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In this article, the variational method together with two control parameters is used for introducing the proof for the existence of
infinitely many solutions for a new class of perturbed nonlinear system having p-Laplacian fractional-order differentiation.

1. Introduction

One of the main applications of fractional calculus science is
the fractional-order differential equations (FDEs). Various
natural phenomena are modeled mathematically through
the FDEs, and this is evident in numerous areas of physics,
engineering, chemistry, and other fields. The fractional-
order partial differential equations have several applica-
tions in many fields such as engineering, biophysics, phys-
ics, mechanics, chemistry, and biology (see [1–7]). More
and more efforts have been made in the fractional calculus

field especially in FDEs (see, for instance, [2, 5, 8–14, 27–
39]). Solution existence for a lot of boundary value prob-
lems and several nonlinear elementary problems is studied
via a huge number of techniques and nonlinear mathemat-
ical tools (see [7, 15–23]): the theory of critical point,
fixed-point theory, technique of monochromatic iterative,
theory degree of coincidence, and the change methods.
Motivated by multiple works involved in this domain, we
concentrate in this paper on the existence of several infi-
nite solutions to the following fractional-order differentia-
tion system:

tDαi
T Φp 0D

αi
t u tð Þ� �� �

= λFui
t, u1 tð Þ, u2 tð Þð Þ,⋯, un tð ÞÞ + μGui

t, u1 tð Þ, u2 tð Þð Þ,⋯, un tð ÞÞ + hi uið Þ, a:e:t ∈ 0, T½ �,
ui 0ð Þ = ui Tð Þ = 0,

(
ð1Þ
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for 1 ≤ i ≤ n, αi ∈ ð0 ; 1�, 0Dαi
t and tD

αi
T are the left and right αi

fractional-order derivatives of the Riemann-Liouville opera-
tor, respectively,

Φp sð Þ = sj jp−2s, p > 1: ð2Þ

λ, μ are positive and nonnegative real parameters, respec-
tively, ðF0ÞF,G : ½0, T� ×ℝn ⟶ℝ are continuous functions
according to t ∈ ½0, T� for any ðx1, x2,⋯, xnÞ∈ℝn and are C1

with respect to ðx1, x2,⋯, xnÞ∈ℝn for a.e. t ∈ ½0, T�,
Fðt, 0, 0,⋯, 0Þ = 0 and Gðt, 0, 0,⋯, 0Þ = 0 for it is to say t ∈
½0, T�. Also, Fui

and Gui
indicates partial derivatives of F and

G according to ui, respectively, and hi : ℝ⟶ℝ are ðp − 1Þ
-order of Lipschitz continuous functions with Li > 0 constants
of Lipschizian, 1 ≤ i ≤ n, i.e.,

hi x1ð Þ − hi x2ð Þj j ≤ Li x1 − x2j jp−1: ð3Þ

In the last few months, we treated the same area of this
study, in [18], by using variational methods together with a
critical point theory due to Bonano and Marano. We got at
least three weak solutions for the following nonlinear dual-
Laplace systems with respect to two parameters:

In addition, in [24], by using the variational method and
Ricceri’s critical point theorems, the existence of three weak

solutions has been used to investigate the following class of per-
turbed nonlinear fractional p-Laplacian differential systems:

where some necessary conditions on the primitive func-
tion of nonlinear terms Fu and Fv have been considered.
Then, in [25], the same last methods have been used for

problem (5), the existence of multiplicity of weak solu-
tions for the following perturbed nonlinear fractional dif-
ferential systems:

where Lipschitz nonlinearity order of p − 1 has been
used.

Most recently, in [26], the authors proved the existence
of infinitely multiple solutions of the following perturbed
nonlinear fractional p-Laplacian differential systems:

tD
α
T Φp 0D

α
t u tð Þð Þ� �

= λFu t, u tð Þ, υ tð Þð Þ + h1 u1ð Þ, a:e: t ∈ 0, T½ �,

tD
β
T Φp 0D

β
t υ tð Þ

� �� �
= λFυ t, u tð Þ, υ tð Þð Þ + h2 u2ð Þ, a:e: t ∈ 0, T½ �,

u 0ð Þ = u Tð Þ = 0, υ 0ð Þ = υ Tð Þ = 0,

8>>><
>>>:

ð7Þ

tD
αi
T

1
wi tð Þp−2

ϕp wi tð Þ0Dαi
T ui tð Þ

� � !
+ μ ui tð Þj jp−2ui tð Þ = λFui t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þ a:e: t ∈ 0, T½ �,

ui 0ð Þ = ui Tð Þ = 0:

8>><
>>: ð4Þ

tD
α
T

1
w1 tð Þp−2 Φp w1 tð Þ0Dα

t u tð Þ� � !
+ μ μ tð Þj jp−2μ tð Þ = λFu t, u tð Þ, υ tð Þð Þ + δGu t, u tð Þ, υ tð Þð Þ a:e:t ∈ 0, T½ �,

tD
β
T

1
w2 tð Þp−2 Φp w2 tð Þ0Dβ

t υ tð Þ
� � !

+ μ υ tð Þj jp−2υ tð Þ = λFυ t, u tð Þ, υ tð Þð Þ + δGυ t, u tð Þ, υ tð Þð Þ a:e:t ∈ 0, T½ �,

u 0ð Þ = u Tð Þ = 0, υ 0ð Þ = υ Tð Þ = 0,

8>>>>>>>><
>>>>>>>>:

ð5Þ

tD
αi
T ai tð Þ0Dαi

T ui tð Þ
� �

= λFui
t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þ + μGui

t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þ + h1 uið Þ a:e: 0, T½ �,
ui 0ð Þ = ui Tð Þ = 0,

(
ð6Þ
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where one control parameter with the variational method
has been used.

Motivated by recently mentioned papers, the main con-
tribution of this article is to use two control parameters and
variational method to study a class of a nonlinear perturbed
fractional-order p-Laplacian differential system which is
defined in (6), where we can prove that the studied system
admits sequences of weak different solutions, strongly con-
verge to zero.

2. Preliminaries

In this section, we introduce some notations, lemmas that are
required for the subsequential. Then, a variational frame-
work is constructed; then, the critical point theory is applied
to explore the existence of infinite solutions for the system
given in (6).

We denote YX the class of all functionals ϕ : X⟶ℝ,
where X is real Banach space which has the following
properties.

If fwng is a sequence in X converge weakly to w ∈ X and
lim

n⟶∞
inf ϕðwnÞ ≤ ϕðwÞ, thus fwng has a subsequence that

strongly converge to w.
As an example, suppose a uniformly convex X with S : ½

0,+∞Þ⟶ℝ is an increasing, continuous strictly function,
then the functional w⟶ SðkwkÞ∈YX .

Definition 1 (see [4]). Let u be a defined function on ½a, b�.
The left and right Riemann-Liouville fractional derivatives
of order α > 0, respectively, are given as

aD
α
t u tð Þ≔ dn

dtna
Dα−n

t u tð Þ

= 1
Γ n − αð Þ

dn

dtn

ðt
a
t − sð Þn−α−1u sð Þds,

tD
α
bu tð Þ≔ −1ð Þn d

n

dtnt
Dα−n
b u tð Þ

= −1ð Þn
Γ n − αð Þ

dn

dtn

ðb
t
t − sð Þn−α−1u sð Þds,

ð8Þ

where the right-hand sides are pointwise defined over ½a, b�, ∀
t ∈ ½a, b�, n − 1 ≤ α < n and n ∈ℕ:

The gamma function, ΓðαÞ, is given by

Γ αð Þ≔
ð+∞
0

zα−1e−zdz: ð9Þ

Setting ACnð½a, b�,ℝÞ the space of functions u : ½a, b�
⟶ℝ, where

u ∈ Cn−1 a, b½ �,ℝð Þ, u n−1ð Þ ∈ AC a, b½ �,ℝð Þ: ð10Þ

As familiar, we denote Cn−1ð½a, b�,ℝÞ the mappings set
indicates ðn − 1Þ-times continuously differentiable on ½a, b�:

Actually, we imply

AC a, b½ �,ℝð Þ≔ AC1 a, b½ �,ℝð Þ: ð11Þ

Definition 2 (see [22]). Let 0 < αi ≤ 1 (1 ≤ i ≤ n, 1 < p <∞), we
introduce the space of the fractional-order derivative as fol-
lows:

Ep
αi
= u tð Þ ∈ Lp 0, T½ �,ℝð Þj0Dαi

t u tð Þ�
∈ Lp 0, T½ �,ℝð Þ, u 0ð Þ = u Tð Þ = 0g,

ð12Þ

then, the norm of Ep
αi
can be defined ∀u ∈ Ep

αi
, as the following

uk kαi =
ðT
0
u tð Þj jpdt +

ðT
0

0D
αi
t u tð Þ�� ��pdt� 	1/p

: ð13Þ

Lemma 3 (see [3]). Let 0 < αI ≤ 1ð1 ≤ i ≤ n, 1 < p <∞Þ: For
all ui ∈ Ep

αi
, we have

uik kLp ≤
Tαi

Γ αi + 1ð Þ 0D
αi
t ui



 


Lp
: ð14Þ

Also, if αi > p and 1/p + 1/q = 1, then

uik k∞ ≤
Tαi−1/p

Γ αið Þ αi − 1ð Þq + 1ð Þ1/q 0D
αi
t ui



 


Lp
: ð15Þ

Hence, the operator Ep
αi
according to the norm can be

considered

uik kαi =
ðT
0

0D
αi
t u tð Þ�� ��pdt� 	1/p

, ∀ui ∈ E
p
αi
, ð16Þ

for 1 ≤ i ≤ n, that is equivalent to (13).

Definition 4. Suppose a Cartesian product X of n spaces Ep
α;

that is to say,

X = Ep
α1
× Ep

α2
×⋯ × Ep

αn
, ð17Þ

provided with the norm

uk kX = 〠
n

i=1
uik kαi , u = u1, u2,⋯, unð Þ ∈ X, 1 ≤ i ≤ n, ð18Þ

where kuikαi is defined in (16).

Clearly, X is embedded compact in C0ð½0, T�,ℝÞn:

Lemma 5 (see [23]). For 0 < αi ≤ 1ð1 ≤ i ≤ nÞ and 1 < p <∞:
The space of the fractional-order derivative X is a reflexive
separable Banach space.

Lemma 6 (see [16]). Assume that 1/p < αi ≤ 1 and fung be the
sequence that weakly converges to u in Ep

α, i.e., un ⇀ u: Then,
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fung have a strong convergence to u in Cð½0, T�,ℝÞ, i.e.,
kun − uk∞ ⟶ 0, as n⟶ +∞:

Definition 7 (see [3]). We indicate a weak solution for system
(6), any u = ðu1, u2,⋯, unÞ ∈ X such that

ðT
0
〠
n

i=1
Φp 0D

αi
t u tð Þ� �

0D
αi
t vi tð Þdt

− λ〠
n

i=1

ðT
0
Fui

t, u1 tð Þ, u2 tð Þð Þ,⋯, un tð ÞÞvi tð Þdt

− μ
ðT
0
〠
n

i=1
Gui

t, u1 tð Þ, u2 tð Þð Þ,⋯, un tð ÞÞvi tð Þdt

−
ðT
0
〠
n

i=1
hi ui tð Þð Þvi tð Þdt = 0, ∀vi = v1, v2,⋯, vnð Þ ∈ X:

ð19Þ

We define

Hi xð Þ =
ðx
0
hi zð Þdz,

Θi xð Þ =
ðT
0
Hi x sð Þð Þds, i = 1, 2,

∀t ∈ 0, T½ �, &x ∈ℝ:

ð20Þ

Lemma 8. Suppose that hi : ℝ⟶ℝ satisfy (3) and HiðxÞ,
ΘiðxÞ, 1 ≤ i ≤ n defined through (20). Then, ΘðuÞ: X ⟶ℝ
be the functional that is described by

Θ uð Þ =Θ u1, u2,⋯, unð Þ = 〠
n

i=1
Θi uið Þ = 〠

n

i=1

ðT
0
Hi ui tð Þð Þdt

ð21Þ

is a weakly continuous sequentially Gâteaux differentiable
functional on X together with a compact derivative

Θ′ u1, u2,⋯, unð Þ v1, v2,⋯, vnð Þ = 〠
n

i=1

ðT
0
hi ui tð Þð Þvi tð Þdt,

ð22Þ

for every u = ðu1, u2,⋯, unÞ,v = ðv1, v2,⋯, vnÞ ∈ X:

Proof. Assume that fuk = ðu1k, u2k,⋯, unkÞg ⊂ X,1 ≤ k ≤ n,
uk = ðu1k, u2k,⋯, unkÞ⇀ u = ðu1, u2,⋯, uÞ in X as k⟶ +
∞: It follows from Lemma 8 that fuk = ðu1k, u2k,⋯, unkÞg
converges uniformly to u = ðu1, u2,⋯, uÞ on ½0, T�: There-
fore, there exist constants ci > 0, 1 ≤ i ≤ n such that kuikk∞
≤ ci, 1 ≤ i ≤ n.

Then,

Hi uik tð Þð Þ −Hi u tð Þð Þj j

≤ Li

ðuik tð Þ

u tð Þ
sj jp−1ds

�����
����� ≤ Li

p
uik tð Þj jp + u tð Þj jp� �

≤
Li
p

cpi + u tð Þk kp∞
� �

,

ð23Þ

for any n ∈ℕ, & t ∈ ½0, T�. Moreover, HiðuikðtÞÞ⟶Hiðui
ðtÞÞ, 1 ≤ i ≤ n,∀t ∈ ½0, T�, and via the convergence theorem
in the Lebesgue sense, we have

Θ u1k, u2k,⋯, unkð Þ

= 〠
n

i=1

ðT
0
Hi uik tð Þ� �

dt⟶ 〠
n

i=1

ðT
0
Hi ui tð Þð Þdt, for 1

≤ i ≤ n, =Θ u1, u2,⋯, unð Þ =Θ uð Þ:

ð24Þ

In the following, a Gâteaux differentiability of Θ will be
implemented. Let u1, x ∈ Ep

α1
and s ≠ 0, then we claim

Θ1 u1 + sxð Þ −Θ1 uð Þ
s

−
ðT
0
h1 u1 tð Þð Þx tð Þdt

����
����

≤
ðT
0

H1 u1 + sxð Þ −H1 u1ð Þ
s

− h1 u1 tð Þð Þx tð Þ
����

����dt
=
ðT
0
h1 u1 tð Þð Þ + sζ tð Þx tð Þ − h1 u1 tð Þð Þj j x tð Þj jdt

≤ L1 xk kp∞ sj j,

ð25Þ

where ∀t ∈ ½0, T�, 0 < ζðtÞ < 1. Hence, Θ1 : E
p
α1
⟶ℝ is a

Gâteaux differentiable at any u1 ∈ Ep
α1
.

Analogously, we have that Θ2 : E
p
α2
⟶ℝ at any u2 ∈ Ep

α2
is a differentiable in Gâteaux sense.

Therefore, Θ : X ⟶ℝ to each u = ðu1, u2,⋯, unÞ ∈ X
with derivative is differentiable with a Gâteaux description

Θ′ u1, u2,⋯, unð Þ v1, v2,⋯, vnð Þ

= 〠
n

i=1

ðT
0
hi ui tð Þð Þvi tð Þdt, ∀v = v1, v2,⋯, vnð Þ ∈ X:

ð26Þ

For any three elements ðu1, u2,⋯, unÞ, ðv1, v2,⋯, vnÞ,
and ðw1,w2,⋯,wnÞ of X, it is easy to see that

Θ′ u1, u2,⋯, unð Þ −Θ′ v1, v2,⋯, vnð Þ
� �

w1,w2,⋯,wnð Þ

= 〠
n

i=1

ðT
0
hi uið Þ − hi við Þð Þwi tð Þdt ≤ 〠

n

i=1
Li

ðT
0
ui − vij jp−1 wi tð Þj jdt

≤ 〠
n

i=1

LiT
αi−1/p

Γ αið Þ αi − 1ð Þq + 1ð Þ1/q
ui − vik kp−1∞ wik kα,

ð27Þ
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which implies

Θ′ u1, u2,⋯, unð Þ −Θ′ v1, v2,⋯, vnð Þ

 


X

≤ T∗ 〠
n

i=1
ui − vik kp−1∞ wik kα

� �
,

ð28Þ

where

T∗ ≔max LiT
αi−1/p

Γ αið Þ αi − 1ð Þq + 1ð Þ1/q , 1 ≤ i ≤ n

( )
: ð29Þ

Consequently, the operator Θ′ : X⟶ X∗ is compact.
Below, we recall Theorem 2.5 of [23] which is an essential

tool in our paper.

Lemma 9 (see [23], Theorem 2.5). Let a real reflexive Banach
space X. Also, suppose two Gâteaux differentiable functionals
ϕ,Ψ : X ⟶ℝ such that ϕ is sequentially weakly lower semi-
continuous, strongly continuous, and coercive where sequen-
tially weakly upper semicontinuous achieved for Ψ. ∀
r > infXϕ, put

φ rð Þ = inf
u∈ϕ−1 −∞,r� �ð Þ

sup
v∈ϕ−1 −∞,r� �ð Þ

Ψ vð Þ −Ψ uð Þ

r − ϕ uð Þ , ð30Þ

γ≕ lim
r⟶+∞

inf φ rð Þ, δ≔ lim
r⟶ inf

X
ϕ

� �+
inf φ rð Þ: ð31Þ

Then,

(a) For every r > infXϕ & λ ∈ ð0, 1/φðrÞÞ, the functional
constraint of Iλ = ϕ − λΨ to ϕ−1ð−∞,rÞ allows a
global minimum, which is a critical point (local min-
imum) for Iλ in the space X

(b) If γ < +∞ & λ ∈ �0, 1/γ½, the subsequent alternative
holds:

(b1)The functional ϕ − λΨ has a global minimum or
(b2)∃ a sequence fung of critical points (local minima)

for Iλ such that limn⟶+∞ϕðunÞ = +∞

(c) If δ < +∞ & λ ∈ �0, 1/δ½, the next alternative exists:
(c1)∃ a global minimum of ϕ that is a local minimum of

Iλ or
(c2)∃ a sequence fung of pairwise disjoint critical points

(local minima) for Iλ that one converges weakly to a global
minimum of ϕ together with limn⟶+∞ϕðunÞ = infXϕ

3. Principle Results

This section deals with stating and proving our main results.
For assistance, suggest

k′ ≔ min
1≤i≤n

1 − LiT
pαi

Γ αi + 1ð Þð Þp
� �

,

ρ≔max
1≤i≤n

1 + LiT
pαi

Γ αi + 1ð Þð Þp
� �

,

k =max
1≤i≤n

Tpαi−1

Γ αið Þð Þp αi − 1ð Þq + 1ð Þp/q
( )

:

ð32Þ

For a given constant θ ∈ ð1/p, 0Þ, set

P αi, θð Þ = 1
p θTð Þp

(ðθT
0
tp 1−αið Þdt +

ð 1−θð ÞT

θT
t1−αi
�

− t − θTð Þ1−αi�pdt + ðT
1−θð ÞT

t1−αi − t − θTð Þ1−αi� �


− t − 1 − θð ÞTð Þð Þ1−αi�p
)
,

Δ≔ min
1≤i≤n

P αi, θð Þ,

Δ′ ≔max
1≤i≤n

P αi, θð Þ:
ð33Þ

For any ρ > 0, we set

Ω ϱð Þ = x = x1, x2,⋯, xnð Þ ∈ℝn : 〠
n

i=1

1
p
xij jp ≤ ϱ

( )
: ð34Þ

Theorem 10. Let 1/p < αi ≤ 1 for 1 ≤ i ≤ n. Suppose that there
exists θ ∈ ð0, 1/pÞ such that

(h1)Fðt, x1,⋯, xnÞ ≥ 0 for each ðt, x1,⋯, xnÞ ∈ ð½0, θT� ∪
½ð1 − θÞT , T�Þ ×ℝn

(h2)

lim
ξ⟶+∞

inf

Ð T
0 sup

x1 ,x2 ,⋯,xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξp

< k′
pkpnpρΔ′

lim
ξ⟶+∞

sup
Ð 1−θð ÞT
θ

F t, Γ 2 − α1ð Þξ,⋯, Γ 2 − αnð Þξð Þdt
ξp

:

ð35Þ

Then, for each λ ∈Λ≔ �λ1, λ2½ where

5Journal of Function Spaces



λ1 ≔
ρΔ′

lim
ξ⟶+∞

sup Ð 1−θð ÞT
θ

F t, Γ 2 − α1ð Þξ,⋯, Γ 2 − αnð Þξð Þdt/ξp
,

λ2 ≔
k′/pkpnp

lim
ξ⟶+∞

inf
Ð T
0 sup

x1 ,x2 ,⋯,xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt/ξp

,

ð36Þ

for each nonnegative functionG : ½0, T� ×ℝn ⟶ℝ achieving
the constrain

G∞ ≔ lim
ξ⟶+∞

sup

Ð T
0 sup

x1 ,x2 ,⋯,xnð Þ∈Ω ξð Þ
G t, x1,⋯, xnð Þdt

ξp
< +∞,

ð37Þ

and for every μ ∈ ½0, μG,λ½ where

system (1) has an unbounded sequence of weak solutions in
space X.

Proof. The main aim here is applying Lemma 6 (see [16])
over system (1). For this purpose, fix λ ∈Λ, and let G be a
function that satisfies our hypotheses. Since �λ < λ2, we claim

Now, fix �μ ∈ �0, μ
G,�λ½. Set

J t, ξ1,⋯, ξnð Þ≔ F t, ξ1,⋯, ξnð Þ + �μ
�λ
G t, ξ1,⋯, ξnð Þ, ð40Þ

for every t ∈ ½0, T� and ξ = ðξ1,⋯, ξnÞ ∈ℝn. We construct
the mappings ϕ,Ψ : X⟶ℝ as follows:

ϕ uð Þ≔ 〠
n

i=1

uik kpαi
p

−Θ uð Þ,

Ψ uð Þ≔
ðT
0
J t, u1 tð Þ,⋯, un tð Þð Þdt,

ð41Þ

∀u = ðu1,⋯, unÞ ∈ X and determine

I �λ,�μ uð Þ≔ ϕ uð Þ − λΨ uð Þ, u ∈ X: ð42Þ

Let us prove that ϕ & Ψ satisfy the required constrains.
Since X is compactly embedded in ðCð½0, T�,ℝÞÞn, it is
well known that Ψ is well-defined Gateaux differentiable

functional whose Gateaux derivative at u ∈ X is the func-
tional Ψ′, given by

Ψ′ uð Þ vð Þ =
ðT
0
〠
n

i=1
J t, u1 tð Þ,⋯, un tð Þð Þv tð Þdt, ð43Þ

∀v = ðv1,⋯, vnÞ ∈ X. Moreover, Ψ is sequentially
weakly continuous.

The functional Φ is a Gateaux differentiable functional
with the differential at u ∈ X,

ϕ′ uð Þ vð Þ =
ðT
0
〠
n

i=1
0D

αi
t ui tð Þ

�� ��p−2
0D

αi
t ui tð Þ:0Dαi

t vi tð Þdt

−
ðT
0
〠
n

i=1
hi ui tð Þð Þvi tð Þdt,

ð44Þ

for every v ∈ X. Moreover, ϕ is sequentially weakly lower
semicontinuous, strongly continuous, and coercive func-
tional on X.

Obviously, the weak solutions of system (1) are precisely
the critical points of the functional I �λ≤

�μ. Furthermore, since

(3) holds for every x1,⋯, xn ∈ℝ and h1ð0Þ =⋯ = hnð0Þ = 0,

μG,λ ≔
k′

pkpnpG∞
1 − λ

pkpnp

k′
lim

ξ⟶+∞
inf

Ð T
0 sup

x1,x2,⋯,xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξp

0
BB@

1
CCA, ð38Þ

μ
G,�λ = k′

pkpnpG∞
1 − �λ

pkpnp

k′
lim
ξ⟶+

inf
∞

Ð T
0 sup

x1,x2,⋯,xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξp

0
BB@

1
CCA > 0: ð39Þ
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one has ∣hiðxÞ ∣ ≤Lijxjp−1, 1 ≤ i ≤ n∀x ∈ℝ. It obtained from
(14) and (15) the following:

ϕ uð Þ ≥
∑n

i=1 uik kpαi
p

−
ðT
0
〠
n

i=1
Hi ui tð Þð Þdt

�����
�����

≥
∑n

i=1 uik kpα j

p
− 〠

n

i=1

Li
p

ðT
0
ui tð Þj jpdt

≥
1
p
−

LiT
pα j

p Γ αi + 1ð Þð Þp
� 	

uik kpαi ≥
k′
p
〠
n

i=1
uij jj jpαi ′ ,

ð45Þ

∀u ∈ X, and as a result for this, ϕ is coercive.
Now, allow us to verify that �λ < 1/γ. Assume fξkg is a

positive number sequence such that ξk ⟶∞ as k⟶∞
and

lim
k⟶+∞

Ð T
0 sup

x1,x2,⋯,xnð Þ∈Ω ξkð Þ
F t, x1,⋯, xnð Þdt

ξpk

= lim
ξ⟶+∞

inf

Ð T
0 sup

x1,x2,⋯,xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξ2
:

ð46Þ

Put rk ≔ k′ξpk/pkpnp∀k ∈ℕ. Since maxt∈½0,T� ∣ uiðtÞ ∣ ≤k
kuikαi for all ui ∈ E

αi
0 ð½0, T�Þ and 1 ≤ i ≤ n, we have

sup
t∈ 0,T½ �

〠
n

i=1
ui tð Þ ∣ p ≤ kp 〠

n

i=1

�����
����� uij j

�����
p

αi

, ð47Þ

for each u = ðu1,⋯, unÞ ∈ X. So, from (45) and (47), we have

ϕ−1 −∞,rk� ½ð Þ≔ u ∈ X :
k′
2 〠

n

i=1
uik kpαi

 !
< rk

( )

⊆ u ∈ X : 〠
n

i=1
ui xð Þj jp ≤ pkp

k′
rk for each t ∈ 0, T½ �

( )

⊆ u ∈ X : 〠
n

i=1
ui tð Þj j ≤ ξk for each t ∈ 0, T½ �

( )
:

ð48Þ

Consequently, taking into the description that ϕð0,⋯, 0
Þ =Ψð0,⋯, 0Þ = 0, for all k big enough, one has

φ rkð Þ = inf
u∈ϕ−1 ∞,rkð ½ð Þ

supu∈ϕ−1 −∞¯rkð ½ð ÞΨ vð Þ −Ψ uð Þ
rk − ϕ uð Þ ,

supu∈ϕ−1 −∞,rkð ½ð ÞΨ vð Þ
rk

≤

Ð T
0 sup x1′⋯′xnð Þ∈Ω ξkð Þ J t, x1,⋯, xnð Þdt

k′ξpk/pkpnp

=
Ð T
0 sup x1′⋯′xnð Þ∈Ω ξkð Þ F t, x1,⋯, xnð Þ + �μ/�λG t, x1,⋯, xnð Þ
 �

dt

k′ξpk/pk
pnp

≤

Ð T
0 sup x1′⋯′xnð Þ∈Ω ξkð ÞF t, x1,⋯, xnð Þdt

k′ξpk/pk
pnp

+ �μ
�λ

Ð T
0 sup x1′⋯′xnð Þ∈Ω ξkð ÞG t, x1,⋯, xnð Þdt

k′ξpk/pk
pnp

:

ð49Þ

Moreover, from assumption (h2) and (37), one has

lim
k⟶∞

inf

Ð T
0 sup

x1,⋯,xnð Þ∈Ω ξkð Þ
F t, x1,⋯, xnð Þdt

k′/pkpnp
� �

ξpk

+ lim
k⟶∞

�μ
�λ

Ð T
0 sup

x1,⋯,xnð Þ∈Ω ξkð Þ
G t, x1,⋯, xnð Þdt

k′ξpk/pkpnp
< +∞,

ð50Þ

which implies

lim
k⟶∞

inf

Ð T
0 sup

x1,⋯;xnð Þ∈Ω ξkð Þ
J t, x1,⋯, xnð Þdt

ξpk
< +∞: ð51Þ

Therefore,

γ ≤ lim
k⟶∞

inf φ rkð Þ

≤
pkpnp

k′
lim

k⟶∞
inf

Ð T
0 sup

x1,⋯,xnð Þ∈Ω ξkð Þ
J t, x1,⋯, xnð Þdt

ξpk
< +∞:

ð52Þ

The assumption �μ ∈ �0, μ
G,�λ½ immediately yields �λ < 1/γ:

The succeeding step is to confirm that for a fixed �λ, the
functional I �λ,�μ has no global minimum. Let us verify that

I �λ,�μ is unbounded from below. Since

1
�λ
< 1
ρΔ′

lim
ξ⟶+∞

sup
Ð 1−θð Þ
θT F t, Γ 2 − α1ð Þξ,⋯, Γ 2 − αnð Þξð Þdt

ξp

≤ lim
ξ⟶+∞

sup
Ð 1−θð ÞT
θT J t, Γ 2 − α1ð Þξ,⋯, Γ 2 − αnð Þξð Þdt

ξp
,

ð53Þ

consider fηkg is a real sequence and τ is a positive constant
such that ηk ⟶∞ as k⟶∞, and
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1
�λ
< τ < 1

ρΔ′

Ð 1−θð ÞT
θT F t, Γ 2 − α1ð Þηk′⋯′Γ 2 − αnð Þηk

� �
dt

ηpk
,

ð54Þ

∀k ∈ℕ huge adequate. ∀k ∈ℕ, and θ ∈ ð0, 1/pÞ define
fwk = ðw1k,⋯,wnkÞg by setting

ωik tð Þ≔

Γ 2 − αið Þηk
θT

t, t ∈ 0, θT½ ½,
Γ 2 − αið Þηk, t ∈ θT , 1 − θð ÞT½ �,
Γ 2 − αið Þηk

θT
T − tð Þ, t ∈ 1 − θð ÞT , T� �,

8>>>>><
>>>>>:

ð55Þ

for 1 ≤ i ≤ n. Clearly, ωikð0Þ = ωikðTÞ = 0 and ωik ∈ Lp½0, T�
for 1 ≤ i ≤ n. A direct calculation shows that

for 1 ≤ i ≤ n. Furthermore,

ðT
0

0D
αi
t ωik tð Þ�� ��pdt

=
ðθT
0

+
ð 1−θð ÞT

θT
+
ðT

1−θð ÞT
0D

αi
t ωik tð Þ�� ��pdt

= ηpk
θTð Þp

(ðθT
0
tp 1−αið Þdt +

ð 1−θð ÞT

θT
t1−αi − t − θTð Þ1−αi� �p

dt

+
ðT

1−θð ÞT
t1−αi − t − θTð Þ1−αi� �


− t − 1 − θð ÞTð Þ1−αi� ��p
dt

)
= pP α, θð Þηpk,

ð57Þ

for 1 ≤ i ≤ n. Thus, ωk ∈ X, and in particular,

ωikk kpαi =
ðT
0

0D
αi
t ωik tð Þ�� ��pdt = pP α, θð Þηpk: ð58Þ

On the other hand, similar to (45), we have

ϕ ωkð Þ = 〠
n

i=1

ωikk kpαi
p

−Θ ωð Þ ≤ ρ

p
〠
n

i=1
ωikk kpαi

 !

= ρ 〠
n

i=1
Pi αi′θ
� � !

ηpk ≤ ρΔ′ηpk:
ð59Þ

Bearing in mind assumption (A) and since G is nonneg-
ative, then using Ψ definition, we conclude that

Ψ wkð Þ ≥
ð 1−θð ÞT

θT
F t, Γ 2 − α1ð Þηk,⋯, Γ 2 − αnð Þηkð Þdt: ð60Þ

So, according to (54), (55), and (60),

I �λ,�μ wkð Þ ≤ ρΔ′ηpk − �λ
ð 1−θð ÞT

θT
F t, Γ 2 − α1ð Þηk,⋯, Γ 2ðð

− αnÞηkÞdt < ρΔ′ 1 − λτð Þηpk,
ð61Þ

for every k ∈ℕ large enough. Hence, I �λ,�μ is unbounded

from below and so has no global minimum. Therefore, apply-
ing Lemma 6 (b), we deduce that there is a sequence fuk =
ðu1k,⋯, unkÞg ⊂ X of critical points of I �λ,�μ such that

lim
k⟶∞

u1k,⋯, unkð Þk k = +∞: ð62Þ

Here, the outcome is produced.

Remark 11. Under the conditions

lim
ξ⟶+∞

inf

Ð T
0 sup

x1,⋯,xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξp
= 0,

lim
ξ⟶+∞

sup
Ð 1−θð Þ
θT F t, Γ 2 − α1ð Þξ,⋯, Γ 2 − αnð Þξð Þ

ξp
= +∞,

ð63Þ

from Theorem 10, we claimed ∀λ > 0 and μ ∈ ½0, k′/pkpnp
G∞½ system (1) admits infinitely many weak solutions in
the space X. Also, if G∞ = 0, then the result holds ∀λ > 0
and μ ≥ 0:

Here, we point out the following conclusion of Theorem
10 beside μ = 0:

Corollary 12. Suppose θ ∈ ð0, 1/pÞ such that hypothesis (h1)
holds. Assume

0D
αi
t ωik tð Þ=

ηk
θT

t1−αi , t ∈ 0, θT½ ½,
ηk
θT

t1−αi − t − θTð Þ1−αi� �
, t ∈ θT , 1 − θð ÞT½ �,

ηk
θT

t1−αi − t − θTð Þ1−αi − t − 1 − θð ÞTð Þ1−αi� �
, t ∈ 1 − θð ÞT , T� �,

8>>>>><
>>>>>:

ð56Þ
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(B1)-
limξ⟶+∞ inf ðÐ supðx1,⋯,xnÞ∈ΩðξÞFðt, x1,⋯, xnÞdt/ξpÞ < k′/pkp
np

(B2)-

limξ⟶+∞ sup ðÐ ð1−θÞT
θT Fðt, Γð2 − α1Þξ,⋯, Γð2 − αnÞξÞdt/ξpÞ

> ρΔ′
Then, the system

tDαi
T Φp 0D

αi
t ui tð Þ

� �� �
= Fui t, u1 tð Þ,⋯, un tð Þð Þ + hi uið Þa:e:t ∈ 0, T½ �,

ui 0ð Þ = ui Tð Þ = 0,

(

ð64Þ

for 1 ≤ i ≤ n, has an unbounded sequence of weak solutions in
X:

Follow the same steps of Theorem 10 proving but alter-
natively of (b) of Lemma 6 applying conclusion (c), the fol-
lowing result will be obtained.

Theorem 13. Suppose that all of Theorem 10 assumptions
hold except for hypothesis (h2). Assume thatassumptions hold
except for hypothesis (h2). Assume that

limξ⟶0+ inf
Ð
sup x1,⋯;xnð Þ∈Ω ξð ÞF t, x1,⋯, xnð Þdt

ξP

< k′
pkpnpρΔ′

limξ⟶0+ sup

�
Ð 1−θð ÞT
θT F t, Γ 2 − α1ð Þξ,⋯′Γ 2 − αnð Þξ

� �
dt

ξp
:

ð65Þ

Then, for each λ ∈ �λ3, λ4½, where

λ3 ≔
ρΔ′

lim
ξ⟶0+

sup
Ð 1−θð ÞT
θT F t, Γ 2 − α1ð Þξ,⋯, Γ 2 − αnð Þξð Þdt/ξp

� � ,

λ4 ≔
k′/pkpnp

lim
ξ⟶0+

inf Ð T
0 sup

x1,⋯;xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt/ξp

 ! ,

ð66Þ

for every nonnegative function G : ½0, T� ×ℝn ⟶ℝ satisfy-
ing the condition

G0 ≔ lim
ξ⟶0+

sup

Ð T
0 sup

x1,⋯;xnð Þ∈Ω ξð Þ
G t, x1,⋯, xnð Þdt

ξp
< +∞,

ð67Þ

and for every μ ∈ ½0, μG,λ′ ½ where

μG,λ′ ≔
k′

pkpnpG0
1 − λ

pkpnp

k′
lim

ξ⟶0+
inf

Ð T
0 sup

x1,⋯;xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξp

0
BB@

1
CCA,

ð68Þ

a sequence of weak solutions for system (system (1) exists,
and it strongly converges to zero in the space X.

Proof. Fix λ ∈ �λ3, λ4½ and let G be a function satisfying (67).
Since λ < λ4, one has

μ
G,�λ
′ = k′

2k2n2G0
1 − �λ

2k2n2
k′

lim
ξ⟶0+

inf

Ð T
0 sup

x1,⋯;xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξp

0
BB@

1
CCA > 0:

ð69Þ

Fix �μ ∈ �0, μ
G,�λ
′ ½ and put

J t, ξ1,⋯, ξnð Þ≔ F t, ξ1,⋯, ξnð Þ + �μ
�λ
G t, ξ1,⋯, ξnð Þ, ð70Þ

for every ½t ∈ 0, T� and ξ = ðξ1,⋯, ξnÞ ∈ℝn. We take Φ,Ψ,
and I �λ,�μ as Theorem 10 proof. We verify that λ < 1/γ. For
this, let fξkg be a sequence of positive number such that ξk
⟶ 0+ as k⟶∞ and

lim
k⟶+∞

Ð T
0 sup

x1,⋯;xnð Þ∈Ω ξKð Þ
F t, x1,⋯, xnð Þdt

ξpk

= lim
ξ⟶0+

inf

Ð T
0 sup

x1,⋯;xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξp
:

ð71Þ

Through the evidence infXΦ = 0 in addition to δ defini-
tion, we claim δ = limr⟶0+ inf φðrÞ. Then, like in display
(52) of Theorem 10 proof, δ < +∞ can be proven, and hence,
�λ < 1/δ:

Let �λ be fixed. We conclude that at zero, there is no local
minimum for the functional I �λ,�μ. For this purpose, a

sequence of positive numbers fηkg is supposed such that ηk
⟶ 0+ when k⟶∞ and choosing τ > 0 such that

1
�λ
< τ < 1

ρΔ′

Ð 1−θð ÞT
θT F t, Γ 2 − α1ð Þηk′⋯′Γ 2 − αnð Þηk

� �
dt

ηpk
,

ð72Þ

for every large enough k ∈ℕ. Assume a sequence fωk = ð
ω1k,⋯, ωnkÞg in the space X together with ωιk given in (55).
Remark that λτ > 1. Hence, like in (62) show, the following
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can be obtained:

I �λ,�μ ωkð Þ ≤ ρΔ′ηpk − �λ
ð 1−θð ÞT

θT
F t, Γ 2 − α1ð Þηk,⋯, Γ 2ðð

− αnÞηkÞdt < 1 − �λτ
� �

ηpkρΔ′ < 0,
ð73Þ

∀ large enough k ∈ℕ. Where I �λ,�μð0Þ = 0, this means at the

point zero there is no local minimum for the functional
I �λ,�μ.

Therefore, part (c) of Lemma 6 ensures that there exists a
sequence fuk = ðu1k,⋯, unkÞg in the space X of critical points
for I �λ,�μ that is convergent weakly to the point zero. Accord-

ing to the established truth X −⟶ðCð½0, T�,ℝÞÞn is com-
pact, we conclude that the critical points strongly converge
to zero, and the proof is performed.

Remark 14. According to the conditions

lim
ξ⟶0+

inf

Ð T
0 sup

x1,⋯;xnð Þ∈Ω ξð Þ
F t, x1,⋯, xnð Þdt

ξp
= 0,

lim
ξ⟶0+

sup
Ð 1−θð ÞT
θT F t, Γ 2 − α1ð Þξ′⋯′Γ 2 − αnð Þξ

� �
dt

ξp
= +∞,

ð74Þ

ensures that ∀λ > 0 and μ ∈ ½0, k′/pkpnpG0½ system ð1, 1Þ
admits infinitely many weak solutions in the sapce X. More-
over, if G0 = 0, the conclusion exists ∀λ > 0 and μ ≥ 0:

Now, the following example will be presented for illus-
trating the above result.

Example 15. Consider the system

where h1ðx1Þ = 1/4ðsin x1Þ2 and h2ðx2Þ = 1/9x22. Moreover,
for all ðt, x1, x2Þ ∈ ½0, 1� ×ℝ2, let F : ½0, 1� ×ℝ2 ⟶ℝ be
defined as

where a, b : ½0, 1�⟶ℝ are nonnegative continuous func-
tions. Let θ = 1/4. We observe that

lim
ξ⟶0+

inf

Ð 1
0 sup
1/3 x1j j3+ x2j j3ð Þ≤ξ

F t, x1′x2
� �

dt

ξ3
= 0,

lim
ξ⟶0+

sup
Ð 3/4
1/4F t, Γ 1:25ð Þξ, Γ 0:2ð Þξð Þdt

ξ3
= +∞:

ð77Þ

Now, let G: ½0, T� ×ℝ2 ⟶ℝ be a function defined by

G t, x1′x2
� �

= 1 − cos x1x2ð Þ: ð78Þ

By definition, G ∈ C1ðℝ2Þ and

lim
ξ⟶0+

sup

Ð 1
0 sup
1/3 x1j j3+ x2j j3ð Þ≤ξ

G t, x1′x2
� �

dt

ξ3
= 0 <∞: ð79Þ

All hypotheses of Remark 14 are satisfied. Then, for all
ðλ, μÞ ∈ �0,+∞½ × ½0,+∞½, system (75) admits a sequence of
weak solutions which strongly converges to 0 in E3

0:75 × E3
0:8:
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tD
0:75
1 Φ3 0D

0:75
t x1 tð Þ� �� �

= λFx1
t, x1 tð Þ, x2 tð Þð Þ + μGx1

t,x1 tð Þ,x2 tð Þ� �
+ h1 x1 tð Þð Þ a:e: t ∈ 0, 1½ �,

tD
0:8
1 Φ3 0D

0:8
t x2 tð Þ� �� �

= λFx2
t, x1 tð Þ, x2 tð Þð Þ + μGx2

t,x1 tð Þ,x2 tð Þ� �
+ h2 x2 tð Þð Þ a:e: t ∈ 0, 1½ �,

x1 0ð Þ = x2 0ð Þ = x1 1ð Þ = x2 1ð Þ = 0,

8>><
>>: ð75Þ

F t, x1′x2
� �

≔
0, for all t, x1, x2ð Þ ∈ 0, 1½ � × 0f g2,
a tð Þx21 1 − sin ln ∣x1 ∣ð Þð Þð Þ + b tð Þx22 1 − cos ln xð Þð Þð Þ, for all t, x1, x2ð Þ ∈ 0, 1½ � × ℝ − 0f gð Þ2,

(
ð76Þ
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