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Abstract. The existence of positive periodic solutions for a kind of Rayleigh equation
with a deviating argument

x
′′(t) + f(x′(t)) + g(t, x(t − τ (t))) = p(t)

is studied. Using the coincidence degree theory, some sufficient conditions on the existence
of positive periodic solutions are obtained.
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1. Introduction

Consider the Rayleigh equation with a deviating argument

(1.1) x′′(t) + f(x′(t)) + g(t, x(t − τ(t))) = p(t),

where f, p, τ ∈ C(R,R) are T -periodic, g ∈ C(R2,R) are T -periodic in its first

argument, and T > 0.

In the past few years, the existence of positive periodic solutions for a kind of

second order differential equations has received a lot of attention. For example,

in [1], [3]–[5], [7]–[8] the differential equations

x′′(t) + a(t)x(t) = f(t, x(t)),

x′′(t) + f(t, x(t), x′(t)) = 0

*This work was partially supported by the NNSF of China (No. 10771225) and by Post-
doctoral Science Foundation of Central South University.
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were studied. However, few results on the existence of positive periodic solutions

for Rayleigh equations were found. Since the theory of existence of positive periodic

solutions of the differential equation with retarded argument plays an important

role in mathematical ecology and nonlinear elasticity, we discuss in this paper the

existence of positive T -periodic solutions to Eq. (1.1). By using the coincidence

degree theory and an improved a priori estimate, we obtain some sufficient conditions

for the existence of positive T -periodic solution of Eq. (1.1).

For the sake of convenience, throughout this paper we will adopt the following

notation. Let X = {x ∈ C1(R,R) : x(t + T ) = x(t)} with the norm ‖x‖1 =

max
t∈[0,T ]

{|x(t)|, |x′(t)|} and Z = {x ∈ C(R,R) : x(t + T ) = x(t)} with the norm
‖x‖0 = max

t∈[0,T ]
|x(t)|. Then both (X, ‖ · ‖1) and (Z, ‖ · ‖0) are Banach spaces. Define

respectively operators L and N as

(1.2) L : X ∩ C2(R,R) → Z, x(t) 7→ x′′(t),

and

(1.3) N : X → Z, x(t) 7→ −f(x′(t)) − g(t, x(t − τ(t))) + p(t).

We know that KerL = R, Im L =
{

x ∈ Z :
∫ T

0 x(s) ds = 0
}

. Define respectively

projective operators P and Q as

P : X → KerL, x(t) 7→ x(0),

and

Q : Z → Z/ ImL, x(t) 7→ 1

T

∫ T

0

x(s) ds.

Then we have Im P = KerL, KerQ = Im L.

2. Preliminary results

For a positive number D, set

Ω = {x ∈ X : 0 < x(t) < D, |x′(t)| < D}.

The following two lemmas which will be used in proofs of our main results are

extracted from [2].

Lemma 2.1. L is a Fredholm operator with null index.
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Lemma 2.2. N is L-compact on Ω̄.

In view of (1.2) and (1.3), the operator equation

Lx = λNx, λ ∈ (0, 1),

is equivalent to the equation

(2.1) x′′(t) + λf(x′(t)) + λg(t, x(t − τ(t))) = λp(t), λ ∈ (0, 1).

For convenience of the reader, we introduce the Continuation Theorem [2] as

follows.

Lemma 2.3. Let X and Z be two Banach spaces. Suppose that L : dom(L) ⊂
X → Z is a Fredholm operator with index null and N : X → Z is L-compact on Ω̄,

where Ω is an open bounded subset of X . Moreover, assume that the following

conditions are satisfied:

(1) Lx 6= λNx for x ∈ ∂Ω ∩ dom(L), λ ∈ (0, 1);

(2) Nx 6∈ Im L for x ∈ KerL ∩ ∂Ω;

(3) deg{QN, Ω ∩ KerL, 0} 6= 0.

Then the equation Lx = Nx has at least one solution in Ω̄.

Lemma 2.4. Let x(t) be a continuous differentiable T -periodic function (T > 0).

Then for any t∗ ∈ (−∞,∞)

max
t∈[t∗,t∗+T ]

|x(t)| 6 |x(t∗)| +
1

2

∫ T

0

|x′(s)| ds.

P r o o f. Choose t∗ ∈ [t∗, t∗ + T ] such that |x(t∗)| = max
t∈[t∗,t∗+T ]

|x(t)|. Then

|x(t∗)| =

∣

∣

∣

∣

x(t∗) +

∫ t∗

t∗

x′(s) ds

∣

∣

∣

∣

6 |x(t∗)| +
∫ t∗

t∗

|x′(s)| ds

and

|x(t∗)| = |x(t∗ − T )| =

∣

∣

∣

∣

x(t∗) −
∫ t∗

t∗−T

x′(s) ds

∣

∣

∣

∣

6 |x(t∗)| +
∫ t∗

t∗−T

|x′(s)| ds.

Combining the above two inequalities, we have

|x(t∗)| 6 |x(t∗)| +
1

2

∫ t∗

t∗−T

|x′(s)| ds = |x(t∗)| +
1

2

∫ T

0

|x′(s)| ds.

The proof is complete. �
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Lemma 2.5 (Wirtinger inequality [6]). Let x(t) be a twice continuous differen-

tiable T -periodic function. Then

∫ T

0

|x′(s)|2 ds 6
( T

2π

)2
∫ T

0

|x′′(s)|2 ds.

3. Main results

Theorem 3.1. Assume that there exist constants d > 0, r > 0 and K > 0, not

both zero, such that

(H1) −rx − K 6 g(t, x) − p(t) < 0 for t ∈ R, x > d;

(H2) f(0) = 0, g(t, 0) − p(t) > 0 for t ∈ R.

If rT 2 < 4π, then Eq. (1.1) has at least one positive T -periodic solution.

P r o o f. Let x = x(t) be any positive T -periodic solution of Eq. (2.1). Then

there exists ξ ∈ [0, T ] such that

x(ξ) = max
t∈[0,T ]

x(t).

It follows that

(3.1) x′(ξ) = 0, x′′(ξ) 6 0.

By (2.1), (3.1), and (H2) we have

g(ξ, x(ξ − τ(ξ))) − p(ξ) > 0.

Note that x(t) is a positive T -periodic solution of Eq. (2.1). It follows from (H1)

that

0 6 x(ξ − τ(ξ)) 6 d.

Let ξ − τ(ξ) = mT + t∗, where t∗ ∈ [0, T ] and m is an integer. Then

(3.2) 0 6 x(t∗) 6 d.

By Lemma 2.4, we have

‖x‖0 6 d +
1

2

∫ T

0

|x′(s)| ds 6 d +
T

2
‖x′‖0.
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Let E1 = {t : t ∈ [0, T ], 0 6 x(t − τ(t)) 6 d}, E2 = {t : t ∈ [0, T ], x(t − τ(t)) > d}.
Applying the Schwarz inequality and Lemma 2.5, we have

∫ T

0

|x′′(s)|2 ds

= λ

[

−
∫ T

0

f(x′(s))x′′(s) ds −
∫ T

0

[g(s, x(s − τ(s))) − p(s)]x′′(s) ds

]

6

∫ T

0

|g(s, x(s − τ(s))) − p(s)||x′′(s)| ds

=

(
∫

E1

+

∫

E2

)

|g(s, x(s − τ(s))) − p(s)||x′′(s)| ds

6 gd

∫

E1

|x′′(s)| ds + (r‖x‖0 + K)

∫

E2

|x′′(s)| ds

6 (r‖x‖0 + gd + K)

∫ T

0

|x′′(s)| ds

6

(

r

2

∫ T

0

|x′(s)| ds + rd + gd + K

)
∫ T

0

|x′′(s)| ds

6
√

T

[

r
√

T

2

√

∫ T

0

|x′(s)|2 ds + rd + gd + K

]

√

∫ T

0

|x′′(s)|2 ds

6
√

T

[

rT
√

T

4π

√

∫ T

0

|x′′(s)|2 ds + rd + gd + K

]

√

∫ T

0

|x′′(s)|2 ds

=
rT 2

4π

∫ T

0

|x′′(s)|2 ds +
√

T (rd + gd + K)

√

∫ T

0

|x′′(s)|2 ds,

where gd = max
06t6T, 06x6d

|g(t, x) − p(t)|. And so, we have

∫ T

0

|x′′(s)|2 ds 6 T
(4π(rd + gd + K)

4π − rT 2

)2

.

By Lemma 2.4, we get

‖x′‖0 6
1

2

∫ T

0

|x′′(s)| ds 6

√
T

2

√

∫ T

0

|x′′(s)|2 ds 6
2πT (rd + gd + K)

4π − rT 2
, M1.

It follows that

‖x‖0 6 d +
1

2
M1T , M0.

Let M > max{M0, M1} and

Ω1 = {x ∈ X : 0 < x(t) < M, |x′(t)| < M}.
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By Lemma 2.1 and Lemma 2.2, we know that L is a Fredholm operator with index

null and N is L-compact on Ω̄1. Due to the bound of the positive periodic solution

given above, we know that Lx 6= λNx for any x ∈ ∂Ω1 ∩domL and λ ∈ (0, 1). Since

for any x ∈ ∂Ω1 ∩ KerL, either x = M (> d) or x = 0, in view of (H1) and (H2) we

have

QNx =
1

T

∫ T

0

[−f(0) − g(s, x) + p(s)] ds

= − 1

T

∫ T

0

[g(s, x) − p(s)] ds 6= 0.

Define the transformation H as

H(x, µ) = (1 − µ)x − µ · 1

T

∫ T

0

[g(s, x) − p(s)] ds, µ ∈ [0, 1].

Then

H(0, µ) = −µ · 1

T

∫ T

0

[g(s, 0) − p(s)] ds < 0, µ ∈ [0, 1]

and

H(M, µ) = (1 − µ)M − µ · 1

T

∫ T

0

[g(s, M) − p(s)] ds > 0, µ ∈ [0, 1].

Hence, for any x ∈ ∂Ω1 ∩ KerL and µ ∈ [0, 1] we have H(x, µ) 6= 0. Using the

homotopic invariance theorem, we obtain

deg{QNx, Ω1 ∩ KerL, 0} = deg

{

− 1

T

∫ T

0

[g(s, x) − p(s)] ds, Ω1 ∩ KerL, 0

}

= deg{x, Ω1 ∩ KerL, 0} 6= 0.

By Lemma 2.3 there exists one positive T -periodic solution of (1.1). This completes

the proof. �

Similarly, we can get the next theorem.

Theorem 3.2. Assume that there exist constants d > 0, r > 0 and K > 0, not

both zero, such that

(H3) 0 < g(t, x) − p(t) 6 rx + K for t ∈ R, x > d;

(H4) f(0) = 0, g(t, 0) − p(t) < 0 for t ∈ R.

If rT 2 < 4π, then Eq. (1.1) has at least one positive T -periodic solution.

According to the above proofs, we can get the following Corollaries 3.1 and 3.2.
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Corollary 3.1. Assume that (H2) holds. If there exist positive constants d and

K such that

(C1) −K 6 g(t, x) − p(t) < 0 for t ∈ R, x > d,

then Eq. (1.1) has at least one positive T -periodic solution.

Corollary 3.2. Assume that (H4) holds. If there exist positive constants d and

K such that

(C2) 0 < g(t, x) − p(t) 6 K for t ∈ R, x > d,

then Eq. (1.1) has at least one positive T -periodic solution.

E x am p l e 3.1. Let g(t, x) = x1/3 + 2 for t ∈ R, x 6 0, and g(t, x) = −e1−x for

t ∈ R, x > 0. Then the Rayleigh equation

(3.3) x′′(t) + x′3(t) + g(t, x(t − sin t)) = sin2 t

has at least one positive 2π-periodic solution.

P r o o f. From (3.3), we have f(x) = x3 and f(0) = 0, τ(t) = sin t and p(t) =

sin2 t are 2π-periodic, 0 > g(t, x) − p(t) > −2 for t ∈ R, x > 1, and g(t, 0)− p(t) > 1

for t ∈ R. Therefore, all the conditions needed in Corollary 3.1 are satisfied. From

Corollary 3.1, Eq. (3.3) has at least one positive 2π-periodic solution. �
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