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Abstract: In this study, the extended G′/G method is used to investigate the space–time fractional
Burger-like equation and the space–time-coupled Boussinesq equation with M-truncated derivative,
which have an important place in fluid dynamics. This method is efficient and produces soliton
solutions. A symbolic computation program called Maple was used to implement the method in a
dependable and effective way. There are also a few graphs provided for the solutions. Using the
suggested method to solve these equations, we have provided many new exact solutions that are
distinct from those previously found. By offering insightful explanations of many nonlinear systems,
the study’s findings add to the body of literature. The results revealed that the suggested method
is a valuable mathematical tool and that using a symbolic computation program makes these tasks
simpler, more dependable, and quicker. It is worth noting that it may be used for a wide range of
nonlinear evolution problems in mathematical physics. The study’s findings may have an influence
on how different physical problems are interpreted.

Keywords: the extended G′/G method; Burger-like equation; coupled Boussinesq equation;
M-truncated derivative

1. Introduction

The use of nonlinear partial differential equations (NPDEs) is crucial in many disci-
plines, including physics, mathematics, fluid dynamics, and engineering sciences. Owing
to NPDEs, numerous real-world problems have been modeled. To find exact solutions to
NPDEs, a wide variety of effective mathematical techniques have been used [1–14]. Another
new area that has gained interest during the past several decades is fractional calculus.
Fractional differential equations (FDEs) have made many scientific phenomena, including
viscoelasticity, plasma, solid mechanics, optical fibers, signal processing, electromagnetic
waves, fluid dynamics, biomedical sciences, and diffusion processes, easily solvable. By
employing a variety of methods to get exact solutions of FDE, researchers have improved
the attractiveness of these equations. The G′/G2-expansion method [15,16], ansatz and
Kudryashov method [17], the improved extended tanh-coth method [18], the first integral
method [19], the exp-function method [20], the F-expansion method [21], the improved
subequation method [22,23], and the functional variable method [24] are a few of these
methods of note.

Burger’s equation has acoustic applications and has been implemented to model tur-
bulence and some steady-state viscous flows. Moreover, it is also used in the mathematical
modeling of fluid dynamics, nonlinear acoustic gas dynamics, traffic flow, shock wave
theory, and turbulence problems. In the literature, Burger’s equation is presented in a
number of different ways, including coupled Boussinesq Burger equations, Burger-like
equations, viscous Burger equations, and inviscid Burger equations. The fractional cou-
pled viscous Burgers equations have recently been the subject of a number of intriguing
studies [25,26]. The tanh method was employed by Bulut et al. [27] to produce several
solutions to this equation. Gencoglu [28] acquired complicated answers for it via a direct
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algebraic method. Eskandari and Taghizadeh discussed the exact solutions of the nonlinear
space–time fractional Burger-like equation using the expfunction method [29].

The first model for nonlinear, dispersive wave propagation may be thought to be the
Boussinesq type equations, which describe surface water waves with a horizontal scale
significantly bigger than the water depth [30]. In mathematical physics, they might be
considered a crucial class of fractional differential equations. To solve Boussinesq equations
analytically and numerically, many methods have recently been employed. These include
the exp-function method [31], the invariant subspace method [32], and the expansion
method, a recently developed technique [33]. Equations of this type are also a crucial
nonlinear model that may be found in physics, hydromechanics, and optics. Additionally, it
is understood that it may be utilized to characterize the actual direction of wave propagation
in plasma and nonlinear waves [34–38]. In shallow water waves for bilayer fluid flow,
coupled Boussinesq equations appear. This occurs when a ship unintentionally spills oil,
causing an oil slick to float above the water slide [39].

In this study, exact solutions of the space–time fractional Burger-like equation and the
space–time coupled Boussinesq equation were investigated using the extended G′/G method,
which has never been discussed before. For this purpose, the recently studied M-truncated
derivative in fractional derivative studies, which is different from other fractional derivatives,
was used. In addition, the method mentioned has not been previously used in the solution of
these equations. Therefore, we emphasize that these are novel results.

This work is broken into five sections. Section 1 outlines fractional calculations and
includes a brief discussion of nonlinear partial and fractional differential equations. The
Burger’s equation and the Boussinesq type equations, which form the basis of this work, are
also discussed. Section 2 discusses the extended G′/G method, which is an essential way
for solving the problem, as well as M-truncated derivative theory. Section 3 analyzes the use
of this method to obtain exact solutions to the space–time fractional Burger-Like equation
and the space–time coupled Boussinesq equation. The explanations of the graphics of
the solutions and the effect of the method on the results are given in Section 4. Section 5
provides an explanation of the results.

2. The Fundamental Concepts of the M-truncated Derivative and Algorithm of the
Extended G′/G Method
2.1. The Basic Concepts of the M-Truncated Derivative

Some fundamental fractional calculus principles that have been employed in this
study are presented in this section. These are M-truncated derivative and its features.

Definition 1. Assume h : (0, ∞) → R. For 0 < ω < 1, the truncated M-fractional derivative
of h(θ) of order ω has been defined by [40] as follows:

jT
ω,δ

M {h(θ)} = lim
ε→0

h[θ jEδ(εθ−ω)]− h(θ)
ε

, θ > 0, (1)

where jEδ(.) is a truncated Mittag-Leffler function of one parameter, defined as follows:

jEδ(v) =
j

∑
i=0

vi

Γ(δi + 1)
, δ > 0, v ∈ C. (2)

Theorem 1. Functions f1(θ) and f2(θ), which are ω-derivable with 0 < ω ≤ 1 and δ > 0 at a
point θ > 0, satisfy the following properties [40,41]:

• jT
ω,δ

M {a1 f1(θ) + a2 f2(θ)} = a1 jT
ω,δ

M { f1(θ)}+ a2 jT
ω,δ

M { f2(θ)}, ∀a1, a2 ∈ R,
• jT

ω,δ
M { f1(θ) f2(θ)} = f2(θ)jT

ω,δ
M { f1(θ)}+ f1(θ)jT

ω,δ
M { f2(θ)},

• jT
ω,δ

M { f1(θ)
f2(θ)
} = f2(θ)jT

ω,δ
M { f1(θ)}− f1(θ)jT

ω,δ
M { f2(θ)}

( f2(θ))2 ,

• jT
ω,δ

M (θ)n = n(θ)n−ω, n ∈ R,
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• If f1 is differentiable, then jT
ω,δ

M ( f1)(θ) =
θ1−ω

Γ(δ+1)
d f1
dθ ,

• jT
ω,δ

M ( f1 ◦ f2)(θ) = f ′1( f2(θ))jT
ω,δ

M { f2(θ)}.

2.2. Description of the Extended G′/G Method

In this section, the extended G′/G method, which is applied in [42], is briefly defined.
Assume that we have the nonlinear fractional differential equation as follows:

F(u, T ω,δ
M,t u, T ω,δ

M,x u, ...) = 0, (3)

where T ω,δ
M,t and T ω,δ

M,x show M-truncated derivative, u = u(x, t) is an unknown function,
and F is a polynomial in u(x, t).

1. It is first required to transform (3) into an ordinary differential equation using the
traveling wave transformation given as follows: [43,44]

u(x, t) = U(ε),

ε =
Γ(δ + 1)

ω

(
mxω + ktω

)
,

(4)

where δ > 0, m 6= 0 and k 6= 0 are arbitrary constants. A nonlinear ordinary
differential equation (ODE) as below is obtained, substituting (4) into (3) as follows:

N(U,
dU
dε

,
d2U
dε2 , ..) = 0. (5)

2. It is presumed that the formal solution to (5) is the following:

U(ε) =
N

∑
i=−N

ai

(
G′(ε)
G(ε)

)i

, (6)

where ai is the real constant to be determined, and N is a positive integer that needs
to be calculated. The following auxiliary linear ordinary differential equation has a
similar solution as the G(ε) function:

G′′(ε) + λG′(ε) + µG(ε) = 0, (7)

where λ and µ are the real constants to be calculated.
3. The system of algebraic equations is obtained by using (7) to substitute (6) into (5)

and setting all of the coefficients for powers of G′(ε)
G(ε)

to zero. Using Maple and similar
software, this algebraic system can be solved in order to determine the values of the
unknown constants ai. Using (5), the value of N may be calculated in the following
way, where deg(U(ε)) = N is the degree of U(ε):

deg
[

dqU
dεq

]
= N + q,

deg
[

Ur
(

dqU
dεq

)s]
= Nr + s(q + N).

4. The necessary exact solutions can be obtained in the following three cases using the
general solution of (7).

Case 1. If λ2 − 4µ > 0, then

G′(ε)
G(ε)

= −λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

)
, (8)
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Case 2. If λ2 − 4µ < 0, then

G′(ε)
G(ε)

= −λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

)
, (9)

Case 3. If λ2 − 4µ = 0, then
G′(ε)
G(ε)

= −λ

2
+

A2

A1 + A2ε
. (10)

The exact solutions to (5) are obtained, where A1 and A2 are arbitrary constants.

3. Mathematical Analysis

In this section, we employ the extended G′/G- expansion method to obtain exact
solutions to some nonlinear partial fractional differential equations, including the space–
time fractional Burger-like equation and the space–time coupled Boussinesq equation. In
fluid dynamics, such equations continue to garner a significant amount of interest.

3.1. The Space–Time Fractional Burger-Like Equation

We investigated the Burger-like equation in [29,45], which is a space–time fractional
given below.

T ω,δ
M,t u +T ω,δ

M,x u + uT ω,δ
M,x u +

1
2
T ω,δ

M,xT ω,δ
M,x u = 0, (11)

where ω ∈ (0, 1], 0 < δ. By applying the transformation Equation (4) to this equation, the
following ordinary differential equation is gained:

(k + m)
dU(ε)

d(ε)
+

m
2

U(ε)
dU(ε)

d(ε)
+

m2

2
d2U(ε)

d(ε)2 = 0. (12)

By integrating Equation (12) once and taking constants of integration as zero, the
following equation is found:

(k + m)U(ε) +
m
2

U(ε)2 +
m2

2
dU(ε)

d(ε)
= 0. (13)

By balancing the terms of U2 and dU(ε)
dε in Equation (13), we find N = 1. For N = 1,

the solution arises through us of (6) as follows:

U(ε) = a−1

(G′

G

)−1
+ a0 + a1

(G′

G

)
, (14)

where a−1, a0 and a1 are unknown constants.
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By substituting (14) using (7) into (13) and setting the coefficients of all powers of(
G′
G

)
to be zero, nonlinear algebraic equations can be obtained. The occuring algebraic

system is solved with Maple to find the values of unknown constants.

(G′

G

)−2
:

m
2

a2
−1 +

m2

2
µ a−1 = 0,(G′

G

)−1
: (k + m)a−1 + ma−1a0 +

m2

2
λ a−1 = 0,(G′

G

)0
: (k + m)a0 +

m
2

a2
0 + ma−1a1 +

m2

2
a−1 −

m2

2
µ a1 = 0,(G′

G

)1
: (k + m)a1 + ma0a1 −

m2

2
λ a1 = 0,(G′

G

)2
:

m
2

a2
1 −

m2

2
a1 = 0.

Solving this system of equations through Maple, we obtain the following results:

Result 1: k = −m2λ
2 −m2

(−λ∓
√

λ2−4µ
2

)
−m, a0 =

(−λ∓
√

λ2−4µ
2

)
m, a1 = 0, a−1 = −mµ,

Result 2: k = m2λ
2 −m2

(
λ∓
√

λ2−4µ
2

)
−m, a0 =

(
λ∓
√

λ2−4µ
2

)
m, a1 = m, a−1 = 0.

The exact solutions to the space–time fractional Burger-Like equation can be obiatained
by substituting these results into (14) and taking into account (8)–(10) as follows:

Solution 1:
If λ2 − 4µ > 0, the hyperbolic solution is achieved

u1(x, t) = U11(ε) =
(−λ∓

√
λ2 − 4µ

2

)
m

−mµ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))−1

.
(15)

If λ2 − 4µ = 0, then, the rational solution is found

u2(x, t) = U13(ε) = −
λ

2
m−mµ

(
− λ

2
+

A2

A1 + A2ε

)
. (16)

In (15) and (16), ε = Γ(δ+1)
ω

[
mxω +

(
−m2λ

2 −m2
(−λ∓

√
λ2−4µ

2

)
−m

)
tω
]
.

Solution 2:
If λ2 − 4µ > 0, the hyperbolic solution is obtained

u3(x, t) = U21(ε) =
(λ∓

√
λ2 − 4µ

2

)
m

+ m

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))
.

(17)

If λ2 − 4µ = 0, then, the rational solution is found

u4(x, t) = U23(ε) = m
( A2

A1 + A2ε

)
. (18)

In (17) and (18), ε = Γ(δ+1)
ω

[
mxω +

(
m2λ

2 −m2
(

λ∓
√

λ2−4µ
2

)
−m

)
tω
]
.

Figure 1 illustrates the exact solutions of u(x, t) with some particular parameters.



Fractal Fract. 2023, 7, 255 6 of 14

Figure 1. Graphical representation of Equation (17).

3.2. The Space–Time Fractional Coupled Boussinesq Equation

We examine the space–time fractional coupled Boussinesq equation in [31], which is
shown below.

T ω,δ
M,t u +T ω,δ

M,x v = 0,

T ω,δ
M,t v + γT ω,δ

M,x (u
2)− βT ω,δ

M,xT ω,δ
M,xT ω,δ

M,x u = 0,
(19)

where ω ∈ (0, 1], 0 < δ. The following ordinary differential equation system is obtained
by applying the transformation Equation (4) to above equation for both u(x, t) and v(x, t):

k
dU(ε)

d(ε)
+ m

dV(ε)

d(ε)
= 0,

k
dV(ε)

d(ε)
+ γm

d
d(ε)

(U2)− βm3 d3U(ε)

d(ε)3 = 0.
(20)

The following system is produced by once-integrating Equation (20) and setting the
integration constants to zero:

kU + mV = 0,

kV + γmU2 − βm3 d2U(ε)

d(ε)2 = 0.
(21)

From the first equation of Equation (20), we can obtain the following:

V = − k
m

U. (22)

Substituting Equation (22) into the second equation of Equation (21), we obtain the
following differential equation to find the solution of the system:

− k2

m
U(ε) + γmU(ε)2 − βm3 d2U(ε)

d(ε)2 = 0. (23)
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Balancing the terms of U2 and d2U(ε)
dε2 in Equation (21), we obtain N = 2. For N = 2,

the solution arise with use of (6) as follows:

U(ε) = a−2

(G′

G

)−2
+ a−1

(G′

G

)−1
+ a0 + a1

(G′

G

)
+ a2

(G′

G

)2
, (24)

where a−2, a−1, a0, a1 and a2 are unknown constants.
Substituting (24) using (7) into (23), we produce nonlinear algebraic equations by

setting the coefficients of all powers of
(

G′
G

)
to zero. The Maple program is used to solve

the arising algebraic system and determine the values of the unidentified constants.(G′

G

)−4
: γm2a2

−2 − 6βµ2m4a−2 = 0,(G′

G

)−3
: 2γm2a−2a−1 − 10βλµm4a−2 − 2βµ2m4a−1 = 0,(G′

G

)−2
: − k2ma−2 + γm2a2

−1 + 2γm2a−2a0 − β(4λ2 + 8µ)m4a−2 − 3βλµm4a−1 = 0,(G′

G

)−1
: − k2ma−1 + 2γm2a−2a−1 + 2γm2a−1a0 − 6βλm4a−2 − β(λ2 + 2µ)m4a−1 = 0,(G′

G

)0
: − k2ma0 + γm2a2

0 + 2γm2a−2a2 + 2γm2a−1a1 − 2βm4a−2 − βλm4a−1

− βλµm4a1 − 2βµ2m4a2 = 0,(G′

G

)1
: − k2ma1 + 2γm2a0a1 + 2γm2a−1a2 − 6βλµm4a2 − β(λ2 + 2µ)m4a1 = 0,(G′

G

)2
: − k2ma2 + γm2a2

1 + 2γm2a0a2 − β(4λ2 + 8µ)m4a2 − 3βλm4a1 = 0,(G′

G

)3
: 2γm2a1a2 − 10βλm4a2 − 2βm4a1 = 0,(G′

G

)4
: γm2a2

2 − 6βm4a2 = 0.

The results of solving this system of equations using Maple are as follows:

Result 1: k = ∓m
√

βm(−λ2 + 4µ), a0 = 6βµm2

γ , a1 = 6βλm2

γ , a2 = 6βm2

γ , a−1 = a−2 = 0,

Result 2: k = ∓m
√

βm(λ2 − 4µ), a0 = β(λ2+2µ)m2

γ , a1 = 6βλm2

γ , a2 = 6βm2

γ , a−1 = a−2 = 0,

Result 3: k = ∓m
√

βm(−λ2 + 4µ), a−2 = 6βµ2m2

γ , a−1 = 6βλµm2

γ , a0 = 6βµm2

γ , a1 = a2 = 0,

Result 4: k = ∓m
√

βm(λ2 − 4µ), a−2 = 6βµ2m2

γ , a−1 = 6βλµm2

γ , a0 = β(λ2+2µ)m2

γ , a1 = a2 = 0

By entering these results into (24) and taking into consideration (8)–(10), we can obtain
the space–time fractional coupled Boussinesq equation’s exact solutions as follows:

Solution 1:

If λ2 − 4µ < 0, the trigonometric solution is acquired

u1(x, t) = U12(ε) =
6βµm2

γ

+
6βλm2

γ

(
− λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

))

+
6βm2

γ

(
− λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

))2

.

(25)
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From Equation (22),

v1(x, t) = − k
m

[
6βµm2

γ

+
6βλm2

γ

(
− λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

))

+
6βm2

γ

(
− λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

))2]
.

(26)

If λ2 − 4µ = 0, then the rational solution is found

u2(x, t) = U13(ε) =
6βµm2

γ
+

6βλm2

γ

(
− λ

2
+

A2

A1 + A2ε

)
+

6βm2

γ

(
− λ

2
+

A2

A1 + A2ε

)2
.

(27)

From Equation (22),

v2(x, t) = − k
m

[
6βµm2

γ
+

6βλm2

γ

(
− λ

2
+

A2

A1 + A2ε

)
+

6βm2

γ

(
− λ

2
+

A2

A1 + A2ε

)2
]

.

(28)

In (25)–(28), ε = Γ(δ+1)
ω

[
mxω +

(
∓m

√
βm(−λ2 + 4µ)

)
tω
]
.

Figures 2 and 3 show the exact solutions of u(x, t) and v(x, t) with some particular
parameters.

Figure 2. Graphical illustrations of Equations (25) and (26).
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Figure 3. Graphical representations of Equations (27) and (28).

Solution 2:
If λ2 − 4µ > 0, the hyperbolic solution is found

u3(x, t) = U21(ε) =
β(λ2 + 2µ)m2

γ

+
6βλm2

γ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))

+
6βm2

γ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))2

.

(29)

From Equation (22),

v3(x, t) = − k
m

[
β(λ2 + 2µ)m2

γ

+
6βλm2

γ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))

+
6βm2

γ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))2]
.

(30)

If λ2 − 4µ = 0, then the rational solution is found

u4(x, t) = U23(ε) =
β(λ2 + 2µ)m2

γ
+

6βλm2

γ

(
− λ

2
+

A2

A1 + A2ε

)
+

6βm2

γ

(
− λ

2
+

A2

A1 + A2ε

)2
.

(31)
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From Equation (22),

v4(x, t) = − k
m

[
β(λ2 + 2µ)m2

γ
+

6βλm2

γ

(
− λ

2
+

A2

A1 + A2ε

)
+

6βm2

γ

(
− λ

2
+

A2

A1 + A2ε

)2
]

.

(32)

In (29)–(32), ε = Γ(δ+1)
ω

[
mxω +

(
∓m

√
βm(λ2 − 4µ)

)
tω
]
.

Solution 3:
If λ2 − 4µ < 0, the trigonometric solution is acquired

u5(x, t) = U32(ε) =
6βµm2

γ

+
6βλµm2

γ

(
− λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

))−1

+
6βµ2m2

γ

(
− λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

))−2

.

(33)

From Equation (22),

v5(x, t) = − k
m

[
6βµm2

γ

+
6βλµm2

γ

(
− λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

))−1

+
6βµ2m2

γ

(
− λ

2
+

√
4µ− λ2

2

(
−A1 sin(

√
4µ−λ2

2 ε) + A2 cos(
√

4µ−λ2

2 ε)

A1 cos(
√

4µ−λ2

2 ε) + A2 sin(
√

4µ−λ2

2 ε)

))−2]
.

(34)

If λ2 − 4µ = 0, then the rational solution is found

u6(x, t) = U33(ε) =
6βµm2

γ
+

6βλµm2

γ

(
− λ

2
+

A2

A1 + A2ε

)−1

+
6βµ2m2

γ

(
− λ

2
+

A2

A1 + A2ε

)−2
.

(35)

From Equation (22),

v6(x, t) = − k
m

[
6βµm2

γ
+

6βλµm2

γ

(
− λ

2
+

A2

A1 + A2ε

)−1

+
6βµ2m2

γ

(
− λ

2
+

A2

A1 + A2ε

)−2
]

.

(36)

In (33)–(36), ε = Γ(δ+1)
ω

[
mxω +

(
∓m

√
βm(−λ2 + 4µ)

)
tω
]
.
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Solution 4:
If λ2 − 4µ > 0, the hyperbolic solution is achieved

u7(x, t) = U41(ε) =
β(λ2 + 2µ)m2

γ

+
6βλµm2

γ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))−1

+
6βµ2m2

γ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))−2

.

(37)

From Equation (22),

v7(x, t) = − k
m

[
β(λ2 + 2µ)m2

γ

+
6βλµm2

γ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))−1

+
6βµ2m2

γ

(
− λ

2
+

√
λ2 − 4µ

2

(
A1 sinh(

√
λ2−4µ

2 ε) + A2 cosh(
√

λ2−4µ
2 ε)

A1 cosh(
√

λ2−4µ
2 ε) + A2 sinh(

√
λ2−4µ

2 ε)

))−2]
.

(38)

If λ2 − 4µ = 0, then the rational solution is found

u8(x, t) = U43(ε) =
β(λ2 + 2µ)m2

γ
+

6βλµm2

γ

(
− λ

2
+

A2

A1 + A2ε

)−1

+
6βµ2m2

γ

(
− λ

2
+

A2

A1 + A2ε

)−2
.

(39)

From Equation (22),

v8(x, t) = − k
m

[
β(λ2 + 2µ)m2

γ
+

6βλµm2

γ

(
− λ

2
+

A2

A1 + A2ε

)−1

+
6βµ2m2

γ

(
− λ

2
+

A2

A1 + A2ε

)−2
]

.

(40)

In (37)–(40), ε = Γ(δ+1)
ω

[
mxω +

(
∓m

√
βm(λ2 − 4µ)

)
tω
]
.

4. Results and Discussions

In this section, from a physical point of view, we discuss the obtained solutions to the
space–time fractional Burger-like equation and the space–time coupled Boussinesq equation
with the M-truncated time derivative, which are gained using the above-mentioned method.
In order to verify the physical meaning of the mathematical models, we implemented
several 3D plots and illustrations of the obtained solutions. Moreover, the effect of the
fractional derivatives and the method on the solution of equations are mentioned.

Firstly, we plotted Equation (17), and as shown in Figure 1, we demonstrate the
appropriate hyperbolic behavior of the obtained analytical solutions. In Figure 1a, the
hyperbolic solution of (17) is plotted when λ = 2, µ = 0.5, A1 = 2, A2 = m = 1, ω = 0.5. In
Figure 1b, the real solutions of (17) are plotted when λ = 2, µ = A1 = A2 = m = 1, ω = 0.5.

The plots for Equations (25) and (26) are presented in Figure 2. The trigonometric solution
of (25) and (26) are plotted with λ = 1, γ = 6, A1 = A2 = m = β = 1, µ = ω = 0.5.
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Finally, the plots for Equations (27) and (28) are presented in Figure 3. The real solution
of (27) and (28) are plotted with λ = 1, γ = 6, A1 = A2 = m = β = 1, µ = ω = 0.5.

It has been proven that the extended G′/G-method is very useful and efficient and can
be used in a wide variety of solutions. Hyperbolic, trigonometric, and rational solutions
have clearly emerged with the distinctiveness and restrictive feature of the method. As a
result, much newer and clearer solutions have been obtained. Fractional calculus is a new
research field that has attracted many researchers, and although many studies have attempted
to explain the physical meaning of fractional derivatives, it is still an open problem.

5. Conclusions

In this work, two nonlinear partial fractional differential equations were solved with
M-truncated derivative using the extended G′/G-method. Many novel exact solutions to the
space–time fractional coupled Boussinesq equation and the space–time fractional coupled
Burger-like equation were successfully found as applications. The extended G′/G-method
analysis of the aforementioned models was revealed using a thorough list of various solutions,
including trigonometric, hyperbolic, and rational ones. It is important to note that the found
solutions are novel since a new fractional derivative was used to explore the model’s new
form. The fact that the solutions to the Equations (11) and (19) were obtained utilizing various
derivatives and methods makes it clear that our results are original and have not previously
been explored in the literature. The fact that the solutions to the equations in [29,31,45] were
obtained using various derivatives methods demonstrates additionally attests to the novelty
of our results.

The results of this study add to the corpus of literature by offering insightful explanations
of several nonlinear systems. The solution described here, to our knowledge, have not
been previously attempted. The outcomes also showed that Maple, a symbolic program
computing system, simplifies, strengthens, and accelerates the suggested method as a helpful
mathematical tool. It is worth considering that the recommended method may be used to
solve a variety of nonlinear evolution issues in mathematical physics. The findings of the
study may have an impact on how various physical issues are understood.

Author Contributions: Conceptualization, methodology, writing—original draft A.Ö.; Methodology,
investigation, writing—original draft E.M.Ö.; Formal analysis, visualization, writing—review and
editing O.Y. The manuscript was written through the contributions of all authors. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the referees for their useful suggestions, which helped form
the work into what it is now.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yildirim, O.; Uzun, M. Weak solvability of the unconditionally stable difference scheme for the coupled sine-Gordon system.

Nonlinear Anal. Model. Control. 2020, 25, 997–1014. [CrossRef]
2. Yildirim, O.; Uzun, M. Numer. Solut. High Order Stable Differ. Schemes Hyperbolic Multipoint Nonlocal Bound. Value Probl.

Appl. Math. Comput. 2015, 25 210–218.
3. Yildirim, O.; Caglak, S. Lie point symmetries of difference equation for nonlinear sine-Gordon equation. Phys. Scr. 2019, 94, 085219.

[CrossRef]
4. Ozkan, A. Analytical Solutions of the Nonlinear (2 + 1)-Dimensional Soliton Equation by Using Some Methods. J. Eng. Technol.

Appl. Sci. 2022, 7, 141–155.
5. Fang, Y.; Wu, G.Z.; Wang, Y.Y.; Dai C.Q. Data-driven femtosecond optical soliton excitations and parameters discovery of the

high-order NLSE using the PINN. Nonlinear Dyn. 2021, 105, 603–616. [CrossRef]

http://doi.org/10.15388/namc.2020.25.20558
http://dx.doi.org/10.1088/1402-4896/ab1180
http://dx.doi.org/10.1007/s11071-021-06550-9


Fractal Fract. 2023, 7, 255 13 of 14

6. Fang, Y.; Wu, G.Z.; Wen, X.K.; Wang, Y.Y.; Dai C.Q. Predicting certain vector optical solitons via the conservation-law deep-learning
method. Opt. Laser Technol. 2022, 155, 108428. [CrossRef]

7. Bo, W.B.; Wang, R.R.; Fang, Y.; Wang, Y.Y.; Dai C.Q. Prediction and dynamical evolution of multipole soliton families in fractional
Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 2023, 111, 1577–1588. [CrossRef]

8. Cheng, X.Y.; Wang, L.Z. Invariant analysis, exact solutions and conservation laws of (2 + 1)-dimensional time fractional Navier-
Stokes equations. Proc. R. Soc. A 2022, 477, 20210220. [CrossRef]

9. Yang, Y.; Wang, L.Z. Lie symmetry analysis, conservation laws and separation variable type solutions of the time fractional
Porous Medium equation. Wave. Random. Complex. 2020, 49, 1–20. [CrossRef]

10. Cheng, X.Y.; Hou,J.; Wang, L.Z. Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving
fractional system of single-walled carbon nanotube. Comput. Appl. Math. 2021, 40, 1–17. [CrossRef]

11. Wang, M.M.; Shen, S.F.; Wang, L.Z. Lie symmetry analysis, optimal system and conservation laws of a new (2 + 1)-dimensional
KdV system. Commun. Theor. Phys. 2021, 73, 085004. [CrossRef]

12. Wang, L.Z.; Wang, D.J.; Shen, S.F.; Huang, Q. Lie point symmetry analysis of the Harry-Dym type equation with Riemann-Liouville
fractional derivative. Acta. Math. Appl. Sin. 2018, 34, 469–477. [CrossRef]

13. Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer.
Simulat. 2012, 17, 2048–2053. [CrossRef]

14. Akbulut, A.; Kaplan, M.; Tascan, F. The investigation of exact solutions of nonlinear partial differential equations by using
exp(-Φ(ε)) method. Optik 2017, 132, 382–387. [CrossRef]

15. Ozkan, E.M.; Ozkan, A. On exact solutions of some important nonlinear conformable time-fractional differential equations. Sema
J. 2022, 79, 1–16.

16. Ozkan, A. On the soliton solutions of some time conformable equations in fluid dynamics. Int. Mod. Phys. B 2023, 2450027. [CrossRef]
17. Ozkan, E.M.; Ozkan, A. The Soliton Solutions for Some Nonlinear Fractional Differential Equations with Beta-Derivative. Axioms

2021, 10, 1–15. [CrossRef]
18. Gómez, S.; Cesar, A. A nonlinear fractional Sharma–Tasso–Olver equation. App. Math. Comput. 2015, 266, 385–389. [CrossRef]
19. Lu, B. The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 2012, 395, 684–693. [CrossRef]
20. Zheng, B. Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 2013, 465723. [CrossRef]
21. Ozkan, E.M. New Exact Solutions of Some Important Nonlinear Fractional Partial Differential Equations with Beta Derivative.

Fractal Fract. 2022, 6, 173. [CrossRef]
22. Ozkan, E.M.; Akar, M. Analytical solutions of (2 + 1)-dimensional time conformable Schrödinger equation using improved

sub-equation method. Optik 2022, 267, 169660. [CrossRef]
23. Akar, M.; Ozkan, E.M. On exact solutions of the (2 + 1)-dimensional time conformable Maccari system. Int. Mod. Phys. B 2023, 1–12.

[CrossRef]
24. Matinfar, M.; Eslami, M.; Kordy, M. The functional variable method for solving thefractional Korteweg de Vries equations and the

coupled Korteweg de Vries equations. Pramana J. Phys. 2015, 85, 583–592. [CrossRef]
25. Zogheib, B.; Tohidi, E.; Baskonus, H.M.; Cattani, C. Method of lines for multi-dimensional coupled viscous Burgers’ equations via

nodal Jacobi spectral collocation method. Phys. Scr. 2021, 96, 124011. [CrossRef]
26. Sulaiman, T.A.; Yavuz, M.; Bulut, H.; Baskonus, H.M. Investigation of the fractional coupled viscous Burgers’ equation involving

Mittag-Leffler kernel. Phys. Stat. Mech. Appl. 2019, 527, 121126. [CrossRef]
27. Bulut, H.; Tuz, M.; Akturk, T. New Multiple Solution to the Boussinesq Equation and the Burgers-Like Equation. J. Appl. Math.

2013, 2013, 952614. [CrossRef]
28. Gencoglu, M.T. Complex Solution for Burger-Like Equation. Turk. J. Math. 2013, 8, 121–123.
29. Eskandari, E.M.; Taghizadeh, N. Exact Solutions of Two Nonlinear Space–Time Fractional Differential Equations by Application

of Exp-function Method. Appl. Appl. Math. Int. J. 2020, 15, 1–8.
30. Madsen, P.A.; Murray, R.; Sorensen, O.R. A new form of the Boussinesq equations with improved linear dispersion characteristics.

Coast Engl. J. 1991, 15, 371–388. [CrossRef]
31. Yaslan, H.C.; Girgin, A. Exp-function method for the conformable Space–Time fractional STO, ZKBBM and coupled Boussinesq

equations. Arab. J. Basic Appl. Sci. 2019, 26, 163–170. [CrossRef]
32. Sahadevan, R.; Prakash, P. Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear

partial differential equations. Commun. Nonlinear Sci. Numer. Simulat. 2017, 42, 158–177. [CrossRef]
33. Hosseini, K.; Bekir, A.; Ansari, R. Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the

exp(−φ(ε))-expansion method. Opt. Quant. Electron. 2017, 49, 131. [CrossRef]
34. Triki, H.; Kara, A.H.; Biswas, A. Domain walls to Boussinesq-type equations in (2 + 1)-dimensions. Indian J. Phys. 2014, 88, 751–755.

[CrossRef]
35. Abazari, R.; Jamshidzadeh, S.; Biswas, A. Solitary wave solutions of coupled Boussinesq equation. Complexity 2016, 21, 151–155.

[CrossRef]
36. Abazari, R.; Jamshidzadeh, S.; Biswas, A. Multi soliton solutions based on interactions of basic traveling waves with an application

to the nonlocal Boussinesq equation. Acta Phys. Pol. B 2016, 47, 1101–1112.
37. Biswas, A.; Kara, A.H.; Moraru, L.; Triki, H.; Moshokoa, S.P. Shallow water waves modeled by the Boussinesq equation having

logarithmic non linearity. Proc. Rom. Acad. Ser. A 2017, 18, 144–149.

http://dx.doi.org/10.1016/j.optlastec.2022.108428
http://dx.doi.org/10.1007/s11071-022-07884-8
http://dx.doi.org/10.1098/rspa.2021.0220
http://dx.doi.org/10.1080/17455030.2020.1810358
http://dx.doi.org/10.1007/s40314-021-01486-7
http://dx.doi.org/10.1088/1572-9494/abfcb8
http://dx.doi.org/10.1007/s10255-018-0760-z
http://dx.doi.org/10.1016/j.cnsns.2011.10.016
http://dx.doi.org/10.1016/j.ijleo.2016.12.050
http://dx.doi.org/10.1142/S0217979224500279
http://dx.doi.org/10.3390/axioms10030203
http://dx.doi.org/10.1016/j.amc.2015.05.074
http://dx.doi.org/10.1016/j.jmaa.2012.05.066
http://dx.doi.org/10.1155/2013/465723
http://dx.doi.org/10.3390/fractalfract6030173
http://dx.doi.org/10.1016/j.ijleo.2022.169660
http://dx.doi.org/10.1142/S0217979223502193
http://dx.doi.org/10.1007/s12043-014-0912-5
http://dx.doi.org/10.1088/1402-4896/ac1d82
http://dx.doi.org/10.1016/j.physa.2019.121126
http://dx.doi.org/10.1155/2013/952614
http://dx.doi.org/10.1016/0378-3839(91)90017-B
http://dx.doi.org/10.1080/25765299.2019.1580815
http://dx.doi.org/10.1016/j.cnsns.2016.05.017
http://dx.doi.org/10.1007/s11082-017-0968-9
http://dx.doi.org/10.1007/s12648-014-0466-x
http://dx.doi.org/10.1002/cplx.21791


Fractal Fract. 2023, 7, 255 14 of 14

38. Biswas, A.; Ekici, M.; Sonmezoglu, A. Gaussian solitary waves to Boussinesq equation with dual dispersion and logarithmic non
linearity. Nonlinear Anal. Model. Control. 2018, 23, 942–950. [CrossRef]
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