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Abstract. In this note, we extend the known results on the existence and uniqueness of weak solutions to conservation
laws with nonlocal flux. In case the nonlocal term is given by a convolution γ ∗ q, we weaken the standard assumption on
the kernel γ ∈ L∞(

(0, T ); W 1,∞(R)
)

to the substantially more general condition γ ∈ L∞((0, T ); BV (R)), which allows for
discontinuities in the kernel.
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1. Introduction

Nonlocal balance laws have been extensively used to describe physical phenomena, including traffic flow
[4,15,23,25,28,41], supply chains [24,29,43], crowd dynamics [16], opinion formation [1,40], chemical
engineering [39,44], sedimentation [5], or conveyor belt dynamics [42].

Existence and uniqueness of solutions of nonlocal conservation laws has been proved in several papers.
In [5,6], existence was established by numerical methods and, in [13], using the vanishing viscosity tech-
nique; to ensure uniqueness an entropy condition was prescribed. More recently, existence and uniqueness
of weak solutions were established via fixed-point methods and without requiring an entropy condition
(see [30,33,34]). For measure-valued solutions, a similar approach had been adopted in [20] requiring
specific nonlocal kernels. We also refer to [36,38] for Lp-valued and measure-valued solutions.

Results on the convergence of nonlocal conservation laws to the corresponding local models have been
obtained in [7,8,12,14,17,31]. For the study of controllability properties of nonlocal conservation laws,
we refer the reader, e.g., to [3,10,11,18,19] and references therein. The aim of this note is to extend
the result on the existence and uniqueness of weak solutions to conservation laws with nonlocal flux
established in [30]. In the more simplistic case where the nonlocal term is given by a convolution γ ∗ q,
we can weaken the standard assumption γ ∈ L∞(

(0, T );W 1,∞(R)
)

to the substantially more general
condition γ ∈ L∞((0, T );BV (R)), which allows for discontinuities in the kernel.

More precisely, we consider the nonlocal conservation law

∂tq(t, x) + ∂x

(
V (W [q](t, x))q(t, x)

)
= 0, (t, x) ∈ ΩT ,

q(0, x) = q0(x), x ∈ R,
(1.1)

with

W [q](t, x) := (γ(t, ·) ∗ q(t, ·))(x), (t, x) ∈ ΩT . (1.2)

Thereby, for T ∈ R>0, q : ΩT → R with ΩT = (0, T ) × R denotes the space-time dependent density of
the conservation law, and q0 : R → R the initial datum.
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We assume that the following conditions are satisfied:

Assumption 1. (Input datum) For T ∈ R>0, let the following hypotheses be satisfied:
(A1) γ ∈ L∞((0, T );BV (R)) and γ ≥ 0;
(A2) V ∈ W 1,∞

loc (R);
(A3) q0 ∈ L∞(R).
Following [2], we recall that the total variation of u ∈ L1(R) is given by

|u|TV (R) := sup

⎧
⎨

⎩

∫

R

u ψ′ dx : ψ ∈ C∞
c (R), ‖ψ‖C0(R) ≤ 1

⎫
⎬

⎭
.

The norm ‖u‖BV (R) := ‖u‖L1(R) + |u|TV (R) makes the space of functions of bounded variation BV(R) a
Banach space.

1.1. Outline

In Sect. 2, we state our main well-posedness result and outline the steps of its proof. In particular, we
point out what changes are required to generalize the argument of [30]. In Sect. 3, we obtain the two
key lemmata that are needed to extend the proofs of [30] to the more general class of kernels under
consideration. Finally, Sect. 4 concludes the paper with some examples and numerical simulations.

2. Main result and outline of the proof

Before stating our main theorem, we recall the notion of weak solution for the nonlocal conservation law
in (1.1) stated in [30, Definition 2.13].

Definition 2.1. (Weak solution of the nonlocal balance law) We say that q ∈ C
(
[0, T ];L1

loc(R)
)

is a weak
solution of the nonlocal conservation law in (1.1) iff for all ϕ ∈ C1

c ((−42, T ) × R), the following integral
equation holds:

∫ ∫

ΩT

q(t, x)
(
∂tϕ(t, x) + ∂xϕ(t, x)V

(
W [q](t, x)

))
dx dt +

∫

R

ϕ(0, x)q0(x) dx = 0,

with W [q] as in (1.2).

Our main theorem establishes the existence and uniqueness of weak solutions to the nonlocal conser-
vation law in (1.1) given Assumption 1.

Theorem 2.1. (Local well-posedness of nonlocal conservation laws with rough kernels) Let T ∈ R>0, and
let Assumption 1 hold. Then, there exists T ∗ ∈ (0, T ] such that the nonlocal initial value problem in (1.1)
admits a unique weak solution q ∈ C

(
[0, T ∗];L1

loc(R)
) ∩ L∞((0, T ∗);L∞(R)) in the sense of Definition

2.1. Moreover, the weak solution can be written as

q(t, x) = q0(ξw∗(t, x; 0))∂2ξw∗(t, x; 0), (t, x) ∈ [0, T ∗] × R,

where w∗ is the unique solution on (0, T ∗)×R of the fixed point problem in (3.1) and ξw∗ the characteristics
defined in (2.3).

Under physically reasonable additional monotonicity assumptions on the velocity and the kernel (i.e.
the further away the density is from the current space location, the less it contributes in the nonlocal term),
we obtain the following existence result for larger time (which is established by means of a comparison
principle).
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Corollary 2.1. (Global existence and comparison principle) Under the assumptions of Theorem 2.1, if,
in addition, it holds that
(A4) V ′ � 0,
(A5) supp(γ(t, ·)) ⊆ R≥0 and γ(t, ·) monotonically non-increasing on R>0 ∀t ∈ [0, T ],
(A6) q0 ∈ L∞(R;R≥0),
then the initial-value problem in (1.1) admits, for every T ∈ R>0, a unique solution

q ∈ C
(
[0, T ];L1

loc(R)
) ∩ L∞((0, T );L∞(R))

satisfying the comparison principle

ess-infx∈Rq0(x) ≤ q(t, x) ≤ ‖q0‖L∞(R) ∀(t, x) ∈ ΩT a.e.

2.1. Outline of the proof to Theorem 2.1

As we will mimic the argument in [30] for rough kernels, we first shortly introduce the required steps in
this proof.

• Step 1. Formulation of the fixed-point equation in the nonlocal term w. Recalling that for (t, x) ∈ ΩT

we have

W [q](t, x) =
∫

R

γ(t, x − y)q(t, y) dy =: w(t, x), (2.1)

we assume for now that this nonlocal term is given. Then, the corresponding conservation law is
linear with Lipschitz continuous velocity V (w) and we use the method of characteristics to write
the solution as

qw(t, x) = q0(ξw(t, x; 0))∂xξw(t, x; 0), (t, x) ∈ ΩT , (2.2)

where ξw solves the characteristic ODE

ξw(t, x; τ) = x +

τ∫

t

V
(
w(s, ξw(t, x; s)

)
ds, τ ∈ [0, T ]. (2.3)

This can now be plugged into the nonlocal term in (2.1) once more to obtain, for (t, x) ∈ ΩT ,

w(t, x) =
∫

R

γ(t, x − y)q(t, y) dy =
∫

R

γ(t, x − y)q0(ξw(t, y; 0))∂yξw(t, y; 0) dy

=
∫

R

γ
(
t, x − ξw(0; y; t)

)
q0(y) dy,

a fixed-point problem in w which is then studied for existence and uniqueness of solutions on a
sufficiently small time horizon.

• Step 2. Local existence for the nonlocal conservation law. Having proven the existence of a w∗ ∈
L∞((0, T );W 1,∞(R)) with Banach’s fixed-point theorem, we can build a solution of (1.1) in terms
of characteristics (analogously to (2.2)):

q(t, x) = q0(ξw∗(t, x; 0))∂xξw∗(t, x; 0), (t, x) ∈ (0, T ∗) × R,

which is presented in [30, Theorem 2.20] and [32, Theorem 3.1] in detail.
• Step 3. Uniqueness for the nonlocal conservation law. The uniqueness of w∗ is shown to imply the

uniqueness of the solution q. The main idea is to prove that any weak solution can be written in the
same way as instantiated in (2.2) (see [30, Lemma 3.1 and Theorem 3.2]).



241 Page 4 of 10 G. M. Coclite et al. ZAMP

• Step 4. Extension of the solution for larger times. Gluing a sequence of initial value problems with
initial data equal to the terminal-time solution of the previous one, we can extend the existence
result to a longer (but not necessarily arbitrary) time-horizon (as in [30, Theorem 4.1]).

• Step 5. Extension to arbitrary time-horizons and comparison principle. Under the stronger assump-
tions (A4)-(A5), we can extend the solution to an arbitrary time-horizon and show that a comparison
principle holds. For the detailed argument, we refer to [34, Lemma 5.8]. It mainly consists of studying
the time evolution of the maximum/minimum of the solution and deducing that its time derivative
is negative implying that the minimum can only increase and the maximum only decrease over time.

Extension of the proof to rough kernels. The only parts of the proof outlined above that need to be
adjusted from [30] to extend the well-posedness result to our more general setting are as follows:

1. proving that for t ∈ [0, T ] the convolution (x �→ γ(t, ·) ∗ q(t, ·))(x) is in W 1,∞(R) for γ ∈ L∞((0, T );
BV (R));

2. establishing the analogue of [30, Proposition 2.17], where it was shown that the fixed-point mapping
induced in Step 1 in Sect. 2.1 satisfies the required assumptions of Banach’s fixed-point theorem by
relying on the regularity assumption γ ∈ L∞(

(0, T );W 1,∞(R)
)
.

To this end, in Sect. 3, we first prove, in Lemma 3.1, that the convolution is Lipschitz in space and then,
in Proposition 3.1, we demonstrate the analogue of [30, Proposition 2.17] in our setting.

3. Proof of the properties of the fixed-point mapping

We start by proving the Lipschitz-continuity (in space) of the convolution.

Lemma 3.1. (Smoothing via convolution with BV functions) Let γ ∈ BV (R) and f ∈ L∞(R). Then
γ ∗ f ∈ W 1,∞(R).

Proof. For h ∈ R by [2, Remark 3.5] or [37, Corollary 2.17], the right h-translation of γ, i.e., τhγ(x) :=
γ(x + h) ∀x ∈ R a.e., satisfies

‖τhγ − γ‖L1(R) ≤ |γ|TV (R)|h|.
As a consequence, we can estimate, by using Young’s convolution inequality (see [9, Theorem 4.33]),

‖τh(γ ∗ f) − γ ∗ f‖L∞(R) = ‖(τhγ − γ) ∗ f‖L∞(R) ≤ ‖f‖L∞(R)‖τhγ − γ‖L1(R) ≤ |γ|TV (R)‖f‖L∞(R)|h|.
We thus conclude that γ ∗ f ∈ W 1,∞(R). �

We now review the proof of the fixed-point argument contained in [30, Proposition 2.17]. As mentioned
in Sect. 2, this is the main step that needs to be taken to adapt the arguments of [30] to the case of a
nonlocal term given by the convolution of the density q with a rough kernel γ ∈ L∞((0, T );BV (R)).

Proposition 3.1. (Properties of the fixed-point mapping) Let

F :

⎧
⎪⎨

⎪⎩

Ω̃ → L∞((0, T );W 1,∞(R)),

w �→
(
(t, x) �→

∫

R

γ
(
t, x − ξw(0, z; t)

)
q0(z) dz

)
, (3.1)

be the fixed-point mapping as introduced in Step 1 of Sect. 2.1 and let Ω̃ be defined by

M := 42‖γ‖L∞((0,T );L1(R))‖q0‖L∞(R), M ′ := 42|γ|L∞((0,T );TV (R))‖q0‖L∞(R),

ΩM′
M (T ) :=

{
w ∈ L∞((0, T ); W 1,∞(R)) : ‖w‖L∞((0,T );L∞(R)) ≤ M ∧ ‖∂2w‖L∞((0,T );L∞(R)) ≤ M ′

}
. (3.2)

Then, the fixed-point mapping defined in (3.1) satisfies the following properties:

1. ∃T ∗ ∈ (0, T ] : ‖F [w]‖L∞((0,T ∗);L∞(R)) ≤ M for all w ∈ ΩM ′
M (T ∗);
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2. ∃T ′ ∈ (0, T ] : ‖∂2F [w]‖L∞((0,T ′);L∞(R)) ≤ M ′ for all w ∈ ΩM ′
M (T ′);

3. F is Lipschitz continuous with respect to the uniform topology, i.e., for w, w̃ ∈ ΩM ′
M (T̄ ), T̄ :=

min{T ∗, T ′},
‖F [w] − F [w̃]‖L∞((0,T̄ );L∞(R)) ≤ |γ|L∞((0,T );TV (R))T̄‖w − w̃‖L∞((0,T̄ );L∞(R))

· ‖V ′‖L∞((−M,M))e2T̄‖V ′‖L∞((−M,M))M
′

and thus, for small time T̂ ∈ (0, T̄ ], F is a contraction on ΩM ′
M

(
T̂

)
.

Proof. 1. For w ∈ ΩM and t ∈ [0, T ], we estimate—recalling the definition of F in (3.1)—

‖F [w](t, ·)‖L∞(R) =

∥
∥
∥
∥
∥
∥

∫

R

γ(t, · − ξw(0, z; t))q0(z) dz

∥
∥
∥
∥
∥
∥

L∞(R)

≤ ‖γ(t, ·)‖L1(R)‖∂2ξw(t, ·; 0)‖L∞‖q0‖L∞(R)

≤ ‖γ(t, ·)‖L1(R)et‖V ′‖L∞((−M,M))M
′‖q0‖L∞(R),

where we have used the substitution rule and the properties of the characteristics ([30, Lemma 2.6]
and in particular [30, Lemma 2.6(3)], see also [32, Corollary 2.1]): namely,

‖∂2ξw(t, ·; 0)‖ ≤ et‖V ′‖L∞((−M,M))M
′ ∀t ∈ [0, T ], (3.3)

which is an immediate consequence of differentiating (2.3) with regard to x ∈ R to obtain a linear
IVP in ∂2ξw. However, as M,M ′ are fixed, we can find a time horizon T ∗ ∈ (0, T ] such that

‖γ‖L∞((0,T );L1(R))eT ∗‖V ′‖L∞((−M,M))M
′‖q0‖L∞(R) ≤ M ⇐⇒ eT ∗‖V ′‖L∞((−M,M))M

′ ≤ 42,

which indeed proves the existence of such a T ∗.
2. Next, we estimate the spatial derivative of the fixed-point mapping in (3.1) (which is well-defined

according to Lemma 3.1), for w ∈ ΩM ′
M (T ) and (t, x) ∈ ΩT . Some technical details are left out and

can be found in [30, Lemma 2.6(2)], however, the argument is as follows (applying once more the
substitution rule and the estimate in (3.3)):

|∂xF [w](t, x)| ≤
∫

R

∣
∣∂xγ(t, x − ξw(0, z; t))q0(z)

∣
∣ dz

≤ ‖∂2ξ(t, ·; 0)‖L∞(ΩT )‖q0‖L∞(R)

∫

R

|∂zγ(t, x − y)|dy

≤ |γ(t, ·)|TV (R)et‖V ′‖L∞((−M,M))M
′‖q0‖L∞(R).

Making this uniform in (t, x) ∈ ΩT , and since M,M ′ are fixed, we can find a time horizon T ′ ∈ (0, T ]
so that

|γ|L∞((0,T );TV (R))eT ′‖V ′‖L∞((−M,M))M
′‖q0‖L∞(R) ≤ M ′ ⇐⇒ eT ′‖V ′‖L∞((−M,M))M

′ ≤ 42.

This proves the existence of such a T ′ and we can indeed chose T ′ = T ∗. Thus, we can conclude
with the two previous results

F
(
ΩM ′

M

(
T ′)

)
⊆ ΩM ′

M

(
T ′),

i.e., F is a self-mapping on ΩM ′
M (T ′).

3. Finally, we approach the contraction property of F in L∞((0, T ′);L∞(R)) and estimate for w, w̃ ∈
ΩM ′

M (T ′) (which is due to its uniform bounds on the involved functions and its derivatives closed in
L∞((0, T ′);L∞(R))) and (t, x) ∈ (0, T ′) × R:

|F [w](t, x) − F [w̃](t, x)|
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=

∣
∣
∣
∣
∣
∣

∫

R

γ(t, ξw(0, z; t))q0(z) dz −
∫

R

γ(t, ξw̃(0, z; t))q0(z) dz

∣
∣
∣
∣
∣
∣

≤
∫

R

|γ(t, ξw(0, z; t)) − γ(t, ξw̃(0, z; t))| q0(z) dz

≤ |γ|L∞((0,T );TV (R))‖ξw − ξw̃‖L∞((0,t)×R×(0,t))‖q0‖L∞(R)et‖V ′‖L∞((−M,M))M
′

(3.4)

≤ |γ|L∞((0,T );TV (R))t‖V ′‖L∞((−M,M))‖w − w̃‖L∞((0,t);L∞(R))‖q0‖L∞(R)e2t‖V ′‖L∞((−M,M))M
′
, (3.5)

where we have used, in (3.4), the substitution rule and the uniform bound on ∂2ξw, ∂2ξw̃ as in (2.2)
thanks to the bounds on w, w̃ in L∞(

W 1,∞)
(compare (3.2)); and, in (3.5), the stability of the

characteristics with regard to the nonlocal term (see [30, Lemma 2.6(3)] and [32, Theorem 2.4]).
This last stability result can be obtained when comparing the solution with the “perturbed” solution
of the IVP in (2.3) in w and a typical Gronwall estimate (see [21, Appendix B k) ii]) can be used to
derive it. Making the previous estimate uniform in (t, x) and recalling that M,M ′ are fixed there
exists T̂ ∈ (0, T ′] so that

|γ|L∞((0,T );TV (R))T̂‖V ′‖L∞((−M,M))‖w − w̃‖L∞((0,T̂ );L∞(R))‖q0‖L∞(R)e2T̂‖V ′‖L∞((−M,M))M
′ ≤ 1

2 .

From this, it follows that F is also a contraction in ΩM ′
M

(
T̂

)
for a sufficiently small T̂ ∈ (

0, T̄
)
. �

4. Conclusions and numerical illustrations

In what follows, we present some numerical simulations (based on a non-dissipative discretization scheme
using the method of characteristics, see [35]) to illustrate the effect of a discontinuity in the kernel. We
consider the Cauchy problem in (1.1) with initial datum

q0(x) = χ(0, 12 )(x) + χR>1(x), x ∈ R (4.1)

and focus on LWR-type velocity (see [27, Formula (1.26), p. 11]), i.e., V (ξ) := 1−ξ2, ξ ∈ R, and Burgers-
type velocity (see [27, Formula (1.8), p. 3]), i.e., V (ξ) := ξ, ξ ∈ R, (see also [22, Section 3.1.2] for the
fundamental diagrams and generalized Greenshields [26]). As examples of convolution kernels, we consider

γ1(x) = 2χ(0,1)(2x), γ2(x) = 8
3χ(0,1)(4x) + 4

3χ(1,2)(4x), x ∈ R, (4.2)

and remark that γ1, γ2 ∈ BV (R).
For the LWR-type velocity, a comparison principle (see Corollary 2.1) is satisfied. Since the initial

datum is chosen in a way that it has maximum density and zero velocity in R>1, the initial density for
x < 1 slows down as it gets closer to x = 1. We remark that the second illustration in Fig. 1 indicates
a disturbance evolving from points where the discontinuities of γ and q “intersect”, i.e., 0.25 left of the
spatial discontinuities of q.

For the example involving the Burgers-type velocity (due to the chosen initial datum and the right-
looking nonlocal term), a comparison principle does not hold (see [30, Example 6.1]) and the entire mass
concentrates at the point x = 0.5 as time evolves. Thus, the solution ceases to exist for large time. Again,
the impact of the discontinuous kernel (the fourth (right) illustration in Fig. 1) is destroying the rather
“smooth” structure of the solution which we would obtain when using a smooth kernel.

Possible generalizations of this work may consist of (1) weakening the assumptions on V to be dis-
continuous in space; (2) determining the precise regularity assumptions on initial datum and weight to
have the nonlocal conservation law be well-posed (including measure valued solutions and kernels); and
(3) generalizing the results to multi-dimensional nonlocal balance laws.
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Fig. 1. First and second: plot of the solution for the LWR-type velocity function, i.e., V ≡ 1 − · with γ1, γ2 as in (4.2) in
the first and second plot respectively. Third and fourth: Plot of the solution for the Burgers-type velocity, i.e. V ≡ · with
γ1 in the third and γ2 in the fourth plot. Colorbar: 0 1. Note that for the rightmost figure the maximal
density exceeds 1 but still visualized by the dark red color (Color figure online)
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[18] Coron, J.-M., Wang, Z.: Controllability for a scalar conservation law with nonlocal velocity. J. Differ. Equ. 252(1),
181–201 (2012)

[19] Coron, J.-M., Wang, Z.: Output feedback stabilization for a scalar conservation law with a nonlocal velocity. SIAM J.
Math. Anal. 45(5), 2646–2665 (2013)

[20] Crippa, G., Lécureux-Mercier, M.: Existence and uniqueness of measure solutions for a system of continuity equations
with non-local flow. Nonlinear Differ. Equ. Appl. 20(3), 523–537 (2013)

[21] Evans L. C.: Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, second edition, (2010)

[22] Garavello M., Piccoli B.: Traffic flow on networks. Conservation laws models, volume 1 of AIMS Series on Applied
Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO, (2006)

[23] Goatin, P., Scialanga, S.: Well-posedness and finite volume approximations of the lwr traffic flow model with non-local
velocity. Netw. Hetereogeneous Media 11(1), 107–121 (2016)

[24] Gong, X., Kawski, M.: Weak measure-valued solutions of a nonlinear hyperbolic conservation law. SIAM J. Math. Anal.
53(4), 4417–4444 (2021)

[25] Gong X., Piccoli B., Visconti G.: Mean-field limit of a hybrid system for multi-lane multi-class traffic. arXiv:2007.14655
(2020)

[26] Greenshields B., Channing W., Miller H., et al. A study of traffic capacity. In: Highway research board proceedings,
volume 1935. National Research Council (USA), Highway Research Board (1935)

[27] Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences, vol. 42.
Springer, Heidelberg (2015)

[28] Huang, K., Du Q.: Stability of a nonlocal traffic flow model for connected vehicles. SIAM J. Appl. Math. 82(1), 221–243
(2022)

[29] Keimer, A., Leugering, G., Sarkar, T.: Analysis of a system of nonlocal balance laws with weighted work in progress.

J. Hyperbolic Differ. Equ. 15(03), 375–406 (2018)
[30] Keimer, A., Pflug, L.: Existence, uniqueness and regularity results on nonlocal balance laws. J. Differ. Equ. 263(7),

4023–4069 (2017)
[31] Keimer, A., Pflug, L.: On approximation of local conservation laws by nonlocal conservation laws. J. Math. Anal. Appl.

475(2), 1927–1955 (2019)
[32] Keimer, A., Pflug, L.: Discontinuous nonlocal conservation laws and related discontinuous ODEs – existence, uniqueness,

stability and regularity. arXiv:2110.10503 (2021)

http://arxiv.org/abs/2007.14655
http://arxiv.org/abs/2110.10503


ZAMP On existence and uniqueness of weak solutions... Page 9 of 10 241

[33] Keimer, A., Pflug, L., Spinola, M.: Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws
with damping. J. Math. Anal. Appl. 466(1), 18–55 (2018)

[34] Keimer, A., Pflug, L., Spinola, M.: Nonlocal scalar conservation laws on bounded domains and applications in traffic
flow. SIAM J. Math. Anal. 50(6), 6271–6306 (2018)

[35] Keimer, A., Pflug, L., Spinola, M.: Nonlocal balance laws: Theory of convergence for nondissipative numerical schemes.
Submitted (2020)

[36] Kloeden, P., Lorenz, T.: Nonlocal multi-scale traffic flow models: analysis beyond vector spaces. Bull. Math. Sci. 6(3),
453–514 (2016)

[37] Leoni, G.: A first course in Sobolev spaces, volume 181 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, second edition (2017)

[38] Lorenz, T.: Viability in a non-local population model structured by size and spatial position. J. Math. Anal. Appl.
491(1), 124249 (2020)

[39] Pflug, L., Schikarski, T., Keimer, A., Peukert, W., Stingl, M.: eMoM: Exact method of moments-nucleation and size
dependent growth of nanoparticles. Comput. Chem. Eng. 136, 106775 (2020)
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