2

.

From Eq.(4.8),

v4(x, t) = −k
[

6λγµ
β

+ 6µ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2]
.

(ii) If λµ < 0, the hyperbolic solution is obtained

u5(x, t) = U22(ε) = 6λγµ
β

+ 6µ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2

.

From Eq.(4.8),

v5(x, t) = −k
[

6λγµ
β

+ 6µ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2]
,

where ε = x∓ 2
√
λγµ

(
tα

α

)
.

Solution 3:

(i) If λµ > 0, the trigonometric solution is found

u6(x, t) = U31(ε) = 2λγµ
β

+ 6λ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

.
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From Eq.(4.8),

v6(x, t) = −k
[

2λγµ
β

+ 6λ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2]
.

(ii) If λµ < 0, the hyperbolic solution is obtained

u7(x, t) = U32(ε) = 2λγµ
β

+ 6λ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

.

From Eq.(4.8),

v7(x, t) = −k
[

2λγµ
β

+ 6λ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2]
.

(iii) If λ 6= 0, µ = 0, the rational solution is found

u8(x, t) = U33(ε) = 6γ
β

(
C

Cε+D

)2

.

From Eq.(4.8),

v8(x, t) = −k
[

6γ
β

(
C

Cε+D

)2]
,

where ε = x∓ 2
√
−λγµ

(
tα

α

)
.

Solution 4:

(i) If λµ > 0, the trigonometric solution is found

u9(x, t) = U41(ε) = 2λγµ
β

+ 6µ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2

.

From Eq.(4.8),

v9(x, t) = −k
[

2λγµ
β

+ 6µ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2]
.

(ii) If λµ < 0, the hyperbolic solution is obtained

u10(x, t) = U42(ε) = 2λγµ
β

+ 6µ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2

.

From Eq.(4.8),

v10(x, t) = −k
[

2λγµ
β

+ 6µ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2]
,
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where ε = x∓ 2
√
−λγµ

(
tα

α

)
.

Solution 5:

(i) If λµ > 0, the trigonometric solution is found

u11(x, t) = U51(ε) = 12λγµ
β

+ 6λ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

+ 6µ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2

.

From Eq.(4.8),

v11(x, t) = −k
[

12λγµ
β

+ 6λ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

+ 6µ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2]
.

(ii) If λµ < 0, the hyperbolic solution is obtained

u12(x, t) = U52(ε) = 12λγµ
β

+ 6λ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

+ 6µ2γ

β

(
−
√
|µλ|
λ

(
− C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2

.

From Eq.(4.8),

v12(x, t) = −k
[

12λγµ
β

+ 6λ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

+ 6µ2γ

β

(
−
√
|µλ|
λ

(
− C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2]
.

(iii) If λ 6= 0, µ = 0, the rational solution is found

u13(x, t) = U53(ε) = 6γ
β

(
C

Cε+D

)2

.

From Eq.(4.8),

v13(x, t) = −k
[

6γ
β

(
C

Cε+D

)2]
,

where ε = x∓ 4
√
λγµ

(
tα

α

)
.

Solution 6:
13



(i) If λµ > 0, the trigonometric solution is found

u14(x, t) = U61(ε) = −4λγµ
β

+ 6λ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

+ 6µ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2

.

From Eq.(4.8),

v14(x, t) = −k
[
−4λγµ
β

+ 6λ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))2

+ 6µ2γ

β

(√
µ

λ

(
C cos(

√
µλε) +D sin(

√
µλε)

D cos(
√
µλε)− C sin(

√
µλε)

))−2]
.

(ii) If λµ < 0, the hyperbolic solution is obtained

u15(x, t) = U62(ε) = −4λγµ
β

+ 6λ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

+ 6µ2γ

β

(
−
√
|µλ|
λ

(
− C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2

.

From Eq.(4.8),

v15(x, t) = −k
[
−4λγµ
β

+ 6λ2γ

β

(
−
√
|µλ|
λ

(
C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))2

+ 6µ2γ

β

(
−
√
|µλ|
λ

(
− C sinh(2

√
|µλ|ε) + C cosh(2

√
|µλ|ε) +D

C sinh(2
√
|µλ|ε) + C cosh(2

√
|µλ|ε)−D

))−2]
.

(iii) If λ 6= 0, µ = 0, the rational solution is found

u16(x, t) = U63(ε) = 6γ
β

(
C

Cε+D

)2

.

From Eq.(4.8),

v16(x, t) = −k
[

6γ
β

(
C

Cε+D

)2]
,

where ε = x∓ 4
√
−λγµ

(
tα

α

)
.

In Figure 2, the physical characteristics of Eq.(4.5) whose solutions are used in Solution 3 have
been shown for α = 0.5 with some special values.
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Figure 2: (a) The trigonometric solution of u(x, t) when λ = µ = β = C = D = 1, γ = −1. (b) The hyperbolic
solution of u(x, t) when λ = 0.5, µ = −0.3, C = D = β = γ = 1. (c) The rational solution of u(x, t) when
λ = 1, µ = 0, C = D = β = 1, γ = −1.
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5. Conlusion

In this paper, analytical solutions of conformable time-fractional nonlinear Boussinesq equations
which known as an important class of fractional differential equations in mathematical physics
were found by

(
G′

G2

)
-expansion method. Different types of solutions were officially found, including

trigonometric, hyperbolic and rational function solutions. The obtained solutions were not the
same and they were much recent than previously results. It was ensured that the solutions found
were correct by replacing the original equations. Since

(
G′

G2

)
-expansion method is efficient and

not complicated, it can also be used to get solutions for other fractional differential equations
encountered in mathematical physics.
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