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Abstract. The Dirichlet problem for the Laplacian in a planar domain bounded by
smooth closed curves and smooth double-sided open arcs (slits) is considered in the case
when the solution is not continuous at the ends of the slits. The cases of both interior
and exterior domains are considered. The well-posed formulation of the problem is given,
theorems on existence and uniqueness of a classical solution are proved, and the integral
representation for a solution is obtained. It is shown that a weak solution of the problem
does not typically exist, though the classical solution exists.

1. Introduction. Boundary value problems in planar domains with slits (double-
sided open arcs) are very important for applications, since slits model cracks, screens,
wings, and other thin objects in physics, in mechanics, and in engineering [1].

It is known that if the Dirichlet problem for the Laplacian is considered in a planar
domain bounded by sufficiently smooth closed curves, and if the function specified in the
boundary condition is smooth enough, then existence of a classical solution follows from
existence of a weak solution. In the present paper we consider the Dirichlet problem for
the Laplacian in both interior and exterior planar domains bounded by closed curves and
double-sided open arcs (slits) of an arbitrary shape. The Dirichlet condition is specified
on the whole boundary, i.e., on both closed curves and on the slits, so that different
functions may be specified on opposite sides of the slits. The case of this problem, when
the solution is continuous at the tips of the slits, has been previously studied in [2]–[6],
where theorems on existence and uniqueness of a classical solution have been proved
and the integral representation for a classical solution has been obtained. In the present
paper, this problem is considered in the case when the solution may be not continuous
at the tips of the slits. We prove that there exists a unique classical solution to this
problem and obtain an integral representation for the classical solution. In addition, we
prove that a weak solution to this problem may not exist even if both slits and functions
in the boundary conditions are sufficiently smooth. This result follows from the fact that
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the square of the gradient of a classical solution, basically, is not integrable near the
ends of the slits, since singularities of the gradient are rather strong there. This result is
very important for numerical analysis; it shows that finite elements and finite difference
methods cannot be applied to numerical treatment of the Dirichlet problem in question
directly, since all of these methods imply existence of a weak solution. To use difference
methods for numerical analysis, one has to localize all strong singularities first and then
use difference methods in a domain excluding the neighbourhoods of the singularities.

2. Formulation of the problem. By an open curve we mean a simple smooth
non–closed arc of finite length without self–intersections [7].

Let Γ be a set of curves, which may be both closed and open. We say that Γ ∈ C2,λ

(or Γ ∈ C1,λ) if the curves Γ belong to the class C2,λ (or C1,λ) with the Hölder exponent
λ ∈ (0, 1].

In a plane in Cartesian coordinates x = (x1, x2) ∈ R2 we consider a multiply con-
nected domain bounded by simple open curves Γ1

1, . . . , Γ1
N1

∈ C2,λ and simple closed
curves Γ2

1, . . . , Γ2
N2

∈ C2,λ, λ ∈ (0, 1], in such a way that all curves do not have common
points, in particular, endpoints. We will consider both the case of an exterior domain
and the case of an interior domain when the curve Γ2

1 encloses all others. Set

Γ1 =
N1⋃

n=1

Γ1
n, Γ2 =

N2⋃
n=1

Γ2
n, Γ = Γ1 ∪ Γ2.

The connected domain bounded by Γ2 and containing curves Γ1 will be called D, so that
∂D = Γ2, Γ1 ⊂ D. We assume that each curve Γj

n is parametrized by the arc length s:

Γj
n =

{
x : x = x(s) =

(
x1(s), x2(s)

)
, s ∈

[
aj

n, bj
n

]}
, n = 1, . . . , Nj , j = 1, 2,

so that
a1
1 < b1

1 < · · · < a1
N1

< b1
N1

< a2
1 < b2

1 < · · · < a2
N2

< b2
N2

,

and the domain D is placed to the right when the parameter s increases on Γ2
n. The

points x ∈ Γ and values of the parameter s are in one-to-one correspondence except the
points a2

n, b2
n, which correspond to the same point x for n = 1, . . . , N2. Further on, the

set of the intervals
N1⋃

n=1

[
a1

n, b1
n

]
,

N2⋃
n=1

[
a2

n, b2
n

]
,

2⋃
j=1

Nj⋃
n=1

[
aj

n, bj
n

]

on the Os-axis will be denoted by Γ1, Γ2, and Γ also.

Set Cj,r
(
Γ2

n

)
=

{
F(s): F(s) ∈ Cj,r

[
a2

n, b2
n

]
, F (m)

(
a2

n

)
= F (m)

(
b2
n

)
, m = 0, . . . , j

}
,

j = 0, 1, r ∈ [0, 1] and Cj,r
(
Γ2

)
=

N2⋂
n=1

Cj,r
(
Γ2

n

)
. The tangent vector to Γ in the point

x(s), in the direction of the increment of s, will be denoted by τx = (cosα(s), sin α(s)),
while the normal vector coinciding with τx after rotation through an angle of π/2 in the
counterclockwise direction will be denoted by nx = (sin α(s), − cosα(s)). According to
the chosen parametrization cosα(s) = x′

1(s), sin α(s) = x′
2(s). Thus, nx is an interior
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normal to D on Γ2. By X we denote the point set consisting of the endpoints of Γ1:

X =
N1⋃

n=1

(
x

(
a1

n

)
∪ x

(
b1
n

))
.

Let the plane be slit along Γ1. We consider Γ1 as a set of slits (or double-sided open
arcs). The side of the slit Γ1, which is situated on the left when the parameter s increases,
will be denoted by

(
Γ1

)+, while the opposite side will be denoted by
(
Γ1

)−.
We say that the function u(x) belongs to the smoothness class K1 if
(1) u ∈ C0

(
D \ Γ1 \ X

)
∩ C2

(
D \ Γ1

)
, ∇u ∈ C0

(
D \ Γ1 \ Γ2 \ X

)
,

(2) in the neighbourhood of any point x(d) ∈ X, the equality

lim
r→+0

∫
∂S(d,r)

u(x)
∂u(x)
∂nx

dl = 0 (1)

holds, where the curvilinear integral of the first kind is taken over a circumference
∂S(d, r) of a radius r with the center in the point x(d). In addition, nx is a normal
in the point x ∈ ∂S(d, r), directed to the center of the circumference and d = a1

n

or d = b1
n, n = 1, . . . , N1.

Remark. By C0
(
D \ Γ1 \ X

)
we denote the class of continuous in D \ Γ1 functions

that are continuously extensible to the sides of the slits Γ1 \ X from the left and from
the right, but their limiting values on Γ1 \X can be different from the left and from the
right, so that these functions may have a jump on Γ1 \X. To obtain the definition of the
class C0

(
D \ Γ1 \ Γ2 \ X

)
we have to replace C0

(
D \ Γ1 \ X

)
by C0

(
D \ Γ1 \ Γ2 \ X

)
and D \ Γ1 by D \ Γ1 in the previous sentence.

Let us formulate the Dirichlet problem for the Laplacian in a domain D \ Γ1 (interior
or exterior).

Problem D1. Find a function u(x) from the class K1 so that u(x) obeys the Laplace
equation

ux1x1(x) + ux2x2(x) = 0 (2a)

in D \ Γ1 and satisfies the boundary conditions

u(x)|x(s)∈(Γ1)+ = F+(s), u(x)|x(s)∈(Γ1)− = F−(s), u(x)|x(s)∈Γ2 = F (s). (2b)

If D is an exterior domain, then we add the following condition at infinity:

|u(x)| ≤ const, |x| =
√

x2
1 + x2

2 → ∞. (2c)

All conditions of the problem D1 must be satisfied in a classical sense. The boundary
conditions (2b) on Γ1 must be satisfied in the interior points of Γ1; their validity at the
ends of Γ1 is not required.

Theorem 1. If Γ ∈ C2,λ, λ ∈ (0, 1], then there is no more than one solution to the
problem D1.

Proof. It is sufficient to prove that the homogeneous problem D1 admits the trivial
solution only. Let u0(x) be a solution to the homogeneous problem D1 with F+(s) ≡
F−(s) ≡ 0, F (s) ≡ 0. Let S(d, ε) be a disc of a small enough radius ε with the center
in the point x(d) (d = a1

n or d = b1
n, n = 1, ..., N1). Let Γ1

n,ε be a set consisting of such
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points of the curve Γ1
n which do not belong to discs S(a1

n, ε) and S(b1
n, ε). We choose a

number ε0 so small that the following conditions are satisfied:
1) for any 0 < ε ≤ ε0 the set of points Γ1

n,ε is a unique non-closed arc for each
n = 1, ..., N1,

2) the points belonging to Γ \ Γ1
n are placed outside the discs S(a1

n, ε0), S(b1
n, ε0) for

any n = 1, ..., N1,
3) discs of radius ε0 with centers at different ends of Γ1 do not intersect.
Set Γ1,ε = ∪N1

n=1Γ
1
n,ε, Sε =

(
∪N1

n=1[S(a1
n, ε) ∪ S(b1

n, ε)]
)
, Dε = D \ Γ1,ε \ Sε. If D is an

exterior domain, then we set Dε,R = Dε ∩ SR, where SR is a disc with a center in the
origin and with sufficiently large radius R.

Since Γ2 ∈ C2,λ, u0(x) ∈ C0(D \ Γ1) (remember that u0(x) ∈ K1), and since
u0|Γ2 = 0 ∈ C2,λ(Γ2), and owing to the lemma on regularity of solutions of elliptic
equations near the boundary [10, Lemma 6.18], we obtain u0(x) ∈ C1(D \ Γ1). Since
u0(x) ∈ K1, we observe that u0(x) ∈ C1(Dε) for any ε ∈ (0, ε0]. By C1(Dε) we mean
C1(Dε ∪ Γ2 ∪ (Γ1,ε)+ ∪ (Γ1,ε)− ∪ ∂Sε). Analogously, in the case of an exterior domain
D, u0(x) ∈ C1(Dε,R) for ε ∈ (0, ε0]. Let D be an interior domain. Since the boundary
of a domain Dε is piecewise smooth, we write out Green’s formula [9, p. 328] for the
function u0(x):

‖∇u0‖2
L2(Dε)

=
∫

Γ1,ε

(u0)+
(

∂u0

∂nx

)+

ds −
∫

Γ1,ε

(u0)−
(

∂u0

∂nx

)−
ds−

∫
Γ2

u0 ∂u0

∂nx
ds+

∫
∂Sε

u0 ∂u0

∂nx
dl.

(3)

We denote by nx the exterior (with respect to Dε) normal on ∂Sε at the point x ∈ ∂Sε.
By the superscripts + and − we denote the limiting values of functions on (Γ1)+ and on
(Γ1)− respectively. Since u0(x) satisfies the homogeneous boundary condition (2b) on Γ,
we observe that u0|Γ2 = 0 and (u0)±|Γ1,ε = 0 for any ε ∈ (0, ε0]. Therefore identity (3)
takes the form

‖∇u0‖2
L2(Dε)

=
∫

∂Sε

u0 ∂u0

∂nx
dl, ε ∈ (0, ε0]. (4)

Setting ε → +0 in (4), taking into account that u0(x) ∈ K1 and using relationship (1),
we obtain:

‖∇u0‖2
L2(D\Γ1) = lim

ε→+0
‖∇u0‖2

L2(Dε)
= 0. (5)

From the homogeneous boundary conditions (2b) we conclude that u0(x) ≡ 0 in D \ Γ1,
where D is an interior domain.

Let D be an exterior domain. Since the boundary of a domain Dε,R is piecewise
smooth and since u0(x) ∈ C1(Dε,R) for any ε ∈ (0, ε0], we may write Green’s formula in
a domain Dε,R for a harmonic function u0(x) [9, p. 328]:

‖∇u0‖2
L2(Dε,R) =

∫
Γ1,ε

(u0)+
(

∂u0

∂nx

)+

ds −
∫

Γ1,ε

(u0)−
(

∂u0

∂nx

)−
ds

−
∫

Γ2
u0 ∂u0

∂nx
ds +

∫
∂Sε

u0 ∂u0

∂nx
dl +

∫
∂SR

u0 ∂u0

∂|x|dl.

(6)
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WEAK SOLUTION TO THE DIRICHLET PROBLEM 181

By nx on ∂Sε we denote an outward (with respect to Dε,R) normal in the point x ∈ ∂Sε.
It follows from condition (2c) and from the theorem on behaviour of a gradient of a
harmonic function at infinity [9, p. 373] that

∂u0(x)
∂|x| = O

(
1

|x|2

)
, as |x| → ∞.

Consequently,

lim
R→∞

∫
∂SR

u0(x)
∂u0(x)
∂|x| dl = 0,

and formula (6) transforms to the formula (3) as R → ∞. Repeating all arguments as
presented above for the case of an interior domain D, we arrive at formula (5). Taking
into account homogeneous boundary conditions (2b), we obtain from (5) that u0(x) ≡ 0
in D \ Γ1, where D is an exterior domain. Thus, in all cases u0(x) ≡ 0 in D \ Γ1. The
theorem is proved.

Remark. The maximum principle cannot be used for the proof of the theorem even
in the case of an interior domain D, since the solution to the problem may not satisfy
the boundary condition (2b) at the ends of the slits, and it may not be continuous at the
ends of the slits.

3. Properties of the double layer potential on the open curve. Let γ be an
open curve of class C1,λ, λ ∈ (0, 1]. Assume that γ is parametrized by the arc length
s: γ = {x : x(s) = (x1(s), x2(s)), s ∈ [a, b]}. The points x ∈ Γ and values of the
parameter s are in one-to-one correspondence, so the segment [a, b] will be also denoted
by γ. The tangent vector to γ in the point x(s), in the direction of the increment of s, will
be denoted by τx = (cosα(s), sin α(s)), while the normal vector to γ in the point x(s)
will be denoted by nx = (sin α(s), − cos α(s)). According to the chosen parametrization
cos α(s) = x′

1(s), sin α(s) = x′
2(s). Let the plane be slit along γ. The side of the slit

γ, which is situated on the left when the parameter s increases, will be denoted by γ+,
while the opposite side will be denoted by γ−. Let Xγ = x(a)∪ x(b) be a set of the ends
of γ.

Set µ(s) ∈ C0,λ[a, b], and consider the double layer potential for the Laplacian in a
plane

W [µ](x) = − 1
2π

∫ b

a

µ(σ)
∂

∂ny
ln |x − y(σ)|dσ.

Set z = x1 + ix2, t = t(σ) = (y1(σ) + iy2(σ)) ∈ γ, µ̂(t) = µ̂(t(σ)) = µ(σ). If µ(s) ∈
C0,λ[a, b], then µ̂(t) ∈ C0,λ(γ), since

|µ̂(t2) − µ̂(t1)| = |µ̂(t(σ2)) − µ̂(t(σ1))| = |µ(σ2) − µ(σ1)| ≤ c|σ2 − σ1|λ

= c

(
|σ2 − σ1|

|t(σ2) − t(σ1)|

)λ

|t(σ2) − t(σ1)|λ = c · cλ
0 |t2 − t1|λ,

where c and c0 are constants, t2 = t(σ2) ∈ γ, t1 = t(σ1) ∈ γ. We took into account in
deriving the latter inequality that

|σ2 − σ1|
|t(σ2) − t(σ1)|

∈ C0([a, b] × [a, b])
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(see Lemma 1 in [11]), whence

|σ2 − σ1|
|t(σ2) − t(σ1)|

≤ c0.

Consider an integral of Cauchy type with real density µ̂(t):

Φ(z) =
1

2πi

∫
γ

µ̂(t)
dt

t − z
,

then W [µ](x) = −Re Φ(z). It follows from properties of a Cauchy-type integral that
if µ(σ) ∈ C0,λ[a, b], then W [µ](x) ∈ C0(R2 \ γ \ Xγ). This means that the potential
W [µ](x) is continuously extensible to γ from the left and from the right in interior points
(though its values on γ from the left and from the right may be different). If, in addition,
µ(d) = 0, then the potential W [µ](x) is continuously extensible to the end x(d), where
d = a or d = b (see [7, § 15.2]). Set

cos ψ(x, y) =
x1 − y1

|x − y| = −|x − y|′y1
, sin ψ(x, y) =

x2 − y2

|x − y| = −|x − y|′y2
.

Then ψ(x, y) is a polar angle of the coordinate system with the origin in the point y.
Formulae for cosψ(x, y), sin ψ(x, y) define the angle ψ(x, y) with indeterminacy up to
2πm (m being an integer). Let S(d, ε) be a disc of a sufficiently small radius ε with the
center in x(d) (d = a or d = b). From asymptotic formulae describing Φ(z) at the ends
of γ [7, § 22], we may derive the asymptotic formulae for W [µ](x) = −ReΦ(z) at the
ends of γ. Namely, for any x ∈ S(d, ε) and x /∈ γ, the formulae holds:

W [µ](x) =
±µ(d)

2π
ψ(x, x(d)) + Ω(x). (7)

Here by ψ(x, x(d)) we mean some fixed branch of this function, so that the branch varies
continuously in x in a neighbourhood of the point x(d), slit along γ. The upper sign is
taken if d = a, while the lower sign is taken if d = b. The function Ω(x) is continuous
as x → x(d). Moreover, Ω(x) is continuous in S(d, ε) outside γ and is continuously
extensible from the left and from the right to the part of γ lying in S(d, ε). It follows
from formula (7) that for any x ∈ S(d, ε) and x /∈ γ the inequality holds:

|W [µ](x)| ≤ const. (8)

Now we will study properties of derivatives of the double layer potential. It follows
from Cauchy–Riemann relations that

dΦ(z)
dz

= (ReΦ)′x1
− i(Re Φ)′x2

= −W ′
x1

+ iW ′
x2

. (9)

On the other hand, if µ(σ) ∈ C1,λ[a, b], then for z /∈ γ:

dΦ(z)
dz

=
1

2πi

∫
γ

µ̂(t)
d

dz

1
t − z

dt = − 1
2πi

∫
γ

µ̂(t)
(

d

dt

1
t − z

)
dt

= − 1
2πi

(
µ(b)

t(b) − z
− µ(a)

t(a) − z
−

∫
γ

µ̂′(t)
t − z

dt

)
,

(10)

where
dµ̂(t)

dt
=

dµ(σ)
dσ

dσ

dt
=

µ′(σ)
t′(σ)

= e−iα(σ)µ′(σ).
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WEAK SOLUTION TO THE DIRICHLET PROBLEM 183

Since γ ∈ C1,λ, then e−iα(σ) ∈ C0,λ[a, b], so one can show that µ̂′(t) ∈ C0,λ(γ) (the
proof repeats the above proof of the fact that µ̂(t) ∈ C0,λ(γ), if µ(σ) ∈ C0,λ[a, b]).
From (9), (10) and from properties of the Cauchy-type integral [7, § 15], it follows that
if µ(σ) ∈ C1,λ[a, b], then ∇W [µ](x) ∈ C0(R2 \ γ \ Xγ); i.e., ∇W [µ](x) is continuously
extensible to γ from the left and from the right in interior points, though the limiting
values of ∇W [µ](x) on γ from the left and from the right can be different. We can write
(10) in the form

dΦ(z)
dz

=
1

2πi

(
µ(b)e−iψ(x,x(b))

|x − x(b)| − µ(a)e−iψ(x,x(a))

|x − x(a)|

)
+ Ω0(z), (11)

where Ω0(z) =
1

2πi

∫
γ

µ̂′(t)
t − z

dt. It follows from [7, § 22] that for all z ∈ S(d, ε) (d = a or

d = b), such that z /∈ γ, the inequality holds:

|Ω0(z)| ≤ c0

(
|µ′(d)| ln 1

|x − x(d)| + 1
)

≤ c ln
1

|x − x(d)| ,

where c0 and c are constants.
Comparing formulae (9) and (11), we obtain that for x ∈ S(d, ε) and x /∈ γ, the

formulae hold:
∂W [µ](x)

∂x1
=

1
2π

∓µ(d)
|x − x(d)| sin ψ(x, x(d)) + Ω1(x), (12a)

∂W [µ](x)
∂x2

=
1
2π

±µ(d)
|x − x(d)| cos ψ(x, x(d)) + Ω2(x), (12b)

where

|Ωj(x)| ≤ c1

(
|µ′(d)| ln 1

|x − x(d)| + 1
)

≤ c2 ln
1

|x − x(d)| , j = 1, 2, (13a)

where c1, c2 are constants. The upper sign in the formulae is taken if d = a, while the
lower sign is taken if d = b. It follows from [7, § 15.2] that if µ′(d) = 0, then the functions
Ω1(x) and Ω2(x) are continuously extensible to the end x(d). Moreover, if x ∈ S(d, ε)
and x /∈ γ, then for the functions Ω1(x) and Ω2(x), the formulae hold:

Ω1(x) = −Re Ω0(z)

= ∓µ′(d)
2π

{sin(α(d)) ln |x − x(d)| − cos(α(d))ψ(x, x(d))}+ Ω10(x),

Ω2(x) = Im Ω0(z)

= ±µ′(d)
2π

{cos(α(d)) ln |x − x(d)| + sin(α(d))ψ(x, x(d))}+ Ω20(x), (13b)

which can be derived using the asymptotics for Ω0(z) from [7, § 22]. The upper sign in
the formulae is taken if d = a, while the lower sign is taken if d = b. Functions Ω10(x)
and Ω20(x) are continuously extensible to the end x(d). By ψ(x, x(d)) we mean some
fixed branch of this function, which varies continuously in x in a neighbourhood of a
point x(d), slit along γ.

Let µ(σ) ∈ C1,λ[a, b], and let nx be a normal in the point x ∈ ∂S(d, ε), directed to the
center of the circumference ∂S(d, ε), i.e., nx = (− cos ψ(x, x(d)),− sinψ(x, x(d))). Then
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we obtain from (12) for x /∈ γ:

∂W [µ](x)
∂nx

∣∣∣∣
∂S(d,ε)

= −Ω1(x) cosψ(x, x(d)) − Ω2(x) sinψ(x, x(d)).

Therefore, according to (13a):∣∣∣∣∂W [µ](x)
∂nx

∣∣∣∣
∣∣∣∣
∂S(d,ε)

≤ const ln
1

|x − x(d)|

∣∣∣∣
∂S(d,ε)

= const ln
1
ε
,

since |x − x(d)| = ε on ∂S(d, ε). From this and from (8) we obtain that∣∣∣∣∣
∫

∂S(d,ε)

W [µ](x)
∂W [µ](x)

∂nx
dl

∣∣∣∣∣ ≤
∫ 2π

0

|W [µ](x)| ·
∣∣∣∣∂W [µ](x)

∂nx

∣∣∣∣ εdψ

≤ 2π const ε ln
1
ε
→ 0

if ε → +0, so

lim
ε→+0

∫
∂S(d,ε)

W [µ](x)
∂W [µ](x)

∂nx
dl = 0. (14)

Now let ε be a fixed positive number (sufficiently small). Using formulae (12) and setting
r = |x − x(d)|, ψ = ψ(x, x(d)), we consider the integral over the disc S(d, ε):

∫
S(d,ε)

|∇W [µ](x)|2dx =
∫ 2π

0

∫ ε

0

{(
µ(d)
2πr

)2

+
µ(d)
πr

(∓Ω1(x) sinψ ± Ω2(x) cosψ) + Ω2
1(x) + Ω2

2(x)
}

rdrdψ = I1 + I2, (15)

I1 =
1
2π

∫ ε

0

1
r
µ2(d)dr,

I2 =
∫ 2π

0

∫ ε

0

{
µ(d)
π

(∓Ω1(x) sinψ ± Ω2(x) cosψ) + r(Ω2
1(x) + Ω2

2(x))
}

drdψ.

The integral I2 converges according to estinates (13a):

|I2| ≤ 4c2

∫ ε

0

ln
1
r

(
|µ(d)| + c2πr ln

1
r

)
dr ≤ const.

Hence, if integral (15) converges, then the integral I1 converges as well (as a difference
of two convergent integrals), but the integral I1 converges if and only if µ(d) = 0, while
in other cases I1 diverges. Thus, the integral (15) converges if and only if µ(d) = 0.
Consequently |∇W [µ](x)| belongs to L2(S(d, ε)) with small ε > 0 if and only if µ(d) = 0.
Let us formulate obtained results in the form of the theorem.

Theorem 2. Let γ be an open curve of class C1,λ, λ ∈ (0, 1]. Let S(d, ε) be a disc of a
sufficiently small radius ε with the center in the point x(d) ∈ Xγ (d = a or d = b).

I. If µ(s) ∈ C0,λ[a, b], then W [µ](x) ∈ C0(R2 \ γ \ Xγ) and for any x ∈ S(d, ε), such
that x /∈ γ, the relationships (7), (8) hold.

II. If µ(s) ∈ C1,λ[a, b], then
1) ∇W [µ](x) ∈ C0(R2 \ γ \ Xγ);
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2) for any x ∈ S(d, ε), such that x /∈ γ, the formulae (12) hold, in which the functions
Ω1(x) and Ω2(x) satisfy relationships (13);

3) for W [µ](x) the property (14) holds;
4) |∇W [µ](x)| belongs to L2(S(d, ε)) for sufficiently small ε > 0 if and only if µ(d) = 0.

Remark. Each function of class C0(R2 \ γ\Xγ) is continuous in R2\γ, is continuously
extensible to γ\Xγ from the left and from the right, but limiting values of such a function
on γ \Xγ from the left and from the right can be different, i.e., the function may have a
jump on γ \ Xγ .

Let us study smoothness of the direct value of the double layer potential on the curve.

Lemma. Let γ be an open curve of class C2,λ, λ ∈ (0, 1], and let µ(s) ∈ C0[a, b]. Let

I1(s) = − 1
2π

∫
γ

µ(σ)
∂ ln |x(s) − y(σ)|

∂ny
dσ

be the direct value of the double layer potential W [µ](x) on γ. Then

I1(s) ∈ C1,λ/4[a, b].

Proof. Let us prove that I1(s) ∈ C1,λ/4[a, b]. Taking into account that
ny = (y′

2(σ),−y′
1(σ)), we find

∂ ln |x(s) − y(σ)|
∂ny

=
T (s, σ)
g(s, σ)

, g(s, σ) =
|x(s) − y(σ)|2

(s − σ)2
,

T (s, σ) =
[x2(s) − y2(σ)] y′

1(σ) − [x1(s) − y1(σ)] y′
2(σ)

(s − σ)2
.

Note that y(σ) is a point on Γ corresponding to s = σ. So, we may put x(σ) = y(σ). For
j = 1, 2 we have [11, §3]

xj(s) − xj(σ) = (s − σ)Z1
j (s, σ) = −x′

j(σ)(σ − s) + (σ − s)2Z2
j (σ, s),

where

Z1
j (s, σ) =

1∫
0

x′
j(σ + ξ(s − σ))dξ ∈ C1,λ([a, b] × [a, b]),

Z2
j (σ, s) =

1∫
0

ξx′′
j (s + ξ(σ − s))dξ ∈ C0,λ([a, b] × [a, b]).

Note that the function

g(s, σ) =
|x(s) − x(σ)|2

(s − σ)2
=

{[
Z1

1 (s, σ)
]2

+
[
Z1

2 (s, σ)
]2} ∈ C1,λ([a, b] × [a, b])

does not equal zero anywhere on Γ and g(s, s) = 1. Therefore

1
g(s, σ)

∈ C1([a, b] × [a, b]).
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Further,

∂

∂s

1
g(s, σ)

=
∂

∂s

(s − σ)2

|x(s) − x(σ)|2 = − g′s(s, σ)
g2(s, σ)

= −2
Z1

1 (s, σ)
[
Z1

1 (s, σ)
]′
s
+ Z1

2 (s, σ)
[
Z1

2 (s, σ)
]′
s

g2(s, σ)
∈ C0,λ([a, b] × [a, b]).

Consequently,
1

g(s, σ)
∈ C1,λ([a, b] × [a, b]). Similarly,

T (s, σ) =
[x2(s) − x2(σ)]x′

1(σ) − [x1(s) − x1(σ)]x′
2(σ)

(s − σ)2

=
[
Z2

2 (σ, s)x′
1(σ) − Z2

1 (σ, s)x′
2(σ)

]
∈ C0,λ([a, b] × [a, b]).

Consider
∂T (s, σ)

∂s
= J1(s, σ) − 2J2(s, σ), where

J1(s, σ) =
x′

2(s)x′
1(σ) − x′

1(s)x′
2(σ)

(s − σ)2

=
[x′

2(s) − x′
2(σ)]x′

1(σ) − [x′
1(s) − x′

1(σ)]x′
2(σ)

(s − σ)2

=
1

s − σ

⎧⎨
⎩x′

1(σ)

1∫
0

x′′
2 [s + ξ(σ − s)]dξ

−x′
2(σ)

1∫
0

x′′
1 [s + ξ(σ − s)]dξ

⎫⎬
⎭ ;

J2(s, σ) =
[x2(s) − x2(σ)]x′

1(σ) − [x1(s) − x1(σ)]x′
2(σ)

(s − σ)3

=
1

s − σ

⎧⎨
⎩x′

1(σ)

1∫
0

ξx′′
2 [s + ξ(σ − s)]dξ

−x′
2(σ)

1∫
0

ξx′′
1 [s + ξ(σ − s)]dξ

⎫⎬
⎭ .

Then

∂T (s, σ)
∂s

=
1

s − σ

⎧⎨
⎩x′

1(σ)

1∫
0

(1 − 2ξ)x′′
2 [s + ξ(σ − s)]dξ

−x′
2(σ)

1∫
0

(1 − 2ξ)x′′
1 [s + ξ(σ − s)]dξ

⎫⎬
⎭ =

K(s, σ)
s − σ

,

where K(s, σ) ∈ C0,λ([a, b]× [a, b]) and K(s, s) = 0. According to [7, §5.7], the following
representation holds:

∂T (s, σ)
∂s

=
K∗(s, σ)

|s − σ|1−λ/4
,
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where K∗(s, σ) ∈ C0,3λ/4([a, b] × [a, b]). Using properties of Hölder functions [7], we
obtain the representation

∂

∂s

∂ ln |x(s) − y(σ)|
∂ny

=
1

g(s, σ)
∂T (s, σ)

∂s
+ T (s, σ)

∂

∂s

1
g(s, σ)

=
K1(s, σ)

|s − σ|1−λ/4
+ K2(s, σ),

where K1(s, σ) ∈ C0,3λ/4([a, b] × [a, b]), K2(s, σ) ∈ C0,λ([a, b] × [a, b]). By formal differ-
entiation under the integral, we find

dI1(s)
ds

= − 1
2π

∫
γ

µ(σ)
∂

∂s

∂ ln |x(s) − y(σ)|
∂ny

dσ

= − 1
2π

∫
γ

µ(σ)
K1(s, σ)

|s − σ|1−λ/4
dσ − 1

2π

∫
γ

µ(σ)K2(s, σ)dσ.

The validity of differentiation under the integral can be proved in the same way as at the
end of §1.6 in [9] (Fubini’s theorem on change of integration order is used). Taking into

account the obtained representation for
dI1(s)

ds
and applying the results of [7, §51.1], we

obtain that
dI1(s)

ds
∈ C0,λ/4[a, b]. The lemma is proved. �

4. Existence of a classical solution and non-existence of a weak solution. We
will construct the solution to the problem D1 with the assumption that
F+(s), F−(s) ∈ C1,λ(Γ1), λ ∈ (0, 1], F (s) ∈ C0(Γ2). We will look for a solution
to the problem D1 in the form

u(x) = −w[F+ − F−](x) + v(x), (16)

where

w[F+ − F−](x) = − 1
2π

∫
Γ1

(F+(σ) − F−(σ))
∂

∂ny
ln |x − y(σ)|dσ

is the double layer potential. The potential w[F+−F−](x) satisfies the Laplace equation
(2a) in D \ Γ1 and belongs to the class K1 according to Theorem 2. Limiting values of
the potential w[F+ − F−](x) on (Γ1)± are given by the formula

w[F+ − F−](x)|x(s)∈(Γ1)± = ∓(F+(s) − F−(s))/2 + w[F+ − F−](x(s)),

where w[F+ − F−](x(s)) is the direct value of the potential on Γ1.
The function v(x) in (16) must be a solution to the following problem.
Problem D. Find a function v(x) ∈ C0(D)∩C2(D\Γ1) that obeys the Laplace equation

(2a) in the domain D \ Γ1 and satisfies the boundary conditions

v(x)|x(s)∈Γ1 = (F+(s) + F−(s))/2 + w[F+ − F−](x(s)) = f(s),

v(x)|x(s)∈Γ2 = F (s) + w[F+ − F−](x(s)) = f(s).

(If x(s) ∈ Γ1, then w[F+ − F−](x(s)) is the direct value of the potential on Γ1.)
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If D is an exterior domain, then we add the following condition at infinity:

|v(x)| ≤ const, |x| =
√

x2
1 + x2

2 → ∞.

All conditions of the problem D have to be satisfied in a classical sense. Obviously,
w[F+ − F−](x(s)) ∈ C0(Γ2). It follows from the lemma that
w[F+ −F−](x(s)) ∈ C1,λ/4(Γ1) (here by w[F+ −F−](x(s)) we mean the direct value of
the potential on Γ1). So, f(s) ∈ C1,λ/4(Γ1) and f(s) ∈ C0(Γ2).

We will look for the function v(x) in the smoothness class K.
We say that the function v(x) belongs to the smoothness class K if
(1) v(x) ∈ C0(D)∩C2(D\Γ1), ∇v ∈ C0

(
D \ Γ1 \ Γ2 \ X

)
, where X is a pointset

consisting of the endpoints of Γ1;
(2) in a neighbourhood of any point x(d) ∈ X for some constants C > 0, δ > −1

the inequality |∇v| ≤ C|x − x(d)|δ holds, where x → x(d) and d = a1
n or d = b1

n,
n = 1, . . . , N1.

The definition of the functional class C0
(
D \ Γ1 \ Γ2 \ X

)
is given in the remark to

the definition of the smoothness class K1. Clearly, K ⊂ K1; i.e., if v(x) ∈ K, then
v(x) ∈ K1.

It can be verified directly that if v(x) is a solution to the problem D in the class K,
then the function (16) is a solution to the problem D1.

Theorem 3. Let Γ ∈ C2,λ/4, f(s) ∈ C1,λ/4(Γ1), λ ∈ (0, 1], f(s) ∈ C0(Γ2). Then the
solution to the problem D in the smoothness class K exists and is unique.

Theorem 3 has been proved in the following papers:
1) in [2, 3], if D is an interior domain;
2) in [4], if D is an exterior domain and Γ2 �= ∅;
3) in [5, 6], if Γ2 = ∅ and so D = R2 is an exterior domain.
In all of these papers, the integral representations for the solution to the problem

D in the class K are obtained in the form of potentials, densities in which are defined
from the uniquely solvable Fredholm integro-algebraic equations of the second kind and
index zero. Uniqueness of a solution to the problem D is proved either by the maximum
principle or by the method of energy (integral) identities. In the latter case we take into
account that a solution to the problem belongs to the class K. Note that the problem D
is a particular case of more general boundary value problems studied in [3]–[6].

Note that conditions of Theorem 3 hold if Γ ∈ C2,λ, F+(s), F−(s) ∈ C1,λ(Γ1),
λ ∈ (0, 1], F (s) ∈ C0(Γ2). From Theorems 2, 3 we obtain the solvability of the problem
D1.

Theorem 4. Let Γ ∈ C2,λ, F+(s), F−(s) ∈ C1,λ(Γ1), λ ∈ (0, 1], F (s) ∈ C0(Γ2).
Then a solution to the problem D1 exists and is given by the formula (16), where v(x)
is a unique solution to the problem D in the class K, ensured by Theorem 3.

Remark. Let us check that the solution to the problem D1 given by formula (16)
satisfies condition (1). Let d = a1

n or d = b1
n (n = 1, ..., N1) and let r be small enough.
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Then substituting (16) in the integral in (1) we obtain

∫
∂S(d,r)

u(x)
∂u(x)
∂nx

dl

=
∫

∂S(d,r)

w(x)
∂w(x)
∂nx

dl −
∫

∂S(d,r)

w(x)
∂v(x)
∂nx

dl −
∫

∂S(d,r)

v(x)
∂w(x)
∂nx

dl +
∫

∂S(d,r)

v(x)
∂v(x)
∂nx

dl.

If r → 0, then the first term tends to zero by Theorem 2(II.3). As mentioned above,
v(x) ∈ K ⊂ K1; therefore condition (1) holds for the function v(x), so the fourth term
tends to zero as r → 0. The second term tends to zero as r → 0, since w(x) is bounded
at the ends of Γ1 according to Theorem 2(I), and since v(x) satisfies condition 2) in the
definition of the class K. Noting that v(x) is continuous at the ends of Γ1 owing to the

definition of the class K, and using Theorem 2(II.2) for calculation of
∂w(x)
∂nx

in the third

term, we deduce that the third term tends to zero when r → 0 as well. Consequently,
equality (1) holds for the solution to the problem D1 constructed in Theorem 4.

Uniqueness of a solution to the problem D1 follows from Theorem 1. In fact, the
solution to the problem D1 found in Theorem 4 is a classical solution. Let us discuss
under which conditions this solution to the problem D1 is not a weak solution. Let u(x)
be a solution to the problem D1 defined in Theorem 4 by the formula (16). Consider
a disc S(d, ε) with the center in the point x(d) ∈ X and of radius ε > 0 (d = a1

n or
d = b1

n, n = 1, ..., N1). In doing so, ε is a fixed positive number, which can be taken
small enough. Since v(x) ∈ K, we have v(x) ∈ L2(S(d, ε)) and |∇v(x)| ∈ L2(S(d, ε))
(this follows from the definition of the smoothness class K). Let x ∈ S(d, ε) and x /∈ Γ1.
It follows from (16) that |∇w[µ](x)| ≤ |∇u(x)| + |∇v(x)|, whence

|∇w[µ](x)|2 ≤ |∇u(x)|2 + |∇v(x)|2 + 2|∇u(x)| · |∇v(x)| ≤ 2(|∇u(x)|2 + |∇v(x)|2),

since 2|∇u(x)| · |∇v(x)| ≤ |∇u(x)|2 + |∇v(x)|2. Assume that |∇u(x)| belongs to
L2(S(d, ε)). Then, integrating this inequality over S(d, ε), we obtain
‖∇w‖2|L2(S(d,ε)) ≤ 2(‖∇u‖2|L2(S(d,ε)) + ‖∇v‖2|L2(S(d,ε))). Consequently, if |∇u(x)| ∈
L2(S(d, ε)), then |∇w| ∈ L2(S(d, ε)). However, according to Theorem 2, if F+(d) −
F−(d) �= 0, then |∇w| does not belong to L2(S(d, ε)). Therefore, if F+(d) �= F−(d), then
our assumption that |∇u| ∈ L2(S(d, ε)) does not hold; i.e., |∇u| /∈ L2(S(d, ε)). Thus, if
among numbers a1

1, ..., a
1
N1

, b1
1, ..., b

1
N1

there exists such a number d that F+(d) �= F−(d),
then for some ε > 0 we have |∇u| /∈ L2(S(d, ε)) = L2(S(d, ε)\Γ1), so u /∈ W 1

2 (S(d, ε)\Γ1),
where W 1

2 is a Sobolev space of functions from L2, which have generalized derivatives
from L2. We have proved

Theorem 5. Let conditions of Theorem 4 hold and among numbers a1
1, .., a

1
N1

, b1
1, ..., b

1
N1

there exists such a number d, that F+(d) �= F−(d). Then the solution to the problem
D1, ensured by Theorem 4, does not belong to W 1

2 (S(d, ε) \ Γ1) for some ε > 0, whence
it follows that it does not belong to W 1

2 (D \ Γ1). Here S(d, ε) is a disc of a radius ε with
the center in the point x(d) ∈ X.
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If conditions of Theorem 5 hold, then the unique solution to the problem D1, con-
structed in Theorem 4, does not belong to W 1

2 (D \ Γ1), and so it is not a weak solution.
We arrive at the following

Corollary. Let conditions of Theorem 5 hold. Then a weak solution to the problem
D1 in the space W 1

2 (D \ Γ1) does not exist.

Remark. Even if the number d, mentioned in Theorem 5, does not exist, then the
solution u(x) to the problem D1, ensured by Theorem 4, may not be a weak solution to
the problem D1. This happens, for instance, in the case when D is an exterior domain
and if lim

|x|→∞
u(x) �= 0, whence it follows that u /∈ L2(D \ Γ1), and so u /∈ W 1

2 (D \ Γ1). In

this case a weak solution to the problem D1 in W 1
2 (D \ Γ1) does not exist also.

Clearly, L2(D \ Γ1) = L2(D), since Γ1 is a set of zero measure.
This research has been partially supported by the RFBR grant 05–01–00050.
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