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In this article, the variational method together with two control parameters is used for introducing the proof for the existence of
infinitely many solutions for a new class of perturbed nonlinear system having p-Laplacian fractional-order differentiation.

1. Introduction

One of the main applications of fractional calculus science is
the fractional-order differential equations (FDEs). Various
natural phenomena are modeled mathematically through
the FDEs, and this is evident in numerous areas of physics,
engineering, chemistry, and other fields. The fractional-
order partial differential equations have several applica-
tions in many fields such as engineering, biophysics, phys-
ics, mechanics, chemistry, and biology (see [1-7]). More
and more efforts have been made in the fractional calculus

{ tD7 (@, (oDr' (1)) = AF,, (141 () up (1), -+, (1)) + UGy, (8 1y () (1)), -+ 4, (1)) + i), ae.t € [0, T,

u;(0) = u,(T) =0,

field especially in FDEs (see, for instance, [2, 5, 8-14, 27-
39]). Solution existence for a lot of boundary value prob-
lems and several nonlinear elementary problems is studied
via a huge number of techniques and nonlinear mathemat-
ical tools (see [7, 15-23]): the theory of critical point,
fixed-point theory, technique of monochromatic iterative,
theory degree of coincidence, and the change methods.
Motivated by multiple works involved in this domain, we
concentrate in this paper on the existence of several infi-
nite solutions to the following fractional-order differentia-
tion system:

(1)
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for1<i<n, a €(0;1],,D; and D} are the left and right a;
fractional-order derivatives of the Riemann-Liouville opera-
tor, respectively,

D, (s) = s} %s,

p>1. (2)

A, u are positive and nonnegative real parameters, respec-
tively, (FO)F, G : [0, T] x R” — R are continuous functions
according to t € [0, T] for any (x,, x,, -+, x,)€R" and are C'
with respect to (xy,%,, -+, x,)€ER" for ae te€]0,T],
F(t,0,0,---,0) =0 and G(¢,0,0,---,0) =0 for it is to say ¢ €
[0, T]. Also, F, and G, indicates partial derivatives of F and

Df (1? 8, (wi<t>oD‘;fu,-<t>)> + (0 2 (6) = AP (60, (1), (1), -+ 0, (1)) e £ € [0, T)

w;(1)
u;(0) =u,(T) =0.

In addition, in [24], by using the variational method and
Ricceri’s critical point theorems, the existence of three weak

o 1
P\
1
o <w2<t>” (D”
u(0)=u(T)=0, v(0)=v(T) =0,

where some necessary conditions on the primitive func-
tion of nonlinear terms F, and F, have been considered.
Then, in [25], the same last methods have been used for

{ D (@(6)o Dy (1)) = AF,, (8 14y (8), up(£), -+ 1, (1)) + UG, (b 1y (£), ty(8), -+ wy (£)) + by (1) 2. [0, T,

u;(0) =u;(T) =0,

where Lipschitz nonlinearity order of p—1 has been
used.

Most recently, in [26], the authors proved the existence
of infinitely multiple solutions of the following perturbed
nonlinear fractional p-Laplacian differential systems:

(i (f)oD'fu(f))> + ()P u(t) = AF, (6 u(t), v(t)) + 0G, (8 u(t), v(t)) a.et €0, T],
(wz(r)opfu(t))> + u[u(B)P20(t) = AF, (£, u(t), v(t)) + 0G, (£, u(t), v(t)) a.e.t € [0, T),
v
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G according to u;, respectively, and h; : R— R are (p—1)
-order of Lipschitz continuous functions with L; > 0 constants
of Lipschizian, 1 <i<w, ie,

|hi(x1) = hi(x,)| < Li|x, ‘X2|P_1- (3)

In the last few months, we treated the same area of this
study, in [18], by using variational methods together with a
critical point theory due to Bonano and Marano. We got at
least three weak solutions for the following nonlinear dual-
Laplace systems with respect to two parameters:

solutions has been used to investigate the following class of per-
turbed nonlinear fractional p-Laplacian differential systems:

problem (5), the existence of multiplicity of weak solu-
tions for the following perturbed nonlinear fractional dif-
ferential systems:

(6)

(DS (@, (oD5u())) = AF, (6 u(t),v(t)) + Iy (1)), .t € [0, T),

Db (qsp <0Dfu(r))> = AE, (t, u(t), v(t)) + by (uy), ae. £ € [0, T],
u(0)=u(T) =0, v(0)=v(T) =0,

(7)
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where one control parameter with the variational method
has been used.

Motivated by recently mentioned papers, the main con-
tribution of this article is to use two control parameters and
variational method to study a class of a nonlinear perturbed
fractional-order p-Laplacian differential system which is
defined in (6), where we can prove that the studied system
admits sequences of weak different solutions, strongly con-
verge to zero.

2. Preliminaries

In this section, we introduce some notations, lemmas that are
required for the subsequential. Then, a variational frame-
work is constructed; then, the critical point theory is applied
to explore the existence of infinite solutions for the system
given in (6).

We denote Yy the class of all functionals ¢ : X — R,
where X is real Banach space which has the following
properties.

If {w,} is a sequence in X converge weakly to w € X and
nli_r)noo inf ¢(w,) < $(w), thus {w,} has a subsequence that

strongly converge to w.

As an example, suppose a uniformly convex X with S : |
0,+00) — R is an increasing, continuous strictly function,
then the functional w — S(||w||)€Y .

Definition 1 (see [4]). Let u be a defined function on [a, b).
The left and right Riemann-Liouville fractional derivatives
of order « > 0, respectively, are given as

n

(4 d aX—n
Dru(t) ‘=WaDt u(t)
1 dn ! n—a—1
= mﬁja(t—s) u(s)ds, o
8
ndn ax—n

(Dyu(t) = (-1) Wch u(t)
_ =" Jb
) (t-

- n—a-1 d ,
I'(n—a)dt" ], ) u(s)ds

where the right-hand sides are pointwise defined over [g, b], ¥
tefa,b,n-1<a<nandneN.

The gamma function, I'(«), is given by
2 e tdz. 9)

Setting AC"([a, b], R) the space of functions u : [a, b]
— R, where

ueC'(la, b, R), u" Y € AC(|a, b], R). (10)

As familiar, we denote C"!([a, b], R) the mappings set
indicates (n — 1)-times continuously differentiable on [a, b].

Actually, we imply
AC([a, b], R) == AC'([a, b], R). (11)
Definition 2 (see [22]). Let0 < o; <1 (1 <i<n,1 < p < 00), we

introduce the space of the fractional-order derivative as fol-
lows:

B, = {u(t) € ([0, T}, R)|, D u(t)

) (12)
e I2([0, T], R), u(0) = u(T) = 0},

then, the norm of Ef, can be defined Vu € E , as the following

llull,, = <JZ|u(t)|pdt+ JZ| oD u(t) |Pdt> Up‘ (13)

Lemma 3 (see [3]). Let O<a;<I(I1<i<n,1<p<oo). For
all u; € Eb , we have

T
il 1 < WHOD?’”;‘HH- (14)

Also, if ;> pand 1/p + 1/q =1, then

Toci—l/p

Tl (@~ g eyl o2l (19

[l o =

Hence, the operator Ef according to the norm can be
considered

T lp
||uf||a,=(J|0fou<t>\”dt) . VueE,  (16)

for 1 <i<n, that is equivalent to (13).

Definition 4. Suppose a Cartesian product X of n spaces EP;
that is to say,

X=Ef xEf x-xE, (17)

provided with the norm

n
lell = D Nl 1= (s g0y 1,) €X, 1 <<, (18)
i=1

where ||u;||, is defined in (16).

Clearly, X is embedded compact in C°([0, T], R)".
Lemma 5 (see [23]). For O<a; <1(1<i<n)and 1<p<oo.
The space of the fractional-order derivative X is a reflexive

separable Banach space.

Lemma 6 (see [16]). Assume that 1/p < a; < 1 and {u, } be the
sequence that weakly converges to u in EP, i.e., u, — u. Then,



{u,} have a strong convergence to u in C([0, T,
|\u, —ull, — 0, as n — +co.

R), ie.,

Definition 7 (see [3]). We indicate a weak solution for system
(6), any u = (uy, U, -, u,) € X such that

JZ@ )), D, (1)t

0 i=1

noT
AZJF (t uy(t

i=1

)>ta(£))5 -+

We define
Hy(x) = | hi(z)dz,
0
T 20
O;(x) = | H;(x(s))ds,i=1,2, (20)
0

Vte 0, T), &x € R.

Lemma 8. Suppose that h; : R — R satisfy (3) and H,(x),
O®,(x),1<i<n defined through (20). Then, O(u): X — R
be the functional that is described by

= Z O;(u;) = Z

=1 i=1

(21)

is a weakly continuous sequentially Gdteaux differentiable
functional on X together with a compact derivative

O (1)t s 1) (V1 V5 V) = Zj (), (1)t

=1J0

forevery u=(uy, uy, - u,),v=(v,v, -, v,) €X.
Proof. Assume that {u; = (45, iy, -
U = (Uypo Uppo > Uyge) — U= (Up, Uy, -+, u) in X as k— +
co. It follows from Lemma 8 that {u; = (4, thyp =+ thy) }
converges uniformly to u = (u;, u,, -, u) on [0, T]. There-
fore, there exist constants ¢; >0, 1 <i<n such that |Ju]|.,
<¢,1<i<n.

Sy cX1<k<n,
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Then,

[Hi(u(t)) = Hi(u(t))]

uy(t)
|s|P~'ds
u(t)

(e + [[u()]%)

L.
<2 (xOF +[OF) (3

for any n€ N, & t € [0, T|. Moreover, H;(u,(t)) — H,(u;
(t)),1<i<nVte0,T], and via the convergence theorem
in the Lebesgue sense, we have

O (U1 Usg > Ug)
n T n T
- ZJ H, (u, (£))dt — ZJ H(u,(1))dt, for 1 (24)
i=1J0 i=1J0
<i<n,=0(up, Uy, -+ U,) =O(u)

In the following, a Gateaux differentiability of ® will be
implemented. Let u;,x € Ef and s #0, then we claim

‘@1(141 +5X)

= L [y (u1(£)) + sC(£)x(t) = by (uy (1)) | x(1) |t

< Ly||*[1% 18],

o (T
1) —Lh1<u1<t>>x<r>dt

H,(u,)

H(u; +sx) -
s

Sl

where Vt€[0,T], 0<{(t) <1. Hence, ®, : Ef — R is a
Gateaux differentiable at any u, € Ef .
Analogously, we have that ®, : Ef, — Ratany u, € Ef,

is a differentiable in Gateaux sense.
Therefore, ® : X — R to each u=(uy, u,, -+, u,) €X
with derivative is differentiable with a Gateaux description

®I(“1’”2’"'>”n)(V1’V2"">Vn)
no (T
= 2| oo v= (0 0) €X.
i=1J0
(26)
For any three elements (uj,uy, -, u,), (v, vy == V,),

and (wy, w,, -, w,) of X, it is easy to see that

(®,(”1>”2’ wntly) =0 (v vy ey ))(wpwp W)
< YL j\u—vV“ (0ldt
i=1

L.T% 1/p -
: - Vi”‘go1

u.
a;—1)g+1)" i

(27)



Journal of Function Spaces

which implies

HQI(”p Uy, oo Uy) _6’("1’ Voot Vn)HX
L . (28)
ST (Jluy = vl 55 will,)»

i=1
where

L-Tai_l/‘p
T* := max ! 7o
Ia)((a; = 1)g+1)

1sisn}. (29)

Consequently, the operator ®' : X — X* is compact.
Below, we recall Theorem 2.5 of [23] which is an essential
tool in our paper.

Lemma 9 (see [23], Theorem 2.5). Let a real reflexive Banach
space X. Also, suppose two Gdteaux differentiable functionals
¢, ¥ : X — R such that ¢ is sequentially weakly lower semi-
continuous, strongly continuous, and coercive where sequen-
tially weakly upper semicontinuous achieved for Y¥. V
r>infy¢, put

sup Y (v)-¥(u)
veg™! (J-cor)) (30)
r=¢(u) ’

o(r)= inf
) ue¢™ (J-co.r])

y= lim infe(r),§=  lim

r—+00

— (il}l{f¢)+ o (31)

Then,

(a) For every r>infy¢ & A € (0, 1/¢(r)), the functional
constraint of I; =¢—A¥ to ¢ '(-oco,r) allows a
global minimum, which is a critical point (local min-
imum) for I in the space X

(b) If y <+0o & A €]0, 1/y], the subsequent alternative
holds:

(b,)The functional ¢ — A¥ has a global minimum or
(b,)3 a sequence {u,} of critical points (local minima)
for I) such that lim,_,  ¢(u,) =+0c0

(c) If § < +00 & A €]0, 1/8], the next alternative exists:

(c;)3 a global minimum of ¢ that is a local minimum of
I, or

(c,)3 a sequence {u,} of pairwise disjoint critical points
(local minima) for I, that one converges weakly to a global
minimum of ¢ together with lim, ,_ ¢(u,) =infy¢

3. Principle Results

This section deals with stating and proving our main results.
For assistance, suggest

, ) LiTP“i
k'=min{l- ——— 3%,
Ba " Ty
1+ L
= max S
PEEELT Ty (32)
Tpot,-—l

k = max ’
1<i<n{(1’(txi))P((06i -l)g+ 1)p/q}

For a given constant 6 € (1/p, 0), set

1 0T (a-er
P(oci, 6) = J tP(l—"‘i)dt + J (tl“"i
pOT)" | Jo or

T
—a—eTy%q%ﬁ+J
(1-6)T

[(t7% = (t-0T)"™%)

~(t- <<1—6>T>>1‘“f]”},

A= {Eg:lP(oci, 0),
! p—
A= E&%P(“i’ 0).

For any p > 0, we set
n C 1
Q)= {xz (X1, %5, -5 x,) €R" Z§|xi|" SQ}. (34)
i=1

Theorem 10. Let 1/p < a; < 1 for 1 <i < n. Suppose that there
exists 6 € (0, 1/p) such that

(h1)F(t,x,, -+, x,) = 0 for each (t,x,, -, x,) € ([0,0T| U
[(1-6)T,T]) xR"

(h2)
jg sup F(t,x}, -+ x,)dt
lim inf — 0w
E—+00 E‘D
k' [SOTR(t T (2~ a))E, -, T(2 - a,)E)dt

sup

<—— lim
kPP pA' E—+oo &

Then, for each A € A=A, A,[ where



6 Journal of Function Spaces
pA’ for each nonnegative function G : [0, T] x R" — R achieving
= s h .
1 Jim sup [(7OTE( (2 a)8 -, T2~ ) dtre? the constrain
—+00
T
K 1ok b J,  sup G(t, xp, -+ x,)dt
= pKkn G o 1 (xl,x2,~~~,xn)eg(f)
lim inf fg sup E(t,x;, -+, x,)dt/EF oo =, M SUP e S Heo,
" (o€ (37)
(36)
and for every u € [0, [ where
/ fg sup F(t,xy, -+, x,)dt
k kP 4 (%1%, 0+5X,, ) €
Yr=—5—— | 1- AP ’I’l lim inf @) > (38)
"t Pk PG, k' oo &

system (1) has an unbounded sequence of weak solutions in
space X.

lim inf

f—>+ [ee]

k' ~ pkPnP
MG,;\ - kaanoo 1-2 !

Now, fix fr €0,y y[. Set

G(t.&n &), (40)

>I=I

J(t:80 -0 8,) = F(6&, - 8,) +

foreveryt € [0, T]and &= (&, -+, &,) € R". We construct
the mappings ¢, ¥ : X — R as follows:

2 ],
d(u) = Z” p” i~ O(u),
- (41)
¥(0) = [ T (0, (0t
Yu=(uy, -, u,) € X and determine
I)Lﬁ(u) =¢(u) - A¥(u), ueX. (42)

Let us prove that ¢ & ¥ satisfy the required constrains.
Since X is compactly embedded in (C([0, T],R))", it is
well known that ¥ is well-defined Gateaux differentiable

0 (xl’xzy‘”»xn)ég(f)

Proof. The main aim here is applying Lemma 6 (see [16])
over system (1). For this purpose, fix A € A, and let G be a
function that satisfies our hypotheses. Since A < A,, we claim

T

sup F(t,x), -, x,)dt

> 0.

W (39)

functional whose Gateaux derivative at u € X is the func-
tional ', given by

T n

V0= [ Y00, @pod  0)
0 i=1

Vv= (v, v,) €X. Moreover, ¥ is sequentially

weakly continuous.
The functional @ is a Gateaux differentiable functional
with the differential at u € X,

o' (u)(v) =J Y |0Df‘fu,.(t)|"*20Df‘iui(t).ODf‘fvi(t)dt
0=l (44)

- 3 (s (6)) v, (6)

0 =1

for every v € X. Moreover, ¢ is sequentially weakly lower
semicontinuous, strongly continuous, and coercive func-
tional on X.

Obviously, the weak solutions of system (1) are precisely
the critical points of the functional I i Furthermore, since

(3) holds for every x,, -+-,x, € R and h;(0)=---=h,(0) =0,
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one has |h;(x) | <L/jx[""',1<i<nVx€R. It obtained from
(14) and (15) the following:

s ciEllTilley i= 1“”1” re
)z =2 jZH
T luu [N 45
,ZEJ (1)t (45)

Sl
5 2l

1 L,TP% , K
== D ”uthxiZ_
p(I'(a;+1)) -

Yu € X, and as a result for this, ¢ is coercive.

Now, allow us to verify that A < 1/y. Assume {&,} is a
positive number sequence such that &, — 00 as k— o0
and

fT sup F(t,xy, -
(xl’xZ"">xn)€Q(Ek)
P
o (46)
[y sup F(t,xy, -+, x,)dt
(CIESREEME
= lim inf sz
E—+c0 E

5 X,)dt

lim
k—+00

Put r,=k'E/pkPnPVk € N. Since max,o 7y | 4;(t) | <k
l|u;]|, for all u; € Eg([0, T]) and 1 <i < n, we have

P

n

w(t) [P <y

i=1

sup Z (47)

te[0,T] j=1

|ui]

&;

u,) € X. So, from (45) and (47), we have

@nu |f’> }

c {ueX : i |u; ()P < ‘D—Prk foreacht € [0, T]}

for each u = (uy, -+,

¢ (J-oor[)=queX:

i=1

clueX: Z|u,(t)| <& foreachte|0, T}}

i=1

(48)

Consequently, taking into the description that ¢(0, ---, 0
)="Y¥(0,---,0) =0, for all k big enough, one has

Supuegb’l((—oo'rk[)‘fl(v) - lp(”)
= ¢(u)

¢(r,)=  inf
(") we (o)

>

SUPe4-1 ((—cor) T (V)

Tk
< Jg sup(xl"“'x,,)eﬂ(fk)](t’ Xps e X, )dt
- k' &8 1pkP np
B jg SUP (1, Jen(t,) [F(t,xl, e X,) [?t//_\G(t, X7 -~-,xn)}dt
k'& IpkP np

3 J"g sup(xl:.../x")m@k)F(t, Xps oo X, )dt
- k' 1pkP np

. Ejg sup(xlr.,rxn)m@k)G(t,xl, e, X, )dt

A K & ipkne '

(49)

Moreover, from assumption (h2) and (37), one has

sup  F(t,x, -, x,)dt
lim inf (xlw-,xn)eﬂi‘fk) ,
e k' IpkPnp ) &,
e .
o sup Gt xp, e x,)dE
+ lim B ()06 < +00
k—0c0 ) k'& 1pkP np
which implies
jg supQ J(t, x5+ x,)dt
lim inf — <) <+o0o. (51)
k—00 EZ
Therefore,
y < lim inf ¢(ry)
k—00
Jo sup J(txy, e x,)dt
Knp
<P ,n lim inf — )0 < +00.
K 7
(52)

The assumption i € |0, .y [ immediately yields A< 1/y.

The succeeding step is to confirm that for a fixed A, the
functional Ty ~ has no global minimum. Let us verify that

I i is unbounded from below. Since
i< i lim sup ‘(9T )F(t r2-a)s - I2-a,))dt
A pA E—+00 fP

e Jor BT w)E o T2 -, Byt

- £—+o00 P £P ’

(53)

consider {#, } is a real sequence and 7 is a positive constant
such that 77, — 00 as k — 00, and



1 (elT_e)TF(t’ r2-a)y'"'T(2- “n)’?k) dt
- <T<— ,
pA i

(54)

Vk € N huge adequate. Vk € N, and 6 € (0,1/p) define
{wk = (wlk’ e wnk)} by setting

Mk 1-q,
=t i
oT
OD?"wi n=) Mk 1-a; 74 1-q;
(1) gyt = (t=0T)"™"),

oT

for 1 <i < n. Furthermore,
oo )
J | oD wy (1) [ dt
0

0T (1-O)T (T
0 or (1-or

or (1-6)T
_ {J tp(l’“i)dt+J (£ = (t-0T) )P dt

0 or

[ Dl (1)l

+J [(t% = (t-0T)"™%)
(1-er

- (t-((1 —H)T)l_“f)}l)dt} = pP(a, O)1,

for 1 <i<n. Thus, w; € X, and in particular,

T
lll? =j oDy (1)t = pP(a, O)f,.  (58)
0

On the other hand, similar to (45), we have
" g f P(x
P(wy) = Z » t-0(w) < ’ Z [lwielf,
i i1

o (§ )t

(59)

Bearing in mind assumption (A) and since G is nonneg-
ative, then using ¥ definition, we conclude that

(1-6)T

W(w,) 2 j F(6T(2 - o) -+ T2 - a))dt. (60)

or

T (po (1 0T)! ™ — (1 - (1-0)T)"™™),
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I(2- o) "

a7 t€[0,0T],
w(t) = (2= )y L[0T, (1-0)T),  (55)
I2-a)n
o7 K(T-t), te](1-0)T,T),

for 1<i<n. Clearly, w;(0)=wy(T)=0 and wy € L?[0, T]
for 1 <i<n. A direct calculation shows that

t€[0,0T],
te 0T, (1-0)T], (56)
€|(1-0)T, T),

So, according to (54), (55), and (60),

a-6)T

I;\,ﬂ(wk) < PA/rIi - ;\J-GT F(t,[(2=a)n, - (2 (61)

= a, )t < pA'(1= Ay,

for every k € IN large enough. Hence, I A is unbounded

from below and so has no global minimum. Therefore, apply-
ing Lemma 6 (b), we deduce that there is a sequence {u; =
(U > )+ € X of critical points of Iiﬁ such that

i (10 t,0) | = +00. (62)
—00

Here, the outcome is produced.

Remark 11. Under the conditions

IOT sup  F(t,xy, -+, x,)dt
(lm, inf
1-6
fn s dor FOTQ )8 T2-a)8)
E—+00 P EP ’
(63)

from Theorem 10, we claimed VA >0 and u € [0, k'/pk?n?
G| system (1) admits infinitely many weak solutions in
the space X. Also, if G, =0, then the result holds VA >0
and p>0.

Here, we point out the following conclusion of Theorem
10 beside p = 0.

Corollary 12. Suppose 6 € (0, 1/p) such that hypothesis (hl)
holds. Assume
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(B1)-
limg__, o inf ([supi, . eam F(bx ceyx,)dtEP) < k' Ipk?
nP

(B2)-
limg_, sup ([0 F(t, T(2- ))&, -+ [(2 - ,)§)dt/E)
> pA'

Then, the system

{ tDy (D, (oDf (1)) = Fui(t, ul(t), -, un(t)) + hi(ui)a.e.t € [0, T],
ui(0) = ui(T) =0,
(64)

for 1 <i<mn, has an unbounded sequence of weak solutions in
X.

Follow the same steps of Theorem 10 proving but alter-
natively of (b) of Lemma 6 applying conclusion (c), the fol-
lowing result will be obtained.

Theorem 13. Suppose that all of Theorem 10 assumptions
hold except for hypothesis (h2). Assume thatassumptions hold
except for hypothesis (h2). Assume that

su Ft’x,...,xn dt
limfg)o+ inf I P(x,..x,)eQ() (t:x; )

EP
!
< Wlimfﬁm sup (65)
ST F( D2 a8 T (2 a,)E)di

EP

Then, for each A € |5, A,[, where

A= pA’
o lim sup ( (1_6>TF(1‘,F(2— ) I(2-a )f)dt/Ep) ’
P oT 1 n
! p D
A= k' IpkPn ’
lim inf ( [} sup  F(t,x}, - x,)dt/E
§—0 (%1%, €2(E)

(66)

for every nonnegative function G : [0, T] x R* — R satisfy-
ing the condition

jg sup  G(t,xp, -+, x,)dt
(%1,..4%,) €Q(E)

EP

G,= lim su
0 E—0* p

9
and for every u € [0, /’l/G,)L[ where
T

su F(t,x;, -+ x, dt
, k' kP Jo mo02E) (o )
. 1-A~—— lim_inf —
AT WG, Py —s &
(68)

a sequence of weak solutions for system (system (1) exists,
and it strongly converges to zero in the space X.

Proof. Fix A € |5, A,[ and let G be a function satisfying (67).
Since A < A4, one has

H F(t,x,, -+ X,,)dt
. ;\Zkznz lim i fJU(xll_,;)Sctl)EQ(E) (8510000 %)
#Gv)‘_WZGO 1- o Egr(lrln o >0.
(69)
. — !
Fix g €]0, yG,/—\[ and put
J(1E ) = B0 6+ EG(0 88, (00)

for every [t€0,T] and E=(&,---,&,) e R". We take @, ¥,
and I Ap 2 Theorem 10 proof. We verify that A < 1/y. For

this, let {£,} be a sequence of positive number such that &,
— 0" as k — oo and

fg sup  F(t,xy, -, x,)dt
1- (xl,---;xn)E‘Q(EK)
im
k—s+00 EP
k @
jg sup  F(t,xy, -+, x,)dt
ol inf e
E—0" &

Through the evidence inf ,® =0 in addition to & defini-
tion, we claim 8 =lim,_ . inf ¢(r). Then, like in display
(52) of Theorem 10 proof, § < +00 can be proven, and hence,
A<1/8.

Let A be fixed. We conclude that at zero, there is no local
minimum for the functional I Ag For this purpose, a

sequence of positive numbers {7, } is supposed such that #,
— 0" when k — oo and choosing 7 > 0 such that

1 félT_e)TF(t’F(z—“1)’7k/mlr(2—“n)’1k>dt
< y
pA’ '1‘2

(72)

>l —

for every large enough k € N. Assume a sequence {w; = (
Wy > W) b in the space X together with w,, given in (55).
Remark that At > 1. Hence, like in (62) show, the following
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can be obtained:

_r(1-0)T
D@ <=2 T Fere T

a, ) )dt < (1= Ar)rhpA’ <o,

(73)

V large enough k € N. Where I )1,1(0) =0, this means at the

point zero there is no local minimum for the functional
I i
M

Therefore, part (c) of Lemma 6 ensures that there exists a

sequence {u; = (Uy, -+, U, ) } in the space X of critical points
for Iy i that is convergent weakly to the point zero. Accord-

ing to the established truth X — —(C([0, T], R))" is com-
pact, we conclude that the critical points strongly converge
to zero, and the proof is performed.

D0.75( (DO 75X1(t))) (t Xl(t)
DY (@5 (D)%, (1)) = AF,_ (£, (¢

x1(0) =x,(0) =, (1) = x,(1 )= ,

where h,(x;) = 1/4(sin x,)* and h,(x,) = 1/9x2. Moreover,
for all (t,x,,x,)€[0,1]xR? let F:[0,1]xR*— R be
defined as

F<t )_{0,
T a3 (1 - sin (In (Ix; 1)) + b(£)a2(1 - cos (In (x))),

where a,b : [0,1] — R are nonnegative continuous func-
tions. Let 0 = 1/4. We observe that

sup F(t, X 'x2>dt
) ) 13((Jx, [+, ) <€
lim inf 3 =0,
§—0r § (77)
3/4
1/4F(1‘,1"(1.25)5,1"(0.2)E)dt
53

= +00.

I
. lim sup
Now, let G: [0, T] x R* — R be a function defined by

G(t, xl'xz) =1-cos (x;x,). (78)

Journal of Function Spaces

Remark 14. According to the conditions

fg sup  F(t,xy, -, x,)dt
Elg),r(l)+ lnf (Xl)__,;X”)EQ(S) gp — 0’
(-0)T F(t r2-a)E"'T(2- oc)E)dt
lim sup =400,
E—0* &
(74)

ensures that YA >0 and pe[0,k'/pk’nPG,[ system (1,1)
admits infinitely many weak solutions in the sapce X. More-
over, if G, = 0, the conclusion exists YA >0 and y > 0.

Now, the following example will be presented for illus-
trating the above result.

Example 15. Consider the system

2() 4 Gy, (b (1), (1) + Iy (3, (1)) e £ € 0,1,
)%, (1)) + UG (1

e, (o, (1)) + 1y (x,(t)) e £ € [0, 1], (75)

forall (t, x,, x,) € [0, 1] x {0}?,
(t31,%) €[0.1]x {0} )
forall (t,x,,x,) € [0, 1] x (R = {0})%,
By definition, G € C'(R?) and
f(l) sup G(t, X 'xz) dt
. 1/3(\x1\3+\x2|3)g£
lim sup 2 =0<o0. (79)
§&—0* ¢
All hypotheses of Remark 14 are satisfied. Then, for all
(A, p) €]0,400[ x [0,+00], system (75) admits a sequence of

weak solutions which strongly converges to 0 in E} . x Ej 5.
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