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On exotic Lagrangian tori in CP 2

RENATO VIANNA

We construct an exotic monotone Lagrangian torus in CP 2 using techniques moti-
vated by mirror symmetry. We show that it bounds 10 families of Maslov index 2

holomorphic discs, and it follows that this exotic torus is not Hamiltonian isotopic to
the known Clifford and Chekanov tori.

53D12; 53D37, 53D40

1 Introduction

Using Darboux’s theorem, it is very easy to find Lagrangian tori inside a symplectic
manifold, because any open subset of Cn contains many. Therefore it has been of
interest in symplectic topology to understand Lagrangian submanifolds satisfying some
global property, such as monotonicity (for definition of monotone Lagrangian subman-
ifold, see Section 6). On the other hand, for a long time, the only known monotone
Lagrangian tori in Cn (up to Hamiltonian isotopy) were the products .S1.r//n �Cn ;
the so-called Clifford tori. Only in 1995, Chekanov introduced in his paper [5] the first
examples of monotone Lagrangian tori not Hamiltonian isotopic to these.

The Clifford torus can be symplectically embedded into the complex projective
space CPn and the product of spheres

Q
n CP1 , giving monotone tori. Each one

of these is also known as a Clifford torus. Chekanov’s monotone tori were also known
to give rise to exotic monotone Lagrangian tori in these spaces. But it was only much
later that Chekanov and Schlenk [6] described in detail their family of exotic monotone
Lagrangian tori in these spaces, where by exotic we mean not Hamiltonian isotopic to
the Clifford torus.

In [1], Auroux studied the SYZ mirror dual (a “Landau–Ginzburg model”) of a singular
special Lagrangian torus fibration given on the complement of an anticanonical divisor
in CP2 . This fibration interpolates between the Clifford torus and a slightly modified
version of the Chekanov torus described by Eliashberg and Polterovich in [9]. This
construction explains how the count of holomorphic Maslov index 2 discs, described by
the superpotential of the Landau–Ginzburg model, changes from the Clifford torus to
the Chekanov torus. The key phenomenon that arises is wall-crossing: in the presence
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of the singular fiber, some other fibers bound Maslov index 0 discs. These fibers form
a “wall” on the base of the fibration, separating the Clifford type torus fibers and the
Chekanov type torus fibers, and accounting for differences in the count of Maslov
index 2 discs between the two sides of the wall.

In this paper, we reinterpret Auroux’s construction using almost toric fibrations as
defined by Symington in [18]; see also Leung and Symington [16]. The base of the
relevant almost toric fibration can be represented by a base diagram that resembles
the base of the moment map of the standard torus action on CP2 , except that it has
a marked point called a node in the interior, representing the singular fiber, and a cut
that encodes the monodromy around the singular fiber; see Figure 1, where nodes are
represented by �’s and cuts by dotted lines. Modifying the almost toric fibration of a
four-dimensional symplectic manifold by replacing a corner (zero-dimensional fiber) by
a singular fiber in the interior with a cut is called nodal trade, also referred in this paper
as ‘smoothing the corner’, and lengthening or shortening the cut is called nodal slide.
Both operations are known to preserve the four-manifold up to symplectomorphism;
see [16, 18].

The Clifford torus lies over the center of the standard moment map picture of CP2 ,
and the small cut introduced by a nodal trade points towards it. We can lengthen the
cut to pass through the Clifford torus, which develops a singularity and then becomes
the Chekanov torus. This is illustrated in the first three base diagrams of Figure 1.

We can continue further and introduce another cut by performing a nodal trade in one
of the remaining corners and lengthening it to pass by the Chekanov torus, giving rise
to another monotone torus, as illustrated in Figure 1. This particular torus is the main
focus of this paper. However, we also note that we can further perform a nodal trade on
the remaining corner and pass it through the central fiber. Not only that, we can then
shorten the other cuts to pass again through the central fiber, giving rise to an infinite
range of monotone tori, that we conjecture not to be Hamiltonian isotopic to each other.

To perform these modifications in a more orderly way, it is convenient to redraw the
almost toric base, after crossing the central fiber. This is done by fully cutting the
almost toric base in two, following the considered cut, then applying the monodromy
associated with the cut to one of the two components and gluing again with the other
component. This move straightens the edges that intersected the original cut, while
creating a new cut in the same direction as the original one but on the other side of
the node. Each one of the pictures at the bottom of Figure 1 is related with the one
right above it via this cut and glue process. Figure 4 illustrates more the case with
only one cut: after we switch the cut to the other side, we end up with an almost toric
fibration on CP2 with a base that resembles the polytope of the weighted projective
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space CP .1; 1; 4/, but with a cut and node replacing the corner that corresponds to
the orbifold singularity, and having the Chekanov torus as its central fiber. Following
the isotopies generated by shortening the cut in the reglued picture to a limit situation
where the node hits the corner illustrates a degeneration of CP2 into CP .1; 1; 4/.

More generally, the projective plane admits degenerations to weighted projective spaces
CP .a2; b2; c2/, where .a; b; c/ is a Markov triple, ie it satisfies the Markov equation

a2C b2C c2 D 3abc:

All Markov triples are obtained from (1,1,1) by a sequence of ‘mutations’ of the form

.a; b; c/! .a; b; c0 D 3ab� c/:

These degenerations of CP2 to other weighted projective spaces potentially give an
infinite range of exotic monotone Lagrangian tori in CP2 , since they are expected to
bound different numbers of Maslov index 2 holomorphic discs. This was conjectured
by Galkin and Usnich in [11], where they also explain how to predict the superpotential
related to each one of the conjectured tori by applying successive ‘mutations’ to the
superpotential (2-4).

A degeneration from CP2 to CP .a2; b2; c2/ can be illustrated by almost toric pictures
by introducing cuts in all corners of the standard polytope of CP2 via nodal trades and
then performing cut and glue operations as described above, according to the sequence
of mutations that links .1; 1; 1/ to .a; b; c/. In view of this we call B.a2; b2; c2/

the base of an almost toric fibration on CP2 that is about to degenerate to the toric
fibration of CP .a2; b2; c2/, ie one whose picture resembles a moment polytope of
CP .a2; b2; c2/ but with appropriate cuts, not passing through the center, joining each
corner to a node. We also call T .a2; b2; c2/ the central fiber of B.a2; b2; c2/, so
T .1; 1; 1/ is the Clifford torus and T .1; 1; 4/ is the Chekanov torus. Recalling that
walls of Maslov index 0 discs divide the base of a singular Lagrangian fibration into
chambers, we say that a fiber is of T .a2; b2; c2/ type if it belongs to a chamber that
(continuously deforms to a chamber that) contains the monotone T .a2; b2; c2/ torus as
a fiber, and hence bounds the same number of regular Maslov index 2 J–holomorphic
discs as T .a2; b2; c2/.

The aim of this paper is to study T .1; 4; 25/. First we predict the number and relative
homotopy classes of regular Maslov index 2 J–holomorphic discs T .1; 4; 25/ bounds
using wall-crossing formulas. Even though these formulas are believed to hold for
the almost toric case, they are not yet completely proven rigorously, and neither is
the relation between J–holomorphic discs and tropical curves upon degeneration to a
‘large limit’ almost complex structure.
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Figure 1: The procedure for going from the Clifford torus on the top left base
diagram, to the Chekanov torus (third base diagram) and to the T .1; 4; 25/

torus (fifth base diagram) by applying nodal trades and nodal slides, where
dots represent the image of the monotone tori in the base diagrams; each of
the bottom diagrams is equivalent to the one right above it since they are
related by the cut and glue process described above and illustrated in Figure 4.
Affine lengths of the edges are measured relative to the respective primitive
vector. For detailed explanation of pictures see Section 2.3.

Therefore, we proceed to give, purely in the language of symplectic topology, a complete
self-contained proof of the following:

Theorem 1.1 There exists a monotone Lagrangian torus in CP2 endowed with the
standard Fubini–Study form bounding 10 families of Maslov index 2 holomorphic
discs that is not Hamiltonian isotopic to the Clifford or Chekanov tori.
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For that we modify Auroux’s example described in [1], by considering a singular La-
grangian fibration that should interpolate between Chekanov-type tori and T .1; 4; 25/–
type tori.

More specifically, the rest of this paper is organized as follows.

In Section 2, we review mirror symmetry in the complement of an anticanonical
divisor, Landau–Ginzburg models, wall-crossing phenomena and Auroux’s example
we mentioned above, following the approach in [1, 2].

In Section 2.3, we review almost toric fibrations and in Section 2.4 we explain the
relationship between J–holomorphic discs and tropical discs in almost toric fibrations,
working it out for the example in Section 2.1. Even though the approach is not totally
rigorous, in Section 3 we use tropical discs and wall-crossing formulas for an almost
toric fibration to predict the existence of the T .1; 4; 25/ torus and the number of Maslov
index 2 discs it bounds, by computing the superpotential in an informal manner.

In Section 4, we use an explicit degeneration of CP2 into CP .1; 1; 4/ to define
T .1; 4; 25/–type Lagrangian tori and set the conditions for computing the Maslov
index 2 holomorphic discs it bounds.

In Section 5, we compute first the relative homotopy classes allowed to have Maslov
index 2 holomorphic discs and then the actual Maslov index 2 holomorphic discs a
T .1; 4; 25/–type torus bounds. We also prove regularity and orient the moduli space
of holomorphic discs in each of the classes in order to determine the correct signed
count for the superpotential.

In Section 6, we modify the symplectic structure to construct the monotone T .1; 4; 25/

torus and prove that it is not symplectomorphic to the known Clifford and Chekanov
tori. Finally, in Section 7, we repeat the techniques of Sections 3 and 4 to conjecture the
existence of an exotic monotone torus in CP1 �CP1 , bounding 9 families of Maslov
index 2 holomorphic discs.
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2 Motivation: Mirror symmetry

This section is a summary of the introduction to mirror symmetry in the complement of
an anticanonical divisor explained in [1,2]. Mirror symmetry has been extended beyond
the Calabi–Yau setting by considering Landau–Ginzburg models. More precisely, it
is conjectured that the Mirror of a Kähler manifold .X; !;J /, with respect to an
effective anticanonical divisor D , is a Landau–Ginzburg model .X_;W /, where X_

is a mirror of the almost Calabi–Yau XnD in the SYZ sense, ie a (corrected and
completed) moduli space of special Lagrangian tori in XnD equipped with rank-1
unitary local systems (U.1/ flat connections on the Lagrangian), and the superpotential
W W X_!C given by Fukaya, Oh, Ohta and Ono’s m0 obstruction to Floer homology,
which is a holomorphic function defined by a count of Maslov index 2 holomorphic
discs with boundary on the Lagrangian; see [1, 2]. Kontsevich’s homological mirror
symmetry conjecture predicts that the Fukaya category of X is equivalent to the derived
category of singularities of the mirror Landau–Ginzburg model .X_;W /.

In order to apply the SYZ construction to XnD , we have to represent it as a (special)
Lagrangian fibration over some base. Also, to ensure that the count of Maslov index 2
holomorphic discs is well defined, one asks L to satisfy some assumptions. More
precisely, we require:

(1) There are no nonconstant holomorphic discs of Maslov index 0 in .X;L/.

(2) Holomorphic discs of Maslov index 2 in .X;L/ are regular.

(3) There are no nonconstant holomorphic spheres in X with c1.TX / � ŒS2�� 0.

In this case one defines the superpotential W Dm0W X_!C by the following.

Definition 2.1 We have

(2-1) m0.L;r/D
X

ˇ;�.ˇ/D2

nˇ.L/ exp
�
�
Z
ˇ

!

�
holr.@ˇ/:

Note that r is a U.1/ flat connection on L, holr.@ˇ/ is the holonomy around the
boundary of ˇ and nˇ.L/ is the (algebraic) count of holomorphic discs in the class ˇ
whose boundary passes though a generic point p 2 L. More precisely, considering
M.L; ˇ/ the oriented (after a choice of spin structure for L) moduli space of holo-
morphic discs with boundary in L representing the class ˇ , nˇ.L/ is the degree of its
push forward under the evaluation map at a boundary marked point as a multiple of
fundamental class ŒL�, ie ev�ŒM.L; ˇ/�D nˇ.L/ŒL�.
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In principle one does not know if the series (2-1) converges. Thus, it is preferable to
replace the exponential by a formal parameter and the superpotential then takes values
in the Novikov field. Nevertheless, all the superpotentials computed in this paper are
given by finite sums, and we use the exponential for consistency with [1].

For each ˇ 2H2.X;L;Z/, with @ˇ ¤ 0 2H1.L;Z/, we can define a holomorphic
function zˇW X_!C� by

(2-2) zˇ.L;r/D exp
�
�
Z
ˇ

!

�
holr.@ˇ/I

see [1, Lemma 2.7].

Remark Actually, the function zˇ is only defined locally, for we have to keep track of
the relative class ˇ under deformations of L. In the presence of nontrivial monodromy,
which appears when we allow the fibration to have singular fibers, the function becomes
multivalued.

In some cases, including the Lagrangian fibrations considered in this paper, the map
H1.L/!H1.X / induced by inclusion is trivial, and then we can get a set of holo-
morphic coordinates zj D z

ǰ
by considering relative classes ǰ so that @ ǰ forms a

basis of H1.L/. Then our superpotential can be written as a Laurent series in terms of
such holomorphic coordinates.

In many cases we consider Lagrangian fibrations with singular fibers, and some of
the Lagrangian fibers bound Maslov index 0 holomorphic discs, passing through the
singular point. The projection of such Lagrangians forms “walls” in the base, dividing it
into chambers. The count of Maslov index 2 holomorphic discs bounded by Lagragian
fibers can vary for different chambers. This is called “wall-crossing phenomenon”; see
Section 2.2 and [1, Section 3]. Nevertheless, one can still construct the mirror by gluing
the various chambers of the base using instanton corrections; see [1, Proposition 3.9
and Conjecture 3.10].

The example below not only illustrates wall-crossing, but also serves as the main model
for the rest of the paper. For a more detailed account, see [1, Section 5] or [2, Section 3].

2.1 A motivating example

The following example is taken from [1, Section 5]. We will describe it in detail because
our main construction, given in Section 4, can be thought as a further development of
the same ideas.
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Consider CP2 , equipped with the standard Fubini–Study Kähler form, and the anti-
canonical divisor DDf.x W y W z/ j .xy�cz2/zD 0g for some c¤ 0. We will construct
a family of Lagrangian tori in the complement of the divisor D . For this we look at
the pencil of conics defined by the rational map f W .x W y W z/ 7! .xy W z2/. We will
mostly work with f in the affine coordinate given by z D 1, as a map from C2 to C ,
f .x;y/ D xy . The fiber of f over any nonzero complex number is then a smooth
conic, while the fiber over 0 is the union of two lines, and the fiber over 1 is a double
line.

There is an S1 action on each fiber of f given by .x;y/ 7! .ei�x; e�i�y/. Recall that
the symplectic fibration f carries a natural connection induced by the symplectic form,
whose horizontal distribution is the symplectic orthogonal to the fiber. Our family of
tori will consist then of parallel transports of each S1 orbit, along circles in the base
of the fibration, centered at c 2C . We say that the height of an S1 orbit is the value
of �.x;y/D 1

2
.jxj2� jyj2/=.1Cjxj2Cjyj2/, which is the negative of the moment

map of the S1 action. Let V� be the vector field generated by the S1 action. Since
d�D �!.V� ; � / and V� is contained in the tangent space of the fibers, we see that
the moment map remains invariant under parallel transport. Therefore we get that our
family of Lagrangian tori is given by the following.

Definition 2.2 Given r > 0, and a real number � 2R, set

(2-3) T c
r;� D

˚
.x W y W z/ ˇ̌ jf .x W y W z/� cj D r I�.x W y W z/D �	

D ˚.x;y/ ˇ̌ jxy � cj D r I jxj2� jyj2 D 2�.1Cjxj2Cjyj2/	:

�
�
�
�

�
�
�
�

� 0 � c � 1r

r �

C

C2

f

T c
r;�

Figure 2: The special Lagrangian torus T c
r;�

in C2 nD (from [1])

Remark All the pairs consisting of a symplectic fibration together with a map from
the symplectic manifold to R (real data) used to define the Lagrangian fibrations
considered in this paper form pseudotoric structures as defined by Tyurin in [19].
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Note that actually T c
jcj;0 is a singular torus, pinched at .0; 0/, so varying r and � give

us a singular toric fibration. If r > jcj, we say that T c
r;�

is of Clifford type, and if
r < jcj, of Chekanov type. The motivation for this terminology is that in the first case
we can deform the circle centered at c with radius r in the base to a circle centered at
the origin, without crossing it, and with it we obtain a Lagrangian isotopy from T c

r;0

to a Clifford torus S1.
p

r/�S1.
p

r/. Not crossing the origin implies that no torus
in the deformation bounds Maslov index 0 discs, hence the count of Maslov index 2
discs remains the same; see [1, Section 5.2]. On the other hand, for r < jcj, T c

r;0
is the

Eliashberg–Polterovich version of the so-called Chekanov torus; see [9].

To compute the Maslov index of discs in terms of their algebraic intersection number
with the divisor D , one can prove that these Lagrangian tori are special with respect to
the holomorphic 2–form �.x;y/D .xy�c/�1dx^dy . In general, we can associate to
an anticanonical divisor D a nonvanishing holomorphic n–form � on the complement
X nD given by the inverse of a section of the anticanonical bundle that defines D .
Recall the following definition:

Definition 2.3 A Lagrangian submanifold L is said to be special Lagrangian, with
respect to � and with phase � , if Im.e�i��/jL D 0.

For a proof that T c
r;�

are special Lagrangian with respect to �, see [1, Proposition 5.2].

Lemma 2.4 [1, Lemma 3.1] If L�XnD is special Lagrangian, then for any relative
homotopy class ˇ 2 �2.X;L/ the Maslov index of ˇ , �.ˇ/, is equal to twice the
algebraic intersection number ˇ � ŒD�.

It can also be shown that T c
r;�

bounds Maslov index 0 holomorphic discs if and only if
r D jcj. So we see that r D jcj creates a wall in the base of our Lagrangian fibration
given by pairs .r; �/. Then we need to treat the cases r > jcj and r < jcj separately.

For r > jcj, we argue that T c
r;�

is Lagrangian isotopic to a product torus S1.r1/�S1.r2/,
without altering the disc count throughout the deformation. Denote by z1 and z2

respectively the holomorphic coordinates on the mirror associated to the relative
homotopy classes ˇ1 and ˇ2 of discs parallel to the x and y coordinate axes in
.C2;S1.r1/�S1.r2//. Namely, zi D exp.� Rˇi

!/ holr.@ˇi/. We get from [1, Propo-
sition 4.3] that the superpotential recording the counts of Maslov index 2 holomorphic
discs bounded by T c

r;�
for r > jcj is given by

(2-4) W D z1C z2C
e�ƒ

z1z2

;
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where ƒ D R
ŒCP1� ! . The term e�ƒ=z1z2 corresponds to discs that project via f

to a double cover of C2 n� branched at infinity lying in the class ŒCP1� � ˇ1 �
ˇ2 2 �2.CP2;T c

r;0
/. The other terms z1 and z2 of the superpotential correspond to

sections of f over the disc � centered at c with radius r , intersecting respectively
the components fx D 0g and fy D 0g of the fiber f �1.0/.

Now we look at the case r < jcj, and consider the special case �D 0, the Chekanov
torus considered by Eliashberg and Polterovich in [9]. One family of Maslov index 2
holomorphic discs lies over the disc � centered at c with radius r , given by the
intersection of f �1.�/ with the lines x D ei�y . We denote by ˇ their relative
class in �2.CP2;T c

r;0
/. The other discs are harder to construct. Consider the class ˛

of the Lefschetz thimble associated with the critical point of f at the origin and
the vanishing path Œ0; c � rearg.c/i �. One can see that ˛ , ˇ and H D ŒCP1� form a
basis of �2.CP2;T c

r;0
/. The following lemma and proposition, due to Chekanov and

Schlenk [6], have their proofs sketched in [1].

Lemma 2.5 The only classes in �2.CP2;T c
r;0
/ which may contain Maslov index 2

holomorphic discs are ˇ and H � 2ˇC k˛ for k 2 f�1; 0; 1g.

Proposition 2.6 The torus T c
r;0

bounds a unique S1 family of holomorphic discs in
each of the classes ˇ and H � 2ˇC k˛ for k 2 f�1; 0; 1g. These discs are regular,
and the corresponding algebraic count is 2 for H � 2ˇ and 1 for the other classes.

Since deforming � to 0 yields a Lagrangian isotopy from T c
r;� to T c

r;0 in the comple-
ment of f �1.0/, so without encountering any Maslov index 0 holomorphic discs, the
disc count remains the same and we have that for r < jcj the superpotential is given by

(2-5) W D uC e�ƒ

u2w
C 2

e�ƒ

u2
C e�ƒw

u2
D uC e�ƒ.1Cw/2

wu2
;

where u and w are the holomorphic coordinates on the mirror associated to the class ˇ
and ˛ .

2.2 Wall-crossing

In this section we explain the wall-crossing phenomenon. Then we see how it happens
in Section 2.1 and explain the relation between the two formulas for the superpotential
in terms of the wall-crossing at r D jcj, still following [1, Section 5].

Let us follow a Maslov index 2 holomorphic disc in a class 
 0 through a Lagrangian
deformation of the fibers crossing a wall (formed by projection of fibers bounding
Maslov index 0 discs). Assume that the given disc continues to exist throughout the
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 D 
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Figure 3: Wall-crossing: Following a Maslov index-2 holomorphic disc
through a Lagrangian deformation of the fibers crossing a wall consisting of
fibers bounding Maslov index-0 discs (see Figure 8 for the tropical picture).

deformation. The following phenomenon typically happens: if the boundary of such
a disc intersects that of a Maslov index 0 holomorphic disc in a class ˛ while on the
wall, they can be glued into another Maslov index 2 disc, in the class 
 D 
 0C˛ , on
the other side of the wall, besides the deformation that passes through, in the “same”
class 
 0 , without attaching the Maslov index 0 disc. Conversely, a Maslov index 2
holomorphic disc in a class 
 can split into a Maslov index 2 holomorphic disc in a
class 
 0 and a Maslov index 0 holomorphic disc in a class 
 , while on the wall, and
then disappear after the Lagrangian passes through; see Figure 3.

We see how this phenomenon appears in the Section 2.1. Begin considering the case
where � > 0, so T c

r;�
lies in the region where jxj > jyj. Then when r D jcj the

torus intersects fy D 0g in a circle bounding a Maslov index 0 disc, u0 . This disc
represents the class ˛ , on the Chekanov side, and ˇ1�ˇ2 on the Clifford side. As r

decreases through jcj, the family of holomorphic discs in the class ˇ2 on the Clifford
side becomes the family of discs on the class ˇ on the Chekanov side, and the discs in
the class H �ˇ1�ˇ2 on the Clifford side becomes the discs in the class H � 2ˇ�˛
on the Chekanov side.

Since a disc in the class H � 2ˇ � ˛ , bounded by a torus over the wall r D jcj,
intersects u0 in ŒH � 2ˇ � ˛� � Œ˛�D 2 points, new discs in the classes H � 2ˇ and
H � 2ˇC˛ arise from attaching u0 to a disc in the class H �ˇ1�ˇ2 DH � 2ˇ�˛
at one or both points where their boundaries intersect. On the other hand, a disc in
the class ˇ , at the wall, intersects the Maslov index 0 disc u0 at one point. When
crossed to the Clifford side, a disc in the class ˇ1 D ˇ2C˛ arises from attaching u0

Geometry & Topology, Volume 18 (2014)
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to a disc in the class ˇ2 D ˇ ; see Figures 6, 7, 8 (in these figures, discs are represented
tropically). Conversely, one can think that a holomorphic disc in the class ˇ1 on the
Clifford side, when deformed towards the wall, breaks into a holomorphic disc in the
class ˇD ˇ1�˛ and the Maslov index 0 disc u0 and then disappears on the Chekanov
side.

For � < 0, when r D jcj the torus intersects fx D 0g in a circle bounding a Maslov
index 0 disc in the class ˇ2�ˇ1 D�˛ . As r decreases through jcj, the families of
holomorphic discs that survive the deformation through the wall are in the classes ˇ2

and H �ˇ1�ˇ2 on the Clifford side, becoming ˇ and H � 2ˇ�˛ on the Chekanov
side. As before, two new families of discs are created in the classes H � 2ˇ and
H � 2ˇC˛ , while discs in the classes ˇ1 disappear, after wall-crossing.

The difference between the “naive” gluing formulas, which for � > 0 matches ˇ� ˇ2

and for �< 0 matches ˇ� ˇ1 , is due to the monodromy of the Lagrangian fibers T c
r;�

around the nodal fiber T c
jcj;0

, which is explained in the next section. However, one can
perform wall-crossing corrections to take care of this discrepancy and yield a single
consistent gluing for both halves of the wall.

A holomorphic disc in the class ˇ on the Chekanov side is thought to correspond
to both discs in the classes ˇ1 and ˇ2 , taking into account the attachment of the
holomorphic disc u0 in the class ˛ . In terms of the coordinates z1 , z2 on the Clifford
side, associated with ˇ1 and ˇ2 , and coordinates u and w on the Chekanov side,
associated with ˇ and ˛ , the gluing becomes u � z1C z2 .

For �> 0, one can think that the “naive” formula uD z2 is modified by a multiplicative
factor of 1Cw , ie uD .1Cw/z2 D z1C z2 , as predicted in [1, Proposition 3.9]. For
�< 0, the correct change of coordinates is uD z1.1Cw�1/D z1Cz2 , w�1D z2=z1 ,
which is the same as for � > 0.

Taking the wall-crossing into account the correct change of coordinates in the mirror is
given as follows:

Homology classes Coordinates

˛ � ˇ1�ˇ2 w � z1

z2

ˇ � fˇ1; ˇ2g u � z1C z2

H � 2ˇCf�1; 0; 1g˛ � H �ˇ1�ˇ2
e�ƒ.1Cw/2

u2w
� e�ƒ

z1z2

It is then easy to check that the formulas (2-4) and (2-5) for the superpotential, and
this corrected coordinate change, do match up.
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2.3 Almost toric manifolds

The aim of this section is to explain the geometry of almost toric fibrations and use it for a
better understanding of the singular Lagrangian fibration in the previous example. Most
importantly, we can use it to construct other fibrations and predict the superpotential
on each of the chambers divided by the walls. This way we can predict the existence
of exotic Lagrangian tori in almost toric manifolds, and in particular the torus in CP2

that appears in Theorem 1.1. For a more detailed explanation of almost toric fibrations,
see Symington [18] and Leung and Symington [16].

The following is [16, Definition 2.2]:

Definition 2.7 An almost toric fibration of a symplectic four manifold .M; !/ is a
Lagrangian fibration � W .M; !/! B such that any point of .M; !/ has a Darboux
neighborhood (with symplectic form dx1^dy1Cdx2^dy2 ) in which the map � has
one of the forms

�.x;y/D .x1;x2/ regular point

�.x;y/D .x1;x
2
2 Cy2

2/ elliptic, corank one

�.x;y/D .x2
1 Cx2

2 ;x
2
2 Cy2

2/ elliptic, corank two

�.x;y/D .x1y1Cx2y2;x1y2�x2y1/ nodal or focus–focus

with respect to some choice of coordinates near the image point in B . An almost toric
manifold is a symplectic manifold equipped with an almost toric fibration. A toric
fibration is a Lagrangian fibration induced by an effective Hamiltonian torus action.

We call the image of each nodal singularity a node.

Recall that a Lagrangian fibration yields an integral affine structure, called symplectic,
on the complement of the singular values on the base, ie each tangent space contains a
distinguished lattice. These lattices are defined in terms of the isotropy subgroups of a
natural action of T �B on M given by the time-one flow of a vector field associated
with each covector of T �B . More precisely, take � 2 T �B and consider the vector
field V� defined by !. � ;V�/ D ��� . Set � � x D ��.x/, where �� is the time-one
flow of V� . Call ƒ� the isotropy subgroup of the action, which is a lattice such that
.T �B=ƒ�; d˛can/ and .M; !/ are locally fiberwise symplectomorphic (here, ˛can is
induced by the canonical 1–form of T �B ). This induces two other lattices, the dual
lattice ƒ, given by ƒb D fu 2 TbB j v�u 2 Z for all v� 2 ƒ�

b
g, inside TB and the

vertical lattice ƒj D fV� j � 2ƒ�g inside the vertical bundle in TM . We call the pair
.B; ƒ/ an almost toric base.
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For an almost toric four manifold, the affine structure defined by the lattice above
completely determines M up to symplectomorphism, at least when the base is either
noncompact or compact with nonempty boundary; see [18, Corollary 5.4]. Also, since
.T �B=ƒ�; d˛can/ and .M; !/ are locally fiberwise symplectomorphic, a basis of the
lattice is in correspondence with a basis of the first homology H1.Fb/ of the fiber over a
regular point. Therefore, the topological monodromy around each node is equivalent to
the integral affine monodromy. The neighborhood of a nodal fiber is symplectomorphic
to a standard model (see [18, Section 4.2]) and the monodromy around a singular fiber
(of rank 1) is given by a Dehn twist. In suitable coordinates the Dehn twist can be
represented by the matrix

A.1;0/ D
�

1 1

0 1

�
:

A change of basis of H1.Fb/ gives a conjugate of A.1;0/ , which is, in terms of its
eigenvector .a; b/,

A.a;b/ D
�

1� ab a2

�b2 1C ab

�
:

Due to the monodromy, one cannot find an affine embedding of the base of an almost
toric fibration with nodes into R2 equipped with its standard affine structure ƒ0 .
However, after removing a set of branch curves in the base B , ie a collection of disjoint
properly embedded curves connecting each node to a point in @ xB , it may be possible
to define such an embedding.

Definition 2.8 (Leung and Symington [16, 3.2]) Suppose we have an integral affine
embedding ˆW .B �R; ƒ/! .R2; ƒ0/, where .B; ƒ/ is an almost toric base and R

is a set of branch curves. A base diagram of .B; ƒ/ with respect to R and ˆ is the
image of ˆ decorated with the following data:

� An x marking the location of each node.

� Dashed lines indicating the portion of @ˆ.B �R/ that corresponds to R.

Remark The presence of monodromy in the affine structure on B implies the existence
of monodromy in the affine structure induced on the mirror X_ . This explains the
discrepancy between the uncorrected coordinate changes across the two halves of the
wall in Section 2.1. See [1, Remark 5.11].

The affine direction(s) of the image of such a branch curve in R2 determine the
monodromy around the corresponding node. If the image is contained in a line with
direction .a; b/, the monodromy is given by A.a;b/ ; for a more detailed account of base
diagrams, see [18, Section 5.2]. For instance, the left-most picture of Figure 4 represents
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4

1

1� Š

Figure 4: The left-most picture is a base diagram of the almost toric fibration
of CP 2 related to the singular Lagrangian fibration given in Section 2.1 (for
small c ), having the Clifford torus as its central fiber. The next base diagram
is obtained by applying a nodal slide passing through the Clifford torus, so
that the central fiber becomes the Chekanov torus. Following the arrows
we first cut the previous picture in the direction of .1; 1/ , then we apply the
monodromy A.1;1/ to the bottom part and finally we reglue the parts to obtain
a base diagram representing the same almost toric fibration.

the Lagrangian fibration seen in Section 2.1. The ray represented by dashed lines in the
direction .1; 1/ is an eigenvector of the monodromy, which hence is given by A.1;1/ .

Two almost toric surgery operations are of importance for us. They change the almost
toric fibration into another almost toric fibration of the same symplectic four manifold
and are defined as follows:

Definition 2.9 [16, 4.1] Let .B; ƒi/ be two almost toric bases, i D 1; 2. We say that
.B; ƒ1/ and .B; ƒ2/ are related by a nodal slide if there is a curve 
 in B such that:

� .B � 
;ƒ1/ and .B � 
;ƒ2/ are isomorphic.

� 
 contains one node of .B; ƒi/ for each i .

� 
 is contained in the eigenline (line preserved by the monodromy) through
that node.
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Definition 2.10 [16, 4.2] Let .Bi ; ƒi/ be two almost toric bases, i D 1; 2. We say
that .B1; ƒ1/ and .B2; ƒ2/ differ by a nodal trade if each contains a curve 
i starting
at @Bi such that .B1� 
1; ƒ1/ and .B2� 
2; ƒ2/ are isomorphic, and .B1; ƒ1/ has
one less vertex than .B2; ƒ2/.

Remark The right-most picture of Figure 4 is not considered to differ by a nodal
trade from the moment polytope of CP .1; 1; 4/, because the latter, being the base of
an orbifold toric Lagrangian fibration, is not considered to be an almost toric base.

In Figure 4, the left-most base diagram is obtained by applying a nodal trade to a
corner of the moment polytope of CP2 , which is the base diagram for the standard
toric fibration of CP2 . The following picture is then obtained by a nodal slide. As
explained in the introduction, once the singular fiber passes trough the Clifford torus,
the central fiber develops a singularity and then becomes the Chekanov torus. The
right-most picture is a B.1; 1; 4/ base diagram representing the same almost toric
fibration. Shortening the cut to a limit situation where it hits the corner describes a
degeneration of CP2 into CP .1; 1; 4/.

2.4 Predicting the count of holomorphic discs

In this section we use almost toric pictures to describe a limit affine structure of the
fibration for which holomorphic curves converge to tropical curves. We illustrate the
Maslov index 2 tropical discs given in this limit affine structure for the almost toric
fibration considered of Section 2.1. This section is not intended to contain a rigorous
approach to the correspondence between tropical curves and holomorphic discs in an
almost toric setting.

Assume one has an almost toric fibration with special Lagrangian fibers with respect
to �, a holomorphic 2–form with poles on the divisor D that projects to the boundary
of the base B . Then the interior of B carries a second affine structure, sometimes
called complex. The lattice which describes this affine structure, which we denote
by ƒc , is given by identifying TbB'H 1.Lb;R/ via the flux of the imaginary part of
� and via Poincarè duality with H1.Lb;R/�H1.Lb;Z/. More precisely, for each
vector v 2 TbB one gets the element of H 1.Lb;R/ given by the homomorphism

Œ
 � 2H1.Lb;R/ 7! d

dt

ˇ̌̌
tD0

Z
�t

Im.�/;

where �t is given by any parallel transport of 
 over a curve c.t/ on the base, with
c.0/D b , c0.0/D v . Since Im.�/ is a closed form, vanishing on the fibers, the above
is independent of c.t/ and �t , and hence well-defined. A fiber over the boundary of B
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is infinitely far from a given fiber over an interior point, since � has a pole on the
divisor D .

�
�
�
�

�
�
�
�

Figure 5: After a deformation of the almost complex structure, J–holomor-
phic discs project to amoebas eventually converging to tropical curves in the
large complex structure limit.

In general, the projections to B of holomorphic curves, called amoebas, can be fairly
complicated. However, it is expected that under a suitable deformation of the almost
complex structure J towards a ‘large limit’ (where the base directions are stretched),
the amoebas converge to tropical curves; see Figure 5. Also, the wall generated by the
singular fiber converges to a straight line with respect to this affine structure, since it is
the projection of a holomorphic curve containing Maslov index zero discs bounded by
the fibers. Moreover, since the boundary of such a disc represents the vanishing cycle
in the neighborhood of the nodal fiber, its homology class is fixed by the monodromy.
Hence the straight line corresponding to the wall is in the direction of the eigenvector
of the affine monodromy. In a neighborhood of a fiber away from the singular ones
the almost toric fibration are expected to approach TB=�ƒc with �! 0 at the limit.
This way, the change of coordinates and monodromy for this ‘large limit’ complex
affine structure is given by the transpose inverse of the symplectic affine structure
defined in Section 2.3, where the neighborhood of a regular fiber is isomorphic to a
neighborhood of T �B=ƒ� . Also, our ‘limit lattice’ at a point b on the base is identified
with H1.Lb;Z/.

This principle is illustrated for Section 2.1 in Figures 6 and 7. In these two figures, we
have the following.

� The Lagrangian torus under consideration is the fiber over the thick point.

� The dashed lines represent the walls (long dashes) and the cuts (short dashes),
and x represents the node (singular fiber).

Geometry & Topology, Volume 18 (2014)



2436 Renato Vianna

� A tropical disc is a tree whose edges are straight lines with rational slope in B ,
starting at the torus and ending on the nodes or perpendicular to the boundary at
infinity. The internal vertices satisfy the balancing condition that the primitive
integer vectors entering each vertex of the tree, counted with multiplicity, must
sum to 0.

� The Maslov index of the disc equals twice the number of intersection with the
boundary at infinity, ie the divisor.

� The multiplicity of each edge is depicted by the numbers of lines on Figure 7,
but on some other figures the multiplicities are represented by the thickness
of the line, for visual purposes (they can be computed taking into account the
balancing condition).

� The vanishing cycle is represented by .�1; 1/ on the lattice H1.Lb;Z/.

Figure 6: Clifford-type torus: W D z1C z2C e�ƒ
z1z2

The relation between these pictures and the formulas in Section 2.1 is as follows:
z1; z2 are coordinates on the Clifford side associated with the vectors .1; 0/ and .0; 1/,
respectively, and u, w are coordinates on the Chekanov side associated with the vectors
.1; 0/ and .�1; 1/, respectively, for the top part of the Chekanov side (when � < 0).
The direction of the edge leaving the torus can be read off from the superpotential and
is the negative of the vector representing the exponents of the corresponding monomial.
For instance, the disc associated with the monomial e�ƒ=z1z2 in (2-4) leaves the torus
with tangent vector .1; 1/ in Figure 6, while the disc associated with the term e�ƒ=u2

in (2-5) has tangent vector .2; 0/ (multiplicity 2) in Figure 7. We call this vector the
“class” of the tropical disc.
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Figure 7: Chekanov-type torus: W D uC e�ƒ
u2w
C 2 e�ƒ

u2 C e�ƒw
u2 D uC e�ƒ.1Cw/2

u2

Figure 8: As in Section 2.1 (see also Figure 3), a disc in the class ˇ2 breaks
into a disc in the class ˇ1 and the exceptional disc u0 , and disappears after
crossing the wall, for � < 0 .

The formulas for the two superpotentials are related by a wall-crossing transformation
(or mutation). We describe it now for the case of a two-dimensional base. In what
follows, when referring to a particular fiber Lb , let ˇ1 , ˇ2 be relative homotopy
classes of discs with boundary on Lb such that @ˇ1 , @ˇ2 are associated with .1; 0/
and .0; 1/ seen as elements of H1.Lb;Z/, respectively. Moving the point b on the
base, we keep denoting by ˇ1 , ˇ2 the continuous deformations of this relative classes.
Consider a wall in B coming from the projection of a family of Maslov index zero
discs propagating out of a node in the base along the affine direction .m; n/ 2 Z2 .
(Here we only consider the part of the wall that lies on the positive half of the eigen-
line generated by .m; n/.) Set WC D fv 2 R2 j fv; .m; n/g is positively orientedg
and W� D fv 2 R2 j fv; .m; n/g is negatively orientedg. Denote by z1 , z2 (respec-
tively u1;u2 ) the coordinates associated with ˇ1 , ˇ2 for the fibers Lb with b in the
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chamber contained in WC (respectively W� ). The class of the primitive Maslov index
zero discs bounded by the fibers along the wall is of the form mˇ1Cnˇ2CkŒCP1� and
hence is represented by the monomial wD e�kƒzm

1
zn

2
D e�kƒum

1
un

2
. The coordinates

z1; z2 and u1;u2 are then related by the wall-crossing formula

(2-6) ur
1us

2• zr
1zs

2.1Cw/nr�ms:

That way, knowing the superpotential on one side of the wall, it is expected that one
can compute the superpotential of the other side by applying the above wall-crossing
formula. Note that the absolute value of the exponent jnr �msj is the intersection
number between a disc represented by zr

1
zs

2
and the Maslov index zero disc at a fiber

over the wall.

3 Predicting the number and relative homotopy classes of the
T.1; 4; 25/ torus bounds

In this section we apply the same ideas as in the previous section to another almost
toric fibration, any of the ones shown on Figure 9, to predict the superpotential of
the T .1; 4; 25/–type torus, obtained from the previous Chekanov torus after another
wall-crossing.

Figure 9 represents almost toric fibrations on CP2 containing two singular fibers
of rank one. The middle diagram arises by applying a nodal trade to one corner of
the right-most diagram in Figure 4, after redrawing the diagram via an element of
AGL.2;Z/, which is, up to translation,�

1 0

�3 1

�
:

Lengthening the new cut to pass trough the central fiber we end up with an almost
toric fibration having the monotone T .1; 4; 25/ torus as a fiber, as illustrated by the
right-most diagram in Figure 9.

We assume the Lagrangian fibers are special with respect to some 2–form � with poles
on the divisor, and that in a ‘large limit’ almost complex structure, pseudoholomorphic
curves project to tropical curves. We will start the description of the superpotential in
the chambers where the fibers are of Clifford-type and successively cross two walls
in order to arrive at a tentative formula for the superpotential in the chamber where
the fibers are T .1; 4; 25/–type tori. In Section 4, we construct a singular Lagrangian
fibration interpolating between Chekanov-type tori and T .1; 4; 25/–type tori. For the
later, the count of Maslov index 2 holomorphic discs is verified rigorously in Section 5
using only symplectic geometry techniques.
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Figure 9: Almost toric base diagrams of CP 2 having, respectively, the mono-
tone Clifford, Chekanov and T .1; 4; 25/ tori as the a fiber.

Now we focus on the chamber containing the Clifford-type tori illustrated on the top
right part of Figure 10. Since we applied�

1 0

�3 1

�
to the right-most diagram of Figure 4, we need to ‘dually’ change the coordinates used
on Figure 6 by applying the transpose inverse�

1 3

0 1

�
:

Calling these new coordinates yz1 , yz2 , associated with .1; 0/ and .0; 1/ on the top
right part of Figure 10, they are described in terms of z1 , z2 by z1Dyz1 , z2Dyz3

1
yz2 . This

way a tropical disc in the class .p; q/ on the top right part of Figure 10 corresponds to
a monomial with exponents yzp

1
yz q

2
. After this change of coordinates, the invariant

direction at the singularity is .2; 1/ and the monodromy is given by A.2;1/ ; see
Figure 10. Therefore at the top part of the chamber corresponding to the Clifford-type
tori the superpotential is given by

(3-1) WClif D yz1Cyz3
1yz2C e�ƒ

yz4
1
z2

:

As the vanishing vector of the first wall is .2; 1/, the vanishing class is represented by
the coordinate zw D yz2

1
yz2 D zz2

1
zz2 , where zz1 , zz2 are the coordinates corresponding to

the standard basis on the Chekanov side. Applying the wall crossing formula (2-6) to
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(3-1), the superpotential in the Chekanov region is

(3-2) WChe D zz1C e�ƒ
.1C zw/2
zz4

1
zz2

D zz1C e�ƒzz2C 2
e�ƒ

zz2
1

C e�ƒ

zz4
1
zz2

:

Figure 10: Clifford-type torus: WClif D yz1Cyz3
1yz2C e�ƒ

yz4
1

z2

Figure 11: Chekanov-type torus: WChe D zz1C e�ƒzz2C 2 e�ƒ
zz2

1

C e�ƒ
zz4

1
zz2

We now cross the second wall towards a T .1; 4; 25/–type torus. The second wall
has vanishing vector .�1; 1/ and the monomial corresponding to the vanishing class
is w D e�ƒzz2zz�1

1
D e�ƒu2u�1

1
, where u1 , u2 are the coordinates corresponding

to the standard basis on the T .1; 4; 25/ side and the factor e�ƒ is present because
the class of the Maslov index 0 disc is �ˇ1Cˇ2C ŒCP1� 2 �2.CP2;L/, where ˇ1

and ˇ2 are the classes associated with the coordinates, zz1 , zz2 . Indeed, knowing the
boundary of w represents the class .�1; 1/, we get the first two coefficients of ˇ1
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and ˇ2 . To obtain the coefficient of ŒCP1� we compute the Maslov index. We have
that �.ŒCP1�/ D 6 (see Lemma 2.4) and zz1 and e�ƒzz2 are terms in WChe , hence
�.ˇ1/D 2 and �.ˇ2/D�4. In order to have Maslov index 0, the coefficient of ŒCP1�

must be 1. Finally, applying the wall-crossing formula (2-6) to (3-2) we get that

(3-3) WT .1;4;25/ D u1C 2
e�ƒ

u2
1

.1Cw/2C e�ƒ

u4
1
u2

.1Cw/5

D u1C 2
e�ƒ

u2
1

C 4
e�ƒu2

u3
1

C 2
e�ƒu2

2

u4
1

C e�ƒ

u4
1
u2

C 5
e�2ƒ

u5
1

C10
e�3ƒu2

u6
1

C 10
e�4ƒu2

2

u7
1

C 5
e�5ƒu3

2

u8
1

C e�6ƒu4
2

u9
1

D uC 2
e�ƒ

u2
.1Cw/2C e�2ƒ

u5w
.1Cw/5:

The last formula is a more simplified expression in terms of the coordinates uD u1

and w . The expanded version in coordinates u1 , u2 makes it easier to visualize the
class of each disc. Figure 12 illustrates a T .1; 4; 25/–type torus, predicted to bound
ten different families of holomorphic discs, corresponding to the ten terms in this
expression.

Figure 12: A T .1; 4; 25/–type torus bounding 10 families of Maslov in-
dex 2 holomorphic discs; the superpotential is given by WT .1;4;25/ D
uC 2.e�ƒ=u2/.1Cw/2C .e�2ƒ=u5w/.1Cw/5 .

Even though our approach in this section was not completely rigorous, it points toward
the existence of such an exotic torus bounding 41 discs, if we count with multiplicity
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(sum the coefficients of each monomial). The theory for proving the correspondence
between tropical curves on the base and holomorphic curves on the total space is not
fully developed yet, so the actual proof in Section 5 will use a different approach.

Remark The bottom-most region on Figures 10–12 is known to have infinitely many
walls, since it can have Maslov index 0 discs ending in both nodes with different
multiplicities. This can be detected by the need for consistency of the changes of
coordinates due to wall-crossing when we go around the point where the walls intersect.
This phenomenon is called scattering, first described by M Kontsevich and Y Soibelman
in [13]. See also M Gross [12].

4 The exotic torus

This section is devoted to the actual construction of the exotic torus. Heuristically, we
try to mimic the following procedure: first perform a nodal trade in a smooth corner of
the moment polytope of CP .1; 1; 4/ to get an “orbifold almost toric fibration”; then we
smooth the orbifold singularity and trade it for an interior node, obtaining the almost
toric fibration described by the middle diagram of Figure 9. This way the analogue of a
Chekanov-type torus in CP .1; 1; 4/ deforms to a T .1; 4; 25/–type torus. For the first
step, we consider a symplectic fibration on CP .1; 1; 4/ given by f0.zx W 1 W zz/D zxzz ,
with fibers preserved by a circle action ei� � .zx W 1 W zz/ D .e�i� zx W 1 W ei�zz/. The
parallel transport of an orbit along a circle centered at c 2R>0 with radius r < c is
then a ‘Chekanov-type torus in CP .1; 1; 4/’. The second part is carried out using a
degeneration from CP2 to CP .1; 1; 4/ parametrized by a real parameter t . We then
consider a family of symplectic fibrations ft on CP2 n fy D 0g converging to f0 ,
compatible with a circle action, so that, for each t > 0, the parallel transport of an
orbit along the same circle at the base is a T .1; 4; 25/–type torus which converges
to a ‘Chekanov-type torus in CP .1; 1; 4/ as t ! 0. One technical issue that arises is
that we need to equip CP2 with a nonstandard Kähler form (symplectomorphic to the
standard one) in order to be able to give explicit descriptions of these tori.

As mentioned in the introduction, the projective plane degenerates to weighted pro-
jective spaces CP .a2; b2; c2/, where .a; b; c/ is a Markov triple. For c0 D 3ab � c ,
a deformation from CP .a2; b2; c2/ to CP .a2; b2; c02/ can be seen explicitly inside
CP .a2; b2; c; c0/ via the equation, z0z1� .1� t/zc0

2
� tzc

3
D 0.

We work only with CP2 D CP .1; 1; 1/ and CP .1; 1; 4/ inside CP .1; 1; 1; 2/. For
t 2 Œ0; 1�, let Xt be the surface z0z1� .1� t/z2

2
� tz3 D 0.
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Explicit embeddings are

CP .1; 1; 1/ �!CP .1; 1; 1; 2/;(4-1)

.x W y W z/ 7!
�
x W y W z W xy � .1� t/z2

t

�
for t ¤ 0;

CP .1; 1; 4/ �!CP .1; 1; 1; 2/;(4-2)

.zx W zy W zz/ 7! .zx2 W zy2 W zx zy W zz/ for t D 0:

Set � D .xy � .1� t/z2/=t . We now consider a fibration given by F D z2z3=z
3
1

from
CP .1; 1; 1; 2/ (minus two lines) to CP1 , coinciding with f0 on X0 Š CP .1 W 1 W 4/.
We restrict F to Xt , for t > 0, obtaining

ft W Xt n f.1 W 0 W 0 W 0/g 'CP2 n f.1W 0 W 0/g !CP1;(4-3)

ft .x W y W z/D z�

y3
:

Also consider the divisor D D f �1
t .c/, where we take c to be a positive real number,

thought of as a smoothing of f �1
t .0/D fz� D 0g. We can define a circle action on

CP2 n fy D 0g, given, using coordinates .z; � D .x� .1� t/z2/=t/, by ei� � .z; �/D
.e�i�z; ei��/. This action does not extend to all of CP2 , and it does not preserve
the Fubini–Study Kähler form. However, we can modify the Kähler form to make
it S1 –invariant in an open subset; see below. As in Section 2.1, we can consider
Lagrangian T .1; 4; 25/–type tori, built up as the parallel transport of orbits along
the circle centered at c with radius r < c . The other parameter of this fibration of
Lagrangian tori is given by the moment map of the circle action (with respect to the
modified Kähler form). In order to make everything explicit and be able to actually
compute the Maslov index 2 holomorphic discs bounded by these tori, we will construct
a Kähler form ! , for which the moment map is given by

(4-4) �!.x W 1 W z/D 2
jzj2� j�j2

1Cjzj2Cj�j2
on an open set contained in the inverse image with respect to ft of an open disc of
radius R> 2c centered at 0.

For that, on the region described above, we take ! to be equal to i
4
@x@ log.1Cjzj2Cj�j2/,

in the coordinate chart y D 1. In homogeneous coordinates this form is given by

(4-5) z! D i

4
@x@ log

�
1C

ˇ̌̌ z
y

ˇ̌̌2
C
ˇ̌̌ �
y2

ˇ̌̌2�
D i

4
@x@ log.jyj4Cjzj2jyj2Cj�j2/:

The second expression is well-defined on CP2 n .1 W 0 W 0/, and equal to the first one
since @x@ log.jyj4/ D 0. A calculation in the affine chart x D 1 shows that, along
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the complex line y D 0, it becomes dy ^ d xy=j.1 � t/z=t j2 . So we see that z! is
well-defined and nondegenerate away from y D 0, but it is degenerate along the line
y D 0, and also is singular at .1 W 0 W 0/. In order to define a nearby symplectic form,
set �D jz�=y3j and `D .jz=yj2� j�=y2j2/=.1C jz=yj2C j�=y2j2/ for y ¤ 0, and
consider a cutoff function � that is zero for .x W y W z/ 2 f� < R; j`j < �0g and one
for .x W y W z/ 2CP2 n f� � 2R; j`j � 2�0g. The parameters R and �0 are chosen so
that cC r < 2c <R and 0< �0 <

1
2

, this way CP2 n f� � 2R; j`j � 2�0g is an open
neighborhood of fy D 0g. Define

(4-6) ! D i
4
@x@ log

�jyj4Cjzj2jyj2Cj�j2C s2�.�; `/.jxj2Cjyj2Cjzj2/2�;
where s is a very small constant. We see that ! is well-defined in the whole CP2 since
it is an interpolation between z! and the Kähler form !s D i

4
@x@ log.jyj4Cjzj2jyj2C

j�j2C s2.jxj2Cjyj2Cjzj2/2/ which is 1
2

of the pullback of the Fubini–Study form
on CP11 via the embedding

�W CP2 �!CP11;

.x W y W z/ 7! .y2 W zy W � W sx2 W sy2 W sz2 W sxy W sxy W syz W syz W szx W szx/:

Proposition 4.1 For s>0 sufficiently small, keeping fixed the other parameters c , r , t ,
0< �0 <

1
2

and R, ! is a well-defined nondegenerate Kähler form. Moreover, ! lies
in the same cohomology class as the Fubini–Study form !FS .

Proof We note that for y ¤ 0,

! D i
4
@x@ log..1� �/'1C �'2/D 1

2
ddc log..1� �/'1C �'2/;

where

'1 D
jyj4Cjzj2jyj2Cj�j2

jyj4 ;

'2 D
jyj4Cjzj2jyj2Cj�j2C s2.jxj2Cjyj2Cjzj2/2

jyj4
and on a neighborhood of y D 0, ! is equal to !s , hence it is Kähler.

We know ! is nondegenerate on f� <R; j`j < �0g and CP2 n f� � 2R; j`j � 2�0g.
Since !s converges to z! uniformly on the compact set f� � 2R; j`j � 2�0g (where z!
is nondegenerate) as s! 0, there is a small enough s making ! nondegenerate.

To determine the cohomology class of ! , it is enough to compute
R
ŒCP1�! . Considering

ŒCP1�D fy D 0g we see that
R
ŒCP1�! D

R
ŒCP1�!s and so

Œ!�D Œ!s �D 1
2
��Œ!CP11 �D Œ!FS�:
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The space of Kähler forms in the same cohomology class is connected. Hence, by
Moser’s theorem, .CP2; !/ and .CP2; !FS/ are symplectomorphic. After applying
such a symplectomorphism, we get Lagrangian tori in .CP2; !FS/ with the same
properties as the ones we consider in .CP2; !/.

The constants c , r , t , �0 , R and s are chosen in this order. For what follows c ,
0< �0 <

1
2

and R> 2c are fixed, r < c and t is thought to be very small with respect
to c and r . Considering the symplectic form ! from now on, we define the following
Lagrangian tori:

Definition 4.2 For � 2R, j�j< �0 , we set

(4-7) T c
r;� D

�
.x W y W z/ 2CP2

ˇ̌̌̌ ˇ̌̌ z�
y3
� c
ˇ̌̌
D r;

�!

2
D

j z
y
j2� j�=y2j2

1Cjz=yj2Cj�=y2j2 D �
�
:

For the sake of using Lemma 2.4, which gives a convenient formula for computing
Maslov index for special Lagrangian submanifolds, we now consider the meromorphic
2–form on CP2 which is the quotient of �C3 D .dx^dy^dz/=.t.�z�cy3// defined
on C3 and has poles on the divisor D . On the complement of fy D 0g, taking y D 1,
it is given by

(4-8) �D dx ^ dz

t.�z� c/
D d� ^ dz

�z� c
:

Here � D x�.1�t/z2

t
.

Proposition 4.3 For c , r and � as above, the tori described in the .�; z/ coordinate
chart by T c

r;�
D f.�; z/ j j�z � cj D r; jzj2 � j�j2 D �.1C jzj2 C j�j2/g are special

Lagrangian with respect to �.

Proof Take VH to be the Hamiltonian vector field of the Hamiltonian H.�; z/ D
j�z � cj2 , ie the field defined via !.VH ; � / D dH . Since H is constant on the
Lagrangian T c

r;�
and on each symplectic fiber of f .�; z/D �z , VH is symplectically

orthogonal to both, hence tangent to the Lagrangian T c
r;�

and not tangent to the
symplectic fibers of f . Consider the vector field # D .i�;�iz/, tangent to the fibers
and the Lagrangian torus, as they intersect along circles of the form .ei��0; e

�i�z0/.
Then f#;VH g form a basis for the tangent space of T c

r;�
. Now note that

�#�D
i�dzC izd�

�z� c
D id log.�z� c/:

Therefore,
Im.�/.#;VH /D d log j�z� cj.VH /D 0:
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5 Computing holomorphic discs in CP 2 bounded by T c
r;0

In this chapter we focus on the case �D 0 and show that, at least for small enough t

with respect to r and c , it bounds the expected 10 different families of Maslov index 2
holomorphic discs (with the expected multiplicity modulo signs). We often use the
coordinates .z0 W z1 W z2 W z3/, but restricted to CP2 'Xt via the embedding (4-1).

5.1 The homology classes

We omit the subindex t and consider f .x W y W z/ D z�=y3 mapping CP2 minus
.1 W 0 W 0/ to CP1 .

Proposition 5.1 There is only one family of holomorphic discs, up to reparametriza-
tion, in CP2 with boundary on T c

r;0
.r < c/ that is mapped injectively to the disc

jw� cj � r by f , where w is the coordinate in C .

Proof Let uW D ! CP2 be such a disc so, up to reparametrization, we have that
f ı u.w/ D ‰.w/ D rw C c . The map u can be described using coordinates
y D z1.w/ D 1, z D z2.w/ and � D z3.w/, so z2.w/z3.w/ D ‰.w/. Since zero
(and infinity) does not belong to the image of ‰ as r < c , z2 and z3 have no zeros or
poles on the disc (note that if z.w/D 0 and �.w/D1 then x.w/D1, contradicting
y.w/¤ 0, for the same reason z.w/¤1). At the boundary of the disc, mapped by u

to T c
r;0

, jz2j D jz3j. So, by holomorphicity, z2.w/D ei�z3.w/D ei.�=2/
p
‰.w/, for

some choice of square root and some constant � .

Call ˇ the relative homotopy class of the above family of discs, ˛ the class of the
Lefschetz thimble associated to the critical point of f at the origin lying above the
segment Œ0; c� r � (oriented to intersect positively fz D 0g) and H D ŒCP1� the image
of the generator of �2.CP2/ in �2.CP2;T c

r;0
/. One checks that ˛ , ˇ , H form a basis

of �2.CP2;T c
r;0
/. On Figure 12, holomorphic discs in the class ˇ are represented by

the tropical disc arriving at the torus in the direction .1; 0/ and associated to the term u

of the superpotential WT .1;4;25/ . If we consider � > 0, and increase r ! c , we see
that the torus depicted on Figure 12 approaches the wall, and the class ˛ corresponds
to a tropical Maslov index 0 disc that runs along the wall and ends at the node.

In order to understand what relative homotopy classes are allowed to have Maslov
index 2 holomorphic discs, we analyze their intersection with some other complex
curves, for instance the line over 1, y D 0, the line and conic over 0, z D 0 and
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D2 W xy � .1� t/z2 D 0. Another curve we use is a quintic, D5 , that converges to
.zxzz� c zy5/2 D 0 on CP .1; 1; 4/. It is given by

D5 W z0z2
3 � 2cz2

1z2z3C c2z5
1 D x�2� 2cy2z�C c2y5 D 0:

For z ¤ 0 and setting f D z�=y3 , we can write this equation as

(5-1) y5
�
c2� 2cf C xy

z2
f 2
�
D 0:

Remark Again relating to Figure 12, the left-most node is thought to be the torus T c
c;0

and the wall in the direction .1;�1/ to be formed by the tori T c
c;�

. The curve
D2Df� D 0g projects to the upper part of the wall, while fzD 0g projects to the lower
part of the same wall, as the Maslov index 0 discs bounded by T c

c;�
are contained

in these two divisors. Using similar reasoning, one expects that over the right-most
wall lie complex curves converging to fzy.zxzz� c zy5/D 0g, the boundary divisor of the
“orbifold almost toric fibration” on CP .1; 1; 4/. D5 converges to f.zxzz� c zy5/2 D 0g,
hence it is thought to lie over the lower part of the right-most wall, while fy D 0g,
which converges to fzy2 D 0g, is thought to lie over the upper part of the same wall.

Remark To compute the intersection number with H in Figure 12, one can use
the tropical rational curve formed by the union of all the tropical discs depicted on
Figure 10. Also, note that each wall hits the cut of the other, leaving them with slopes
.�5; 2/ on the top left and .7; 2/ on the top right; the additional dotted lines are omitted
on all pictures for simplicity.

Lemma 5.2 For fixed c and r < c , and for t sufficiently small, the classes ˛ , ˇ and
H intersect the varieties fz D 0g, fy D 0g, D3 D f �1.c/[ f.1 W 0 W 0/g, D2 W xy �
.1� t/z2 D 0 and D5 and have Maslov index, according to the table below.

Class z D 0 y D 0 D3 D2 D5 Maslov index �

˛ 1 0 0 �1 0 0

ˇ 0 0 1 0 2 2

H 1 1 3 2 5 6

Proof In order to use these curves to compute intersection numbers, we first need to
ensure they do not intersect T c

r;0
. This is clear for z D 0, y D 0, D3 and D2 . Later

we will see that T c
r;0
\D5 D∅.

The intersections with H follow from Bezout’s theorem. By construction, ˛ (repre-
sented by the Lefschetz thimble over the segment Œ0; c � r � which can be parametrized
by y D 1, z D �ei� , � D �e�i� , � 2 Œ0; c� r �) does not intersect y D 0 and D3 , also,
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it intersects both z D 0 and D2 at one point with multiplicity 1 and �1, respectively.
Each disc computed in Proposition 5.1 representing the class ˇ does not intersect
z D 0, y D 0, and D2 , and intersect D3 positively at one point.

It remains for us to understand the intersection of D5 with the torus T c
r;0

, ˛ and ˇ .
For that, we look at the family of conics C D fz D ei�� j � 2 Œ0; 2��g containing T c

r;0
,

the thimble representing the class ˛ and the discs representing the class ˇ computed
in Proposition 5.1.

On C , using the coordinate chart y D 1, we have

(5-2) z D ei�� D ei� x� .1� t/z2

t
:

So, solving for x in (5-2), and using f D z� D e�i�z2 , we get

(5-3) x D te�i �
2 f 1=2C .1� t/ei�f

for some square root of f . Then, by (5-1) and (5-3), the points of D5\ C are those
where

c2� 2cf C e�i�f .tei.��=2/f 1=2C .1� t/ei�f /

D .f � c/2C tf 3=2.e�i.3�=2/�f 1=2/D 0:

For t small enough, for each value of � , all the solutions of this equation lie in the
region jf � cj < r . From this we can conclude that D5 \ T c

r;0
D ∅, D5 \ ˛ D ∅,

since, in T c
r;0

, jf � cj D r and the thimble representing ˛ lies over Œ0; c � r �.

Now, a holomorphic disc representing the class ˇ is given by z D � D f 1=2 and
Re.z/ > 0; see Proposition 5.1. This means that this disc intersects D5 in exactly
two points, namely the two solutions of .z2� c/2C tz3.e�i3�=2� z/D 0, where z is
close to

p
c . As both are complex curves, the intersections count positively, so the

intersection number between D5 and ˇ is equal to 2.

Finally, from Lemma 2.4, we see that the Maslov index is twice the intersection with
the divisor D3 .

Lemma 5.3 The only classes in �2.CP2;Tr;0/ which may contain holomorphic discs
of Maslov index 2 are ˇ , H �2ˇCm˛ , �1�m� 2 and 2H �5ˇCk˛ , �2� k � 4.

Proof To have Maslov index 2 the class must have the form ˇC l.H � 3ˇ/C k˛ .
Considering positivity of intersections with y D 0 we get l � 0, with z D 0 and D2

we get �l � k � 2l , and finally with D5 , l � 2.
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5.2 Discs in classes H � 2ˇCm˛

Theorem 5.4 There are no Maslov index 2 holomorphic discs in the class H�2ˇ�˛ ;
there are one-parameter families of holomorphic discs in the classes H � 2ˇ and
H � 2ˇC 2˛ , with algebraic counts equal to 2 up to sign in both cases, and a one-
parameter family of holomorphic discs in the class H � 2ˇC˛ , with algebraic count
equal to 4 up to sign.

This is precisely what we expect from the term 2e�ƒ
u2 .1Cw/2 in WT .1;4;25/ ; see (3-3).

Proof We will try to find holomorphic discs uW .D;S1/! .CP2;T c
0;r
/ in the class

H �2ˇCm˛ , �1�m� 2. Recall f W CP2n.0 W 0 W 1/!CP1 , f .x W y W z/D z�=y3 ,
and set ‰ D f ı uW D! CP1 . Since u has Maslov index 2 it does not go through
.1 W 0 W 0/, where D3 has a self intersection, so ‰ is well-defined.

We look at .‰.w/� c/=r , which maps the unit circle to the unit circle. Looking at the
intersection numbers given in Lemma 5.2, we see that our disc must intersect y D 0

and the divisor D3 at one point. Therefore, as ‰ D f ıu, f �1.1/D fy3 D 0g and
D3 D f �1.c/[ .1 W 0 W 0/, the map .‰.w/� c/=r has a pole of order 3 and a simple
zero, so

(5-4)
‰.w/� c

r
D �w0

.w/

�3
w1
.w/

ei� ; where ��.w/D w� �
1� x�w

for some w0 , w1 in D and ei� 2S1 . We can use automorphisms of the disc to assume
w1 D 0, � D 0 and write w0 D a. Note that the disc automorphism w 7! ei�0w
amounts to w0 7! e�i�0w0 and � 7! ��2�0 in (5-4). So, �0D � keeps ei� invariant,
therefore we need to keep in mind that ˙a gives the same holomorphic disc modulo
reparametrization.

Since r < c , the image of u intersects f �1.0/�D2[fz D 0g in three points u.�j /,
j D0; 1; 2, ie �j 2D are so that ‰.�j /D0. The integer m in H�2ˇCm˛ determines
how many times the disc u intersects D2 , and we consider a set I � f0; 1; 2g with
that number of elements. Writing z1 D y , z2 D z and z3 D � , and �j D ��j we see
that the map u can be expressed in the form

(5-5) z1.w/D w; z2.w/D e�i�h.w/
Y
j 62I

�j .w/; z3.w/D ei�h.w/
Y
j2I

�j .w/;

where h.w/ is a nonvanishing holomorphic functions and ei� 2 S1 .
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�1

�0
a

�2

u

‰ f

D2

u.�0/

u.�2/u.�1/

z D 0

u.a/

y3 D 0

0
c r 1

Figure 13: This is a picture of ‰.w/D f ı u.w/D .z.w/�.w//=y3.w/D
.z2.w/z3.w//=z

3
1
.w/ (for the case mD 0; jI j D 2 , ie u intersects the conic

D2 twice); f�0; �1; �2gD‰�1.0/ and fagD‰�1.c/ behave as in Lemma 5.5
for small t . Recall that the divisor D3 is the closure of f �1.c/ 3 u.a/ .

Remark A suitable scaling of the homogeneous coordinates eliminates the need
for a multiplicative factor in the expression for z1.w/. In principle we know that
z2.w/ D e�i�h2.w/

Q
j 62I �j .w/, z3.w/ D ei�h3.w/

Q
j2I �j .w/. But we see that

on @D , we have jz2=z1j D jz3=z
2
1
j and jz1j D 1, so jh2j D jh3j on the unit circle,

therefore h3 D ei� 0h2 for some constant � 0 . Note that we can absorb �� 0=2 in � and
assume that h3 D h2 D h.

Since we have ‰.w/ D z2.w/z3.w/=z
3
1
.w/ D .h2.w/

Q
�j .w//=w

3 , we get that
h.w/D ..‰.w/w3/=

Q
�j .w//

1=2 for some choice of square root. The other choice is
equivalent to a translation by � of the parameter � . Rewriting this last equation and
using .‰.w/� c/=r D .�a.w//=w

3 , we get

(5-6) w3‰.w/D r�a.w/C cw3 D h2.w/�0.w/�1.w/�2.w/:

We expect one parameter family (families) of solutions and we see that u is determined
by the parameters a and � . Therefore we want to understand how many possible
choices for a there are, for any given � . Moreover, understanding how these solutions
vary with � , we can describe the moduli space of holomorphic discs in the class
H � 2ˇCm˛ bounded by T c

r;0
, denoted by M.T c

r;0
;H � 2ˇCm˛/ for each m.
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The possible values of a are constrained by the following equation coming from the
fact that � D� .1�t/

t
z2 when y D 0:

(5-7)
z3.0/

z2
2
.0/
D�1� t

t
D e3i�

Q
j2I �j .0/

h.0/
Q

j 62I �
2
j .0/

D e3i� .�1/jI j
Q

j2I �j

h.0/
Q

j 62I �
2
j

:

Since (5-6) implies that �ar D�h2.0/�0�1�2 , (5-7) can be rewritten as

(5-8) ar
�1� t

t

�2 Y
j 62I

�3
j D e6i�

Y
j2I

�3
j :

Note that solving (5-8) for a amounts to a solution of (5-7) for some choice of square
root for h.w/D ..‰.w/w3/=

Q
�j .w//

1=2 .

Understanding the behavior of the parameters �j and a as t ! 0 will allow us to
analyze the existence of a solving this equation for small values of t . Note that the
right side of (5-8) is uniformly bounded for all t . So we conclude that a

Q
j 62I �j ! 0,

as t ! 0. Moreover, if we can show that h.0/ is bounded away from zero, then we
can conclude that �j ! 0 for some j 62 I ; see (5-7).

Lemma 5.5 The value h.0/ is bounded away from 0 and, after possibly relabeling
the �j , the following asymptotics hold as t ! 0:

aDO.t1=2/; �0 DO.t1=2/; �1!
r

r

c
i; �2!�

r
r

c
i:

Moreover, 0 62 I . Therefore, as jI j< 3 represents the number of intersection with D2 ,
there is no holomorphic disc in the class H � 2ˇ�˛ (ie for mD�1).

Proof Consider the polynomial

„.w/D w3.1�xaw/‰.w/D r.w� a/C cw3.1�xaw/
D�cxa.w� �/.w� �0/.w� �1/.w� �2/

for some � , with j�j> 1. Assume j�0j � j�1j, j�0j � j�2j, and write

.w� �0/.w� �1/.w� �2/D w3� �w2C qw�p:

By comparing coefficients, we get

p� D ra

cxa ;(5-9)

1D xa.�C �/:(5-10)

By (5-6),
h2.0/D ar

�0�1�2

D ar

p
:
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By considering equations (5-9), (5-10) and noting that j� j � 3� 3j�j, we see that

1D jajj�C � j � 4ja�j D 4jajr
cjpj D

4jh2.0/j
c

:

So, we get jh.0/j � 1
2

p
c . Looking at (5-7), we get that at least one �j must be in the

denominator. More precisely
Q

j 62I �j DO.t1=2/. As the other �j lie in the unit disc,
p DO.t1=2/! 0 and by (5-9), � 7!1. Also by (5-10), as � is bounded, we get that
a 7! 0, in fact aDO.t1=2/.

Therefore,
„.w/D w.cw2C r/Cw4O.t1=2/CO.t1=2/;

and we see that �0DO.t1=2/ and �1�2 7! r=c , say �1 7!C
p

r=ci , �2 7!�
p

r=ci . In
particular, we conclude 0 62I . Also, p�D ��0�1�2D ��0.r=cCO.t1=2//D .ra/=.cxa/,
hence ��0 D a=xaCO.t1=2/. Note that since jI j< 3, there are no holomorphic discs
for mD�1, and this finishes the proof of Lemma 5.5.

Now we need to analyze the cases I D∅; f1g; f2g; f1; 2g.
Case I D∅, mD 2 By (5-8), (5-9),

(5-11) .xa�/3 D a4
�1� t

t

�2 e�6� ir4

c3
D a4K;

where K D ..1� t/=t/2.e�6� ir4/=c3 .

Proposition 5.6 For small enough t > 0, (5-11) has four solutions for each given
parameter � . Moreover, naming these solutions a1.�/, a2.�/, a3.�/, a4.�/, as we
vary continuously with � , in counterclockwise order, we have aj .�C�=3/D ajC1.�/.

Proof By (5-10),

(5-12) .xa�/3 D 1CO.t1=2/:

Combining (5-11) with (5-12) we see that for g.a/D 1� .xa�/3 ,

(5-13) a4K� 1Cg.a/D 0:

One sees that, for sufficiently small t , there are 4 solutions of such equations since g.a/

and g0.a/ are O.t1=2/. (To see that g0.a/ D O.t1=2/, we use that g.a/ D zg.a; xa/,
where zg.a; b/ is a holomorphic function and, using Cauchy’s differentiation formula,
we get that each partial derivative is O.t1=2/.)
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So for each � there are four solutions for a, each of them close to a fourth root of K�1 .
Recall we named these solutions, as varying continuously with � , in counterclockwise
order, a1.�/, a2.�/, a3.�/, a4.�/. From (5-11), aj .� C�=3/D ajC1.�/.

Let u�
a1.�/

be the holomorphic disc given by (5-5), for a given value of � and the other
parameters determined by a1.�/.

Lemma 5.7 The moduli space of holomorphic discs in the class H � 2ˇ C 2˛ ,
M.T c

r;0
;H � 2ˇC 2˛/, can be parametrized using only holomorphic discs u�a1.�/

for
� 2 Œ0; 2��. Also, the algebraic count of holomorphic discs in M.T c

r;0
;H � 2ˇC 2˛/,

nH�2ˇC2˛.T
c
r;0
/, is equal to 2 up to sign.

Proof Since aj .� C�=3/D ajC1.�/, we can parametrize the moduli space of holo-
morphic discs in the class H � 2ˇ C 2˛ using only holomorphic discs u�a1.�/

for
� 2 Œ0; 4��. But recall that solutions are counted twice as the disc automorphism
w 7! �w amounts to a 7! �a and 0D � 7! � � 2� D�2� in (5-4). Hence we see
that

u�C2�
a1.�C2�/

D u�a3.�/
D u�
�a1.�/

are the same up to reparametrization. Therefore we have that the map � 7! u�a1.�/
,

from S1 D Œ0; 2��=.0 � 2�/ to the moduli space M.T c
r;0
;H � 2ˇ C 2˛/ gives a

diffeomorphism.

To compute nH�2ˇC2˛.T
c
r;0
/ we need to look at ev�ŒM.T c

r;0
;H � 2ˇ C 2˛/� D

nH�2ˇC2˛.T
c
r;0
/ŒT c

r;0
�. The boundary of each holomorphic disc lies in the class

2.@˛ � @ˇ/, and the parameter � comes from the action ei� � .�; z/D .ei��; e�i�z/,
described in coordinates .�; z/ for y D 1, whose orbits are in the class of the thimble,
ie @˛ . Therefore, nH�2ˇC2˛.T

c
r;0
/D˙2.

Case I D f2g (similarly I D f1g), mD 1 By (5-8), (5-9), setting now

K D
�1� t

t

�2
re�6� i ;

we have

(5-14) K�3
0 D

1

a

�3
2

�3
1

D 1

a
.�1CO.t1=2//:

Similarly to the previous case we have the following.

Proposition 5.8 For small enough t > 0, (5-14) has four solutions for each given
parameter � . Moreover, naming these solutions a1.�/, a2.�/, a3.�/, a4.�/, as we
vary continuously with � , in counterclockwise order, aj .� C�=3/D ajC1.�/.
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Lemma 5.9 The moduli space of holomorphic discs in the class H �2ˇC˛ , denoted
M.T c

r;0
;H � 2ˇC˛/, can be parametrized using only holomorphic discs u�a1.�/

for
� 2 Œ0; 4��. Moreover, the algebraic count of holomorphic discs in M.T c

r;0
;H�2ˇC˛/,

nH�2ˇC˛.T
c
r;0
/, is equal to 4 up to sign.

Proof of Proposition 5.8 and Lemma 5.9 Since ��0 D a=xaC O.t1=2/ and a D
O.t1=2/,

.xa�/3 1
a
.�1CO.t1=2//DK.xa��0/

3 DKŒa.1CO.t1=2//�3 DKa3.1CO.t1=2//:

Using .xa�/3 D 1CO.t1=2/, we get

(5-15) Ka4CO.t1=2/D�1:

Using the same argument as before we get four solutions for a, a1.�/, a2.�/, a3.�/,
a4.�/, varying continuously with � , ordered in the counterclockwise direction. Again
aj .� C�=3/D ajC1.�/, but now the disc automorphism w 7! �w , not only switches
a 7! �a but also �1 $ �2 , which accounts for the case I D f1g. Therefore the
moduli space M.T c

r;0
;H � 2ˇ C ˛/ is given by fu�a1.�/

j � 2 Œ0; 4��g, and hence
nH�2ˇC˛.T

c
r;0
/D˙4.

The case I Df1; 2g, mD0, works in a totally analogous way, with nH�2ˇ.T
c
r;0
/D˙2.

This concludes the proof of Theorem 5.4.

5.3 Discs in classes 2H � 5ˇCk˛

Theorem 5.10 There are no Maslov index 2 holomorphic discs in the class
2H � 5ˇ � 2˛ , and one-parameter families of holomorphic discs in the classes
2H � 5ˇC k˛ , k D �1; 0; 1; 2; 3; 4, with algebraic counts equal to 1; 5; 10; 10; 5; 1,
up to sign, respectively.

This is precisely what we expect from the term e�2ƒ

u5w
.1Cw/5 in WT .1;4;25/ ; see (3-3).

Proof We start approaching the problem following the same reasoning as in the
previous subsection. But we will get an extra parameter, since the intersection with
fy D 0g is 2 for discs in the classes 2H � 5ˇC k˛;�2� k � 4. This will make our
computation harder. Nonetheless, looking at Figure 12, for t ! 0 we expect the discs
in these classes (for k � �1) to converge to holomorphic discs in CP .1; 1; 4/ that
remain away from the orbifold point, since they do not touch the singular fiber that
collapses into the singular orbifold point when t D 0. The idea is then to understand
the limits of such discs when t ! 0, ‘count’ them for t D 0 and use Lemma 5.15 to
show that the count remains the same for small t > 0.
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Consider a holomorphic map uW .D;S1/! .CP2;T c
0;r
/ in the class 2H � 5ˇC k˛ ,

�2� k � 4, and ‰.w/D f ıu.w/. Analyzing intersection numbers with divisors we
get

(5-16)
‰.w/� c

r
D �w0

.w/

�3
w1
.w/�3

w2
.w/

ei�

and denote by �0; : : : ; �5 the zeros of ‰.w/. Again using automorphisms of the disc
we can choose w1 D 0 and � D 0 and also rename w2 D � and w0 D b . Then, the
holomorphic disc can be described by

z1.w/D w��.w/; z2.w/D e�i�h.w/
Y
j 62I

�j .w/;(5-17)

z3.w/D ei�h.w/
Y
j2I

�j .w/;

where h.w/ D .‰.w/w3�3
� .w/=

Q
�j .w//

1=2 and I � f0; 1; 2; 3; 4; 5g. Recall that
y D z1 , z D z2 , � D z3 and �j D ��j .

In the same way as in the previous section, we get a pair of equations

z3.0/

z2
2
.0/
D�1� t

t
D e3i�

Q
j2I �j .0/

h.0/
Q

j 62I �
2
j .0/

D e3i� .�1/jI j
Q

j2I �j

h.0/
Q

j 62I �
2
j

;(5-18)

z3.�/

z2
2
.�/
D�1� t

t
D e3i�

Q
j2I �j .�/

h.�/
Q

j 62I �
2
j .�/

D e3i�
Q

j2I qj

h.�/
Q

j 62I q2
j

;(5-19)

where we write qj D �j .�/. Again we want to understand the asymptotic of the
parameters b , � and �j as t ! 0.

Lemma 5.11 The value h.0/ is bounded away from 0 and, after possibly relabeling
the �j , the following asymptotics hold as t ! 0:

b DO.t1=2/; � DO.t1=2/; �0 DO.t1=2/; �j !�
�r

c

�1=5
e2�i=5j for j ¤ 0:

Using (5-18) and the above Lemma 5.11 we see that 0 62 I . Therefore there is no
holomorphic disc representing the class 2H � 5ˇC k˛ , for k D �2. To prove the
existence of such discs for �1� k � 4 with the right count, we look at the limit t D 0,
ie in CP .1 W 1 W 4/. These six families of discs are expected to ‘survive’ in the limit
and not pass through the orbifold point of CP .1; 1; 4/; see Figure 12. We show that
this is the case for the limits of the above families of holomorphic discs and, assuming
regularity (proven in Section 5.4), we argue that the disc counts are the same for X0

and Xt for a sufficiently small t . Lemma 5.11 will allow us to prove:
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�4
�3

�5

�

0
b

�0

�1
�2

u

‰ f

u.�5/ u.�4/

u.�3/

u.�2/
u.�1/

u.�0/

D2

z D 0

u.b/
u.0/

y3 D 0

u.�/

0
c r 1

Figure 14: This is a picture of ‰.w/ D f ı u.w/ D z.w/�.w/=y3.w/ D
z2.w/z3.w/=z

3
1
.w/ (for the case k D �1; jI j D 4 , ie u intersects the

conic D2 in five points); f�0; : : : ; �5g D ‰�1.0/ , f0; �g D ‰�1.1/ and
fbg D ‰�1.c/ behave as in Lemma 5.11 for small t . Recall that the divi-
sor D3 is the closure of f �1.c/ 3 u.b/ .

Proposition 5.12 For all I � f1; 2; 3; 4; 5g and � 2R, the discs described by (5-17)
uniformly converge to discs contained in the complement of the orbifold point of
CP .1; 1; 4/, described in the coordinates .zx W zy W zz/ by

zx.w/D e�i�
p

rw5C c
Y
j 62I
j¤0

�j .w/; zy.w/D w;(5-20)

zz.w/D ei�
p

rw5C c
Y
j2I

�j .w/;

where �j D ��.r=c/1=5e2�i=5j . For each I and � , we denote this disc by u�
I

. Moreover,
the algebraic count of discs in the relative class Œu�

I
�, for jI j D 0; 1; 2; 3; 4; 5 is equal

to 1; 5; 10; 10; 5; 1, up to sign, respectively.

Proof of Lemma 5.11 Consider the polynomial

„.w/D w3.1� xbw/.w� �/3‰.w/
D r.w� b/.1�x�w/3C cw3.1� xbw/.w� �/3(5-21)

D�cxb.w� �/
Y
j

.w� �j /;(5-22)
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where j�j> 1, and writeY
j

.w� �j /D w6� �1w
5C �2w

4� �3w
3C �4w

2� �5wCp:

Comparing the coefficients of 1 and w6 , we get

p� D�rb

cxb ;(5-23)

1C 3�xb D xb.�C �1/:(5-24)

For the following we recall that h2.w/D‰.w/w3�3
� .w/=

Q
�j .w/, in particular, by

(5-16), h2.0/D�rb=p and h2.�/D r�b.�/=
Q

j qj .

By (5-23), (5-24), and noting that j�1� 3�j � j�1jC 3j�j � 9� 9j�j, we get that

1D jbjj�C �1� 3�j � 10jxbjj�j D 10
jh.0/j2

c
:

So jh.0/j2 � c=10, proving the first statement of Lemma 5.11. We see from (5-18) thatQ
j 62I �

2
j DO.t/ and hence pDO.t1=2/!0 as t!0. Also �!1, bDO.t1=2/!0

and xb� D 1CO.t1=2/! 1.

Now we basically need to show that � DO.t1=2/, since the asymptotic behavior of the
�j described in Lemma 5.11 follows from (5-21) and �DO.t1=2/, after we separate the
terms that are O.t1=2/, more precisely, „.w/Dw.rC cw5/Cw7O.t1=2/CO.t1=2/.
So, let’s look at „.�/ using (5-21), (5-22) (recall that qj D �j .�/D .���j /=.1� x�j�/):

(5-25) „.�/D r.1� j�j2/3.� � b/

D�cxb.� � �/
Y
j

.� � �j /D�cxb.� � �/
Y
j

qj .1� x�j�/:

Claim 5.13 The value h.�/ is bounded away from 0, and by (5-19),
Q

j 62I q2
j DO.t/,

and therefore
Q

j qj DO.t1=2/.

Proof Using that xb� D 1CO.t1=2/ and xb� DO.t1=2/ we see that

h2.�/D r�b.�/Q
j qj
D r.� � b/Q

j qj

1

1� �xb D
c
Q

j .1� x�j�/

.1� j�j2/3.1� �xb/.1CO.t1=2//

is bounded away from zero. Indeed, if .c
Q

j .1� x�j�//=..1�j�j2/3.1��xb// approaches
zero, then, since cxb.� � �/Qj qj is bounded, we get by (5-25) that b � � ! 0 and
hence �! 0. But in this case we see that

Q
j .1� x�j�/! 1, not 0.

Then we see from (5-19) that
Q

j 62I q2
j DO.t/, hence

Q
j qj DO.t1=2/.
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We want to show that b� �! 0 and hence �! 0. For that to follow from (5-25) and
Claim 5.13, we need to see that j�j does not approach 1 as t ! 0.

Claim 5.14 As t ! 0, j�j is bounded by a constant strictly smaller than 1.

Proof Let us look again to „.w/, knowing that b DO.t1=2/:

(5-26) „.w/D rw.1�x�w/3C cw3.w� �/3Cw7O.t1=2/CO.t1=2/:

Then we see that the roots �j lying inside the disc are very close to the solutions
of rw.1�x�w/3C cw3.w� �/3 D 0 for t very small. The nonzero solutions satisfy

(5-27) jw2��.w/
3j D r

c
< 1:

Now, assume there is a sequence of values of t tending to 0 and holomorphic discs
such that � ! �0 , j�0j D 1. From (5-26) we conclude that three of the roots �j

of „.w/ converge to �0 , say �1 , �2 , �3 ; one converges to 0, say �0 ; and the other
two solutions, �4 and �5 , converge to square roots of r=.c�3

0
/ by (5-27) (for values

of w lying outside a neighborhood of �0 , we have ��.w/ D .w � �/=.1 � x�w/ D
��.1� ��1w/=.1�x�w/!��0 ).

Let �j be such that �j D ���j , for j D 1; 2; 3. By (5-25), recalling that bDO.t1=2/,Q
j qj DO.t1=2/ and xb� D 1CO.t1=2/, we see that .1� j�j2/3 DK�1�2�3 , where

K D �cxb.� � �/.� � �0/

r.� � b/
.� � �4/.� � �5/!

c

r
�0�

1

�4
0

is bounded above and below.

Since
Q

j qj D O.t1=2/, some qj ! 0 for j D 1; 2; 3. Up to relabeling, assume
q1! 0. We have that, for j D 1; 2; 3,

(5-28) qj D �j .�/D � � �j

1� x�j�
D �j

1� j�j2C � x�j
:

So

(5-29)
1

q1

D
�1� j�j2

�1

�
C � x�1

�1

D
�K�2�3

�2
1

�1=3
C � x�1

�1

!1:

Passing to a subsequence if needed, we may assume that j�1j � j�2j � j�3j. So by
(5-29), �1=�3! 0. Therefore

(5-30)
ˇ̌̌ 1

q3

ˇ̌̌
D
ˇ̌̌�K�1�2

�2
3

�1=3
C � x�3

�3

ˇ̌̌
! j�0j D 1:

But by (5-27) and j��j .�/j D j��.�j /j, j�3j2jq3j3! r=c , which gives a contradiction
since j�3j ! j�0j D 1 and jq3j ! 1.
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Using Claim 5.14, (5-25), bDO.t1=2/ and
Q

j qj DO.t1=2/, we see that �DO.t1=2/.

So „.w/Dw.r C cw5/Cw7O.t1=2/CO.t1=2/ and, assuming j�0j � j�j j for all j ,
we get that for j ¤ 0, �j !�. r

c
/1=5ej2� i=5 , while �0 DO.t1=2/. This finishes the

proof of Lemma 5.11.

Proof of Proposition 5.12 In the limit t D 0, taking into account that b DO.t1=2/,
� D O.t1=2/, �0 D O.t1=2/ and �j ! �. r

c
/1=5ej2�i=5 , we have that the functions

‰.w/,
Q5

jD1 �j .w/ and h2.w/, thought of as maps from D to CP1 , uniformly con-
verge to

‰.w/D r C cw5

w5
;

5Y
jD1

�j .w/D cw5C r

rw5C c
; h2.w/D rw5C c:

So, for instance, in the case I D f1; 2; 3; 4; 5g we get that z1.w/, z2.w/, z3.w/

uniformly converge to

z1.w/D w2; z2.w/D e�i�w
p

rw5C c; z3.w/D ei� cw5C r

rw5C c

p
rw5C c;

z0.w/D
z2

2
.w/

z1.w/
D e�2i� .rw5C c/:

Hence using the .zx W zy W zz/ coordinates of CP .1; 1; 4/ we have

zx.w/D e�i�
p

rw5C c; zy.w/D w; zz.w/D ei�
p

rw5C c
cw5C r

rw5C c
:

In general, for each I , the holomorphic discs uniformly converge to discs u�
I

given by

zx.w/D e�i�
p

rw5C c
Y
j 62I
j¤0

�j .w/; zy.w/D w; zz.w/D ei�
p

rw5C c
Y
j2I

�j .w/:

Note that none of these discs pass through the singular point .0 W 0 W 1/ of CP .1; 1; 4/.

As before, we have extra automorphisms of the disc, given by w 7! eik.2�=5/w that
do not change (5-16) and we need to quotient out by this action of Z=5Z. We get that
k 2Z5 acts on u�

I
as follows, where I�kDfl 2 f1; : : : ; 5g j l � j �k mod 5; j 2 Ig.

jI j 0 1 2 3 4 5

u�
I

u
�Ck.2�=5/
∅ u

�C2k.2�=5/

I�k
u
�C3k.2�=5/

I�k
u
�C4k.2�=5/

I�k
u�

I�k
u
�Ck.2�=5/
I

We also note that, for fixed I , varying � 2 Œ0; 2�� and looking at the boundary of the
discs, the 2–cycle swept by @u�

I
is Œ@u�

I
�D˙5ŒT c

r;0
�. Therefore, in the case jI jD0 or 5,

after quotienting by Z=5Z, the algebraic count is ˙1. In the cases jI j D 1 or 4, the
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action of Z=5Z permutes the indices, so the moduli space of holomorphic discs is given
by fu�

I
j � 2 Œ0; 2��g, where I D f1g, respectively I D f2; 3; 4; 5g, hence the algebraic

count is ˙5. Similarly for jI j D 2 or 3, the action of Z=5Z permutes the indices, so
the moduli space of holomorphic discs is given by fu�

I
j � 2 Œ0; 2��g[fu�

I 0 j � 2 Œ0; 2��g,
where I D f1; 2g and I 0 D f1; 3g, respectively I D f3; 4; 5g, I 0 D f2; 4; 5g, hence the
algebraic count is ˙10.

Lemma 5.15 Assuming regularity, each of the above families of discs in X0 has a
corresponding family in Xt , for a sufficiently small t .

Proof We consider the 3–dimensional complex hypersurface X which is inside
C � .CP .1; 1; 1; 2/ n .0 W 0 W 0 W 1//, defined by the equation

(5-31) X W z0z1� .1� t/z2
2 � tz3 D 0;

containing

(5-32) LD
�
.t; .z0 W z1 W z2 W z3//

ˇ̌̌̌
t 2R and

ˇ̌̌̌
z2z3

z3
1

� c

ˇ̌̌̌
D r I

ˇ̌̌̌
z2

z1

ˇ̌̌̌2
D
ˇ̌̌̌
z3

z2
1

ˇ̌̌̌2�
as a totally real submanifold.

Then we consider M.X ;L/, the moduli space of Maslov index 2 holomorphic discs
in X with boundary on L. By applying the maximum principle to the projection on the
first factor, we see that such holomorphic discs lie inside the fibers Xt , for t 2R. Let
us consider discs that stay away from the singular point in X0 , such as those computed
above.

Assuming the discs above are regular in X0 implies they are regular as discs in X . This
follows from the splitting u�TX D u�TX0˚C and the x@ operator being surjective
onto 1–forms with values in u�TX0 , by the assumed regularity, and onto 1–forms
with values in C , by regularity of holomorphic discs in C with boundary in R.

Hence M.X ;L/ is smooth near the solutions for t D 0 given above and the map
M.X ;L/!R, which takes a disc in the fiber Xt to t , is regular at 0. Therefore for a
small t , all the Maslov index 2 holomorphic discs in X0 computed above deform to
holomorphic discs in Xt .

The regularity of the discs above is proven in Theorem 5.19.

The families of discs in the classes 2H � 5ˇ C k˛ , given by (5-17), have been
shown to converge uniformly to the corresponding ones in CP .1; 1; 4/ given by (5-20).
Smoothness of the moduli space M.X ;L/ near the families of discs given by (5-20)
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in X0 guarantees that each family fu�
I
j � 2 Œ0; 2��g has a unique family in Xt

converging to it, for all t sufficiently small. Hence the counts of Maslov index 2
holomorphic discs in the classes 2H � 5ˇ C k˛ for Xt are the same as the ones
computed in X0 . This finishes the proof of Theorem 5.10.

5.4 Regularity

In order to prove regularity, we consider the following two lemmas.

Lemma 5.16 Let u� be a one-parameter family of Maslov index 2 holomorphic discs
in a Kähler 4–dimensional manifold X with boundary on a Lagrangian L. Set uD u0

and V D @=@�u� j�D0 a vector field along u, tangent to TL along the boundary of u.

If V is nowhere tangent to u.D/ and uW D!X is an immersion, then u is regular.

Proof As u is an immersion, we can consider the splitting u�TX Š T D ˚ L as
holomorphic vector bundles, where L is the trivial line bundle generated by V . Also
u�
jS1TLŠ TS1˚Re.L/, where Re.L/D spanRfV g and S1 Š @D .

So a section
� 2�0

u�jS1
TL
.D;u�TX /

of u�TX that takes values in u�
jS1TL along the boundary splits as

�1˚ �2 2�0
TS1.D;T D/˚�0

Re.L/.D;L/:

Since J is an integrable complex structure, the kernel of the linearized operator Dx@ is
given by n

� 2�0
u�jS1

TL
.D;u�TX /

ˇ̌̌
x@� D 0

o
;

which is isomorphic to

f�1 2�0
TS1.D;T D/ j x@�1 D 0g˚ f�2 2�0

Re.L/.D;L/ j x@�2 D 0g
Š TId Aut.D/˚Hol..D;S1/; .C;R//:

The last term on the right comes from L being trivial. Aut.D/ is known to be 3–
dimensional, while Hol..D;S1/; .C;R// is the space of real-valued constant functions.
Therefore,

Dim Ker.Dx@/D 4D 2 ��.D/C�.u�TX;u�
jS1TL/D index.Dx@/:

The following lemma sets a sufficient condition for V , as given in the previous lemma,
not to be tangent to u.D/.
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Lemma 5.17 Let uW D! X be a Maslov index 2 holomorphic disc in a Kähler 4–
manifold X with boundary on a Lagrangian L such that uS1 W S1!L is an immersion,
and V a holomorphic vector field on X along u, tangent to L at the boundary. If V is
not tangent to u.D/ at the boundary, then u is an immersion and V is nowhere tangent
to u.D/.

Proof Suppose that either du.x/D 0 or V is tangent to u.D/ at a point u.x/; up to
reparametrizing the disc we may assume that x ¤ 0. Consider another holomorphic
vector field W D du. @

@�
/ given by an infinitesimal rotation, which is tangent to u.D/,

has a zero at 0 and is also tangent to L at the boundary. Then the Maslov index
can be computed using det2.W ^ V /, so the number of zeros of det.W ^ V / is
�.u�TX;uj@DTL/=2D 1. But W vanishes at u.0/ and either vanishes or is parallel,
as a complex vector, to V at u.x/. Since the zeros of W ^ V always occur with
positive multiplicity, as the vector fields are holomorphic, we get a contradiction.

Now we are ready to prove the following.

Theorem 5.18 The holomorphic discs representing the classes ˇ and H � 2ˇCm˛

in Xt computed on Proposition 5.1 and Theorem 5.4 are regular, for small t .

Proof By Lemmas 5.16 and 5.17, we only need to notice that for each of the holomor-
phic discs u�

I
considered, the vector field V .w/D @

@�
u�

I
.w/ is not tangent to u�

I
.@D/.

We note that in the limit t D 0, we have that u�
I

uniformly converge, in a compact
neighborhood of the boundary, to a holomorphic disc given by

z1.w/Dw; z2.w/De�i�
p

rw2Cc
Y
j 62I
j¤0

��j .w/; z3.w/Dei�
p

rw2Cc
Y
j2I

��j .w/;

where �1D i
p

r=c , �2D�i
p

r=c . So we see that in the limit tD0, V .w/D @
@�

u�
I
.w/

is parallel to the fibers of f .z0 W z1 W z2 W z3/D z2z3=z
3
1

restricted to X0 and nowhere
vanishing. Therefore, V .w/ is not tangent to u�

I
.@D/ for t D 0, and by continuity the

same holds for small t .

Theorem 5.19 The holomorphic discs in X0 computed in Theorem 5.10 are regular.
By Lemma 5.15, for small t , the corresponding holomorphic discs in the classes
2H � 5ˇCm˛ in Xt are also regular.
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Proof Similar to the other cases, for each considered holomorphic disc u� , we have
the vector field V .w/D @

@�
u� .w/D .i zx.w/;�izz.w// in coordinates .zx; zz/ for zy D 1

on CP .1; 1; 4/ along the boundary. These vectors are not tangent to u� .D/ along
the boundary, since they are nonvanishing and parallel to the fibers of f .zx; zz/D zxzz .
Hence, by Lemmas 5.16 and 5.17, these discs are regular.

5.5 Orientation

The choice of orientation of the moduli space of holomorphic discs is determined by a
choice of spin structure on the Lagrangian; see Cho [7, Section 5]. In this section we
choose a spin structure on our Lagrangian T .1; 4; 25/ torus and argue that, under the
choice of orientations made in Fukaya, Oh, Ohta and Ono [10], see also [7, Section 7],
the evaluation map from each of the moduli spaces of Maslov index 2 holomorphic
discs considered in this section to the T .1; 4; 25/ torus is orientation preserving. We
use the same definition of spin structure given by C Cho in [7, Section 6]:

Definition 5.20 A spin structure on an oriented vector bundle E over a manifold M

is a homotopy class of a trivialization of E over the 1–skeleton of M that can be
extended over the 2–skeleton.

In the case of surfaces, it is enough to consider a stable trivialization of the tangent
bundle. We see that @˛ and @ˇ form a basis of H1.T

c
r;0
;Z/ and hence they induce a

trivialization of the tangent bundle of T c
r;0

oriented as f@˛; @ˇg.
The orientation of the moduli space at a disc uW .D; @D/! .X 2n;Ln/ is then given
by the orientation of the index bundle of the linearized operator Dx@u that is induced
by the chosen trivialization of the tangent bundle TL along @D , as described in [10].

The rough idea is that we extend the trivialization of the tangent bundle of the Lagrangian
to a neighborhood of @D , then take a concentric circle contained in it, and pinch it to a
point O 2D , the part of the disc inside the circle becoming a CP1 . The trivialization
of TL along the pinched neighborhood gives a trivialization of its complexification TX .
This way, considering the isomorphisms given by the trivializations, the linearized
operator is homotopic to a x@ operator on D [CP1 , whose kernel consists of pairs
.�0; �1/, where �0 is a holomorphic section of the trivial bundle Cn over the disc
with boundary on the trivial subbundle Rn , ie a constant map into Rn , and �1 is a
holomorphic section of the bundle induced by u�TX over CP1 , which we denote by
TX jCP1 . These sections must match at O 2 D and the ‘south pole’ S 2 CP1 . In
other words, Fukaya, Oh, Ohta and Ono show that the index of the linearized operator
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(seen as a virtual vector space Ker Dx@u�CoKer Dx@u ) is isomorphic to the kernel of
the homomorphism

(5-33) .�0; �1/ 2 Hol.D; @D WCn;Rn/�Hol.CP1;TX jCP1/

�! �0.O/� �1.S/ 2Cn Š TX jS :

Now the kernel can be oriented by orienting RnŠHol.D; @D WCn;Rn/ (which is essen-
tially the trivialization of the tangent space of the Lagrangian), since Hol.CP1;TX jCP1/

and Cn carry complex orientations. For a detailed account of what we just discussed,
see [10, Chapter 21, Part II], also [7, Proposition 5.2].

Denote by �M.
 / the space of holomorphic discs on CP2 with boundary on T c
r;0

in the
class 
 , not quotiented out by Aut.D/. By the same argument as in [7, Section 8], the
factor Rn Š Hol.D; @D WCn;Rn/ in (5-33) corresponds to the subspace of Tu

�M.
 /

given by the deformations of u which correspond to translations along the boundary
of T c

r;0
, ie generated by V D @

@�
u� and by infinitesimal rotations in Aut.D/. This way,

we orient the moduli space of discs accordingly with our chosen orientation f@˛; @ˇg.
In particular, M.ˇ/, which consists of a one-parameter family of discs u� described
in Proposition 5.1, is oriented in the positive direction of � , since @u�

@�
and the tangent

vector to the boundary of u� form a positive oriented basis of T T c
r;0

; while the other
moduli spaces M.H �2ˇCm˛/ and M.2H �5ˇCk˛/ are oriented in the negative
direction of the parameter � , since in these cases @u�

@�
and the tangent vector to the

boundary of u� form a negative oriented basis.

Proposition 5.21 We have that the evaluation maps from M1.ˇ/, M1.H�2ˇCm˛/

and M1.2H � 5ˇC k˛/ to T c
r;0

are all orientation-preserving.

Here the subscript 1 refers to the moduli space with one marked point at the boundary.
The proof of the proposition above follows from the same argument as in [7, Proposi-
tion 8.2].

As a corollary of all we have done in this section, we get:

Theorem 5.22 In the region corresponding to T .1; 4; 25/ tori, the mirror superpoten-
tial is given by (3-3):

WT .1;4;25/ D uC 2
e�ƒ

u2
.1Cw/2C e�2ƒ

u5w
.1Cw/5:
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6 The monotone torus

In this section we show that we can modify our symplectic form in a neighborhood
of D5 to a new one for which T c

r;0
is Lagrangian monotone. Recall that a Lagrangian L

in a symplectic manifold .X; !/ is called monotone if there exists a constant ML such
that for any disc u in �2.X;L/ satisfiesZ

u�! DML�L.u/;

where �L is the Maslov class.

Recall the relative homotopy classes H D ŒCP1�, ˇ and ˛ defined after Proposition 5.1,
with Maslov indices �.H / D 6, �.ˇ/ D 2 and �.˛/ D 0. A disc in the class ˛ is
given by the Lefschetz thimble over the interval Œ0; c�r � with respect to the symplectic
fibration f , so

R
˛ ! D 0. We see that LD T c

r;0
satisfies the monotonicity condition if

and only if Œ!� �ˇ D Rˇ ! Dƒ=3, where ƒD RH ! .

We could try to compute
R
ˇ ! (D Rˇ z! ), which depends on our choice of c and r < c .

As r! 0, Œ!� �ˇ converges to 0. We could take then a very large value for c and r very
close to c . Nonetheless, a careful computation shows that the symplectic area Œ!� �ˇ
remains smaller than ƒ=3. Taking then another approach, we look at Lemma 5.2 and
see that D5 intersects ˇ in 2 points and H in 5 points. We can then build a 2–form �

supported in a neighborhood of D5 , so that the ratio Œ� � �ˇ=Œ�� �H D 2
5
> 1

3
. By adding

a large enough multiple of � to ! , we get a Kähler form y! for which Œy!� � Œˇ�Dƒ=3.

Proposition 6.1 There is a Kähler form y! for which T c
r;0

is Lagrangian monotone.
Moreover, y! can be chosen to agree with ! away from a neighborhood of D5 that is
disjoint from T c

r;0
.

Proof Take a small enough value of r , for which it is straightforward to see that
Œ!� � ˇ < ƒ=3. In order to make T c

r;0
monotone we perform a Kähler inflation in a

neighborhood of the quintic D5 (see Section 5.1) to achieve Œy!� � ˇ D R
ŒCP1� y!=3,

keeping Œy!� �˛ D 0.

Take a small neighborhood N of D5 D fs5 D 0g that does not intersect T c
r;0 , where

s5 D x�2� 2cy2z�C c2y5 . Take a cutoff function � such that �.js5j2/ is equal to 1

in a neighborhood of D5 and is equal to 0 in the complement of N . We then define
y! D !CK� for

� D i
2
@x@ log.js5j2C "�.js5j2/.jxj2Cjyj2Cjzj2/5/;
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where K and " are constants to be specified. We use the fact that @x@ log.jf j2/D 0

for a holomorphic function f in order to note that the expression for � is the same for
the homogeneous coordinates�

1 W y

x
W z

x

�
;

�
x

y
W 1 W z

y

�
and

�
x

z
W y

z
W 1
�
;

and therefore � defines a 2–form on CP2 , and also to note that � D @x@ log.js5j2/D 0

outside N , so T c
r;0

is Lagrangian with respect to y! .

Lemma 6.2 We have Œ� �D 5Œ!FS� is independent of " and the cutoff function �.

Proof of Lemma To determine the cohomology class of � , it is enough to computeR
ŒCP1� � . For this we consider ŒCP1�D fx D 0g, and write � D 1

4
ddc log j , where

 1 D
js5j2C "�.js5j2/.jxj2Cjyj2Cjzj2/5

jyj10
;

 2 D
js5j2C "�.js5j2/.jxj2Cjyj2Cjzj2/5

jzj10

are homogeneous functions respectively defined on fy ¤ 0g, fz ¤ 0g, such that

(6-1)
 1

 2

D jzj
10

jyj10
:

We then divide ŒCP1�DfxD 0g into two hemispheres HC , H� , contained in fy¤ 0g,
fz ¤ 0g, respectively, to compute

(6-2)
Z
ŒCP1�

! D 1

4

Z
HC

ddc log 1C
1

4

Z
H�

ddc log 2

D 1

4

Z
@HC

dc log 1C
1

4

Z
@H�

dc log 2

D 1

4

Z
@HC

dc log 1� dc log 2

D 1

4

Z
@HC

dc log
� jzj10

jyj10

�
D 5

4

Z
@HC

dc log
� jzj2
jyj2

�
;

which by comparison with the same calculation for !FS is five times the area of ŒCP1�

with respect to the Fubini–Study form !FS .

In particular, taking "! 0 we get that � converges to a distribution supported at
D5 D fs5 D 0g. Now considering ˛ , ˇ , H D ŒCP1� as cycles in H2.CP2;CP2 nN /
and Œ� � 2H 2.CP2;CP2 nN / we see that their � –areas are a constant � times their
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intersection number with D5 , ie
R
˛ � D �˛ � ŒD5� D 0,

R
ˇ � D �ˇ � ŒD5� D 2� andR

H � D �ŒCP1� � ŒD5�D 5� .

Then, since the ratio between the � –area of ˇ and H is 2
5
> 1

3
, we can choose a

constant K so that Œy!� �ˇ D Œy!� �H=3. Given this value of K , we can choose " small
enough to ensure that y! is nondegenerate and hence a Kähler form for which T c

r;0
is

monotone Lagrangian.

6.1 The monotone T.1; 4; 25/ torus is exotic

We are now going to prove that the count of Maslov index 2 holomorphic discs is an
invariant of monotone Lagrangian submanifolds. We will see that it suffices to show it
is an invariant under deformation of the almost complex structure. Let L be a monotone
Lagrangian submanifold of a symplectic manifold .X; !/ and Js , s 2 Œ0; 1�, a path
of almost complex structures such that .L;J0/, .L;J1/ are regular, ie for k D 0; 1,
Maslov index 2 Jk –holomorphic discs are regular. Note that since L is monotone there
are no Js –holomorphic discs of nonpositive Maslov index for any s 2 Œ0; 1�. Since L

is orientable, Maslov indices are even, so the minimum Maslov index is 2. Therefore
there is no bubbling for Maslov index 2 Js –holomorphic discs bounded by L when
we vary s .

Consider then, for ˇ 2 �2.X;L/, �.ˇ/ D 2, the moduli spaces M.ˇ;Js/ of Js –
holomorphic discs representing the class ˇ , modulo reparametrization. We choose the
path Js generically so that the moduli space

�M.ˇ/D
1G

sD0

M.ˇ;Js/

is a smooth manifold with

@ �M.ˇ/DM.ˇ;J0/[M.ˇ;J1/:

Lemma 6.3 If L is oriented and monotone, the classes and algebraic count of Maslov
index 2 J–holomorphic discs with boundary on L are independent of J , as long as
.L;J / is regular.

Proof Since L is oriented, there are no J–holomorphic discs with odd Maslov index
and for L monotone, the Maslov index of a disc is proportional to its area. Hence
Maslov index 2 J–holomorphic discs are the ones with minimal area for any almost
complex structure J . L Lazzarini [15] and Kwon and Oh [14] proved that for any
J–holomorphic disc u with u.@D/�L, there is a somewhere injective J–holomorphic
disc v with v.D/� u.D/. Therefore, by minimality of area, Maslov index 2 discs are

Geometry & Topology, Volume 18 (2014)



2468 Renato Vianna

somewhere injective. By connectedness of the space of compatible almost complex
structures we can consider Js , s 2 Œ0; 1� a generic path of almost complex structures
such that .L;J0/, .L;J1/ are regular as above. The result follows immediately from
the cobordism �M.ˇ/ between M.ˇ;J0/ and M.ˇ;J1/.

Theorem 6.4 If L0 and L1 are symplectomorphic monotone Lagrangian subman-
ifolds of a symplectic manifold .X; !/, with an almost complex structure J so
that .L0;J / and .L1;J / are regular, then algebraic counts of Maslov index 2 J–
holomorphic discs, and in particular the numbers of different classes bounding such
discs, are the same.

Proof Let �W X!X be a symplectomorphism with �.L1/DL0 . Apply Lemma 6.3
with LDL0 , J0 D J , J1 D ��J .

Corollary 6.5 The monotone T .1; 4; 25/ torus is not symplectomorphic to either the
monotone Chekanov torus or the monotone Clifford torus.

Remark We can try to find an exotic torus in C2 by considering the T .1; 4; 25/ torus
in affine charts. If we restrict to the coordinate charts fy¤ 0g or fz¤ 0g, only the discs
in the class ˇ remain. Hence we cannot distinguish the T .1; 4; 25/ torus, considered
in the charts fy ¤ 0g or fz ¤ 0g, from the usual Chekanov torus, which also bounds a
single family of holomorphic discs in C2 . In the fx ¤ 0g coordinate chart, another
family of holomorphic discs in the class 2H �5ˇ�˛ remains present, besides the one
in the class ˇ . This can be checked directly or just by observing that the intersection
numbers of the complex line fx D 0g with H , ˇ , ˛ are 1, 0 and 2, respectively.
Therefore our methods cannot distinguish the T .1; 4; 25/ torus, considered in the chart
fx¤ 0g, from the usual Clifford torus in C2 , which also bounds two families of Maslov
index 2 holomorphic discs in C2 , whose boundaries also generate the first homology
group of the torus.

6.2 Floer homology and nondisplaceability

The modern way to show that a Lagrangian submanifold L of a symplectic manifold X

is nondisplaceable by Hamiltonian diffeomorphisms is to prove that its Floer homology
HF.L;L/ is nonzero. The version of Floer Homology we use in this section to prove
that HF.T c

r;0
/¤ 0 (for some choice of local system) is the pearl homology, introduced

by Oh in [17]. Here we will follow the definitions and notation similar to the ones
given in Biran and Cornea [3, 4].

Let .X; !/ be a symplectic manifold, J a generic almost complex structure compatible
with ! , and L a monotone Lagrangian submanifold with monotonicity constant ML .

Geometry & Topology, Volume 18 (2014)



On exotic Lagrangian tori in CP 2 2469

yx

u1

u0

Figure 15: A trajectory contributing to the differential of the pearl complex

We also choose a C� local system over L (we do not need to use the Novikov ring
because L is monotone, so the area of holomorphic discs is proportional to the Maslov
index) and a spin structure to orient the appropriate moduli spaces of holomorphic
discs. To define the pearl complex we fix a Morse function f W L!R and a metric �
so that .f; �/ is Morse–Smale and we denote the gradient flow by 
 .

The pearl complex C.LIf; �;J /D .CŒq; q�1�hCrit.f /i; d/ is generated by the critical
points of f , and the differential counts configurations consisting of gradient flow lines
of 
 together with J–holomorphic discs as illustrated in Figure 15. More precisely, for
jxj D indf .x/, jyj D indf .y/, B 2 �2.M;L/, ı.x;y;B/D jxj � jyj � 1C�.B/,

(6-3) dx D
X

jyjDjxj�1

#P.x;y; 0/ �y
C

X
ı.x;y;B/D0

B¤0

.�1/jyj #P.x;y;B/ holr.@B/q�.B/ �y;

where r is the chosen local system and P.x;y;B/ is the moduli space of “pearly
trajectories”, whose elements are gradient flow lines of f from x to y when B D 0,
and otherwise tuples .u0; t1;u1; : : : ; tk ;uk/, k 2 Z�0 so that:

(1) uj is a nonconstant J–holomorphic disc with boundary on L for 0 � j � k ,
up to reparametrization by an automorphism of the disc fixing ˙1.

(2)
P

j Œuj �D B .

(3) tj 2 .0;C1/ and 
tj .uj�1.1//D uj .�1/ for 1� j � k .

(4) 
�1.u0.�1//D x and 
C1.uk.1//D y .

The choice of spin structure on L gives an orientation for the moduli space of holomor-
phic discs, and together with the orientation of the ascending and descending manifolds
of each critical point of f , one can get a coherent orientation for P.x;y;B/. For a de-
tailed account of how to orient the space of pearly trajectories, see [4, Appendix A.2.1].
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We have a filtration given by the index of the critical point. For simplicity we write
C�.L/ for C�.LIf; �;J /. Note that d DPj�0 ı2j , where ı0W C�.L/! C��1.L/ is
the Morse differential of the function f and ı2j W C�.L/!C��1C2j .L/ considers only
configurations for which the total Maslov index is 2j . This gives a spectral sequence
(the Oh spectral sequence), converging to the pearl homology, for which the second
page is the singular homology of L with coefficients in CŒq; q�1�.

Let L be the space of C� local systems in L and consider the ‘superpotential’ function
W W L!CŒq; q�1�,

(6-4) W .r/D
X

ˇ;�.ˇ/D2

nˇq2 holr.@ˇ/D
X

ˇ;�.ˇ/D2

nˇzˇ.r/;

where zˇ.r/ D q
R
ˇ !=ML holr.@ˇ/ D q2 holr.@ˇ/ and nˇ is the count of Maslov

index two J–holomorphic discs bounded by L in the class ˇ .

Assume also that the inclusion map H1.L/!H1.X / is trivial, so we have that the
ring of regular functions on the algebraic torus LŠ hom.H1.L/;C

�/ is generated by
the coordinates zj D z

ǰ
.r/ for relative classes ǰ such that @ ǰ generates H1.L/.

The following result is the analogue of Cho and Oh [8, Proposition 11.1] in the pearly
setting (see also [8, Section 12]):

Proposition 6.6 Let f be a perfect Morse function. Denote by p the index-0 critical
point, by q1; : : : ; qk the index-1 critical points, by �1; : : : ; �k , the closure of the stable
manifold of q1; : : : ; qk , respectively, and by 
1; : : : ; 
k the closure of the respective
unstable manifolds. Set zj D z
j . Then

ı2.p/D
X

j

˙zj
@W

@zj
qj :

In particular ı2.p/D 0 precisely for the local systems corresponding to the critical
points of W .

Proof (up to choice of orientations) We note that the only possible pearly trajectories
contributing to the coefficient of qj in ı2.p/ consist of a holomorphic discs u with
u.�1/D p together with a flow line from u.1/ ending in qj , ie u.1/ 2 �j . Hence,

(6-5) ı2.p/D
X

ˇ;�.ˇ/D2

˙nˇzˇ.r/
X

j

.Œ@ˇ� � Œ�j �/qj :

Since Œ
1�; : : : ; Œ
k � form a basis for H1.L/, we can write Œ@ˇ� DPj aj Œ
j �, where
aj D Œ@ˇ� � Œ�j �. So zˇ.r/ is a constant multiple of

Q
j zaj

j , therefore (6-5) gives
precisely ı2.p/D

P
j ˙zj

@W
@zj

qj .
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Corollary 6.7 Consider the monotone T .1; 4; 25/ torus T c
r;0

, endowed with the stan-
dard spin structure and local system r such that holr.@ˇ/ D 9

4
ek2�=3i , for some

k 2 Z, and holr.@˛/ D 1
8

, where ˛ and ˇ are as defined in Section 5.1. Then the
Floer homology HF.T c

r;0
;r/ is nonzero. Therefore T c

r;0
is nondisplaceable.

Proof Since T c
r;0

has dimension 2, all the boundary maps ı2j are zero for j � 2.
Hence the pearl homology HF.T c

r;0
;r/ is the homology of .H�.T c

r;0
/˝CŒq; q�1�; ı2/.

Writing uD zˇ and w D z˛ , the ‘superpotential’ is given by

WT .1;4;25/ D uC 2
q6

u2
.1Cw/2C q12

u5w
.1Cw/5:

The result follows from computing the critical points of WT .1;4;25/ which are w D 1
8

,
uD 9

4
ek.2�=3/iq2 .

Remark It can be shown that in fact for any monotone Lagrangian torus ı2 D 0 for
the local systems r which are critical points of W , so HF.T c

r;0
;r/ Š H�.T

c
r;0
/˝

CŒq; q�1�.

7 Prediction for CP 1�CP 1

In this section we apply the same techniques of Sections 3 and 4 to predict the existence
of an exotic monotone torus in CP1 �CP1 bounding 9 families of Maslov index 2
holomorphic discs, hence not symplectomorphic to the Clifford or Chekanov ones.

We use coordinates ..x Ww/; .y W z// on CP1�CP1 . We smooth two corners of the divi-
sor fxwyzD 0g. First considering the fibration given by f0..x Ww/; .y W z//D xy

wz
and

D2Df�D0g, for �D .xy�wz/=2t and t a positive real number, we smooth the corner
of fxyD0g to get a new divisor D2[fwzD0g. Then using f D .z�/=wy2 , we smooth
the corner of D2[fzD 0g and get a new anticanonical divisor DD f �1.c/[fwD 0g,
for c a positive real number. Then we consider a similar singular Lagrangian torus
fibration on the complement of D . In particular we define the T .1; 2; 9/–type (see
Remark) torus:

Definition 7.1 Given c > r > 0 and � 2R,

(7-1) T c
r;� D

n
..x W w/; .y W z//

ˇ̌̌ ˇ̌̌ z�

wy2
� c
ˇ̌̌
D r;

ˇ̌̌ z
y

ˇ̌̌2
�
ˇ̌̌ �
wy

ˇ̌̌2
D �

o
:

This is Lagrangian for a symplectic form similar to (4-6).
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Remark The role of the parameter t in the definition of � is less obvious than in the
case of CP2 , since here it amounts to a single rescaling. However as in the case of CP2 ,
its presence is motivated by considerations about degenerations. More precisely the
choice of � D xy�wz

2t
is based on a degeneration of CP1�CP1 to CP .1; 1; 2/, which

can be embedded inside CP3 ; see [2, Proposition 3.1]. Applying two nodal trades to
the standard polytope of CP1 �CP1 and redrawing the almost toric diagram as in
Figure 4, we see that the Chekanov torus corresponds to the central fiber of CP .1; 1; 2/,
and the torus fiber obtained by lengthening both cuts to pass through the central fiber
of CP1 �CP1 corresponds to the central fiber of CP .1; 2; 9/, therefore we denote it
by T .1; 2; 9/.

We then proceed as in Section 3 to predict the number of families of Maslov index 2
holomorphic discs this torus should bound, at least for some values of t , c and r .

It is known that the Clifford torus bounds four families of Maslov index 2 holomorphic
discs in the classes ˇ1 , ˇ2 , H1�ˇ1 , H2�ˇ2 , where ˇ1D ŒD�f1g� and ˇ2D Œf1g�D�
seen in the coordinate chart yD1, wD1 and H1D ŒCP1��fptg and H2Dfptg�ŒCP1�.
On the almost toric fibration illustrated in Figure 16, it is located in the top chamber
and has superpotential given by

(7-2) WClif D z1C z2C
e�A

z1

C e�B

z2

;

where z1 , z2 are the coordinates associated with ˇ1 , ˇ2 , A D R
ŒCP1��fptg ! and

B D R
fptg�ŒCP1� ! . (For a monotone symplectic form AD B .)

The first wall-crossing towards the Chekanov-type tori gives rise to the change of
coordinates z1 D v1.1C zw/, z2 D v2.1C zw/�1 , where zw D e�A=z1z2 D e�A=v1v2 .
Hence the superpotential becomes

(7-3) WChe D v2C v1.1C zw/C e�B .1C zw/
v2

D v1C v2C
e�A

v2

C e�B

v2

C e�A�B

v1v
2
2

:

Crossing now the other wall towards the T .1; 2; 9/–type tori, we get the change of
coordinates u1 D v1.1Cw/, u2 D v2.1Cw/, w D v1=v2 D u1=u2 .

The superpotential is then given by

(7-4) WT .1;2;9/ D u2C .e�AC e�B/
1Cw

u2

C e�A�B .1Cw/3
u1u2

2

D u2C
e�A

u2

C e�B

u2

C e�Au1

u2
2

C e�Bu1

u2
2

Ce�A�B

u1u2
2

C 3
e�A�B

u3
2

C 3
e�A�Bu1

u4
2

C e�A�Bu2
1

u5
2

:
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Figure 16: A T .1; 2; 9/–type torus in CP 1 �CP 1 bounding 9 families of
Maslov index 2 holomorphic discs; the superpotential is given by WT .1;2;9/D
u2 C e�A=u2 C e�B=u2 C e�Au1=u

2
2
C e�Bu1=u

2
2
C e�A�B=u1u2

2
C

3e�A�B=u3
2C 3e�A�Bu1=u

4
2C e�A�Bu2

1=u
5
2 .

7.1 The homology classes

We consider the torus T c
r;0

. Using notation similar to that in Section 5, let us call ˇ
the class of the Maslov index 2 holomorphic disc lying on the conic zD � that projects
into the region jf � cj � r , and ˛ the Lefschetz thimble associated to the critical point
of f at the origin lying above the segment Œ0; c � r � (oriented to intersect positively
with fz D 0g).
As before we use positivity of intersection with some complex curves to restrict the
homology classes.

Lemma 7.2 For fixed c and r , for t sufficiently small, the intersection number of
the classes ˛ , ˇ , H1 and H2 with the varieties fx D 0g, fy D 0g, fw D 0g, fz D 0g,
D3Df �1.c/[f..0 W1/; .1 W0//; ..1 W0/; .1 W0//g, D2Df�D0g, D0

3
Dfx��cw2yD0g,

D6 DD3[D0
3

(all of them disjoint from T c
r;0

) and their Maslov indices �, are as in
the table below:

Class x D 0 y D 0 w D 0 z D 0 D2 D3 D0
3

D6 �

˛ 1 0 0 1 �1 0 0 0 0

ˇ 0 0 0 0 0 1 1 2 2

H1 1 0 1 0 1 1 2 3 4
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Proof The intersection numbers of H1 and H2 with the given complex curves are
computed using Bezout’s theorem, and the Maslov index is twice the intersection
number with the anticanonical divisor D DD3[fw D 0g.
By construction, the intersection of ˛ with fz D 0g is one, with D2 is negative one
and with D3 , fy D 0g and fw D 0g it is clearly zero, as well as the intersection of ˇ
and T c

r;0
with fywz D 0g and D2 . Also clear is the intersection of ˇ with D3 .

To understand the intersection of the torus T c
r;0

, ˛ and ˇ with fx D 0g and D0
3

, we
look at the family of conics C D fz D ei�� j � 2 Œ0; 2��g containing T c

r;0
, the thimble

representing the class ˛ and holomorphic discs representing the class ˇ , similar to the
ones in Proposition (5-1) (for instance one where z D � , and Re.z/ > 0). We use the
coordinate chart y D 1, w D 1.

For fx D 0g\ C , we have z D ei�� D�ei�z=2t , so the intersection is only at z D 0,
for t small enough, and with same sign as for fz D 0g, since x is a multiple of z

along C .

For D0
3
\ C , we note that x D z.2te�i� C 1/ along C . Considering f D z� , we have

0D x� � c D z.2te�i� C 1/� � c D f .2te�i� C 1/� c:

So, f D c=..2te�i�C1//, so we see that for t very small, D0
3
\C intersects in a circle

projecting via f inside the region jf � cj< r , therefore D0
3

intersects T c
r;0

, ˛ and ˇ
respectively at 0, 0, and 1 point (counting positively as D0

3
and our representative of

the ˇ class are complex curves).

Remark We found D6 by considering the degeneration of CP1�CP1 to CP .1; 1; 2/
in a similar manner as in Section 5.1. We found D5 using the degeneration of CP2 to
CP .1; 1; 4/. Here it turns out that D6 DD3[D0

3
.

Lemma 7.3 The only classes in �2.CP1 �CP1;Tr;0/ which may contain holomor-
phic discs of Maslov index 2 are ˇ , H1�ˇ , H2�ˇ , H1�ˇC˛ , H2�ˇC˛ and
H1CH2� 3ˇC k˛ , �1� k � 2.

Proof Maslov index 2 classes must be of the form ˇCk˛Cm.H1�2ˇ/Cn.H2�2ˇ/.
Considering positivity of intersections with complex curves, consider the inequalities
for k , m and n given by the table:

Curve x D 0 y D 0 w D 0 z D 0 D2 D3 D0
3

Inequality �m� k 0� n 0�m �n� k k �mC n m� 1 n� 1

This completes the proof.
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7.2 The monotone torus

In order to make T c
r;0

a monotone Lagrangian torus, we deform our symplectic form
using Kähler inflation in neighborhoods of complex curves that do not intersect T c

r;0
,

in a similar way as we did in Section 6. First one can inflate along fy D 0g or fwD 0g
to get a monotone Kähler form z! for CP1 � CP1 , ie one with

R
H1
z! D R

H2
z! ,

for which
R
˛ z! D 0. In order for T c

r;0
to be monotone, we need a Kähler form y! ,

satisfying the same conditions as z! , in addition to
R

H2
y! D 2

R
ˇ y! . Noting that the

intersection numbers of D6 with ˛ , ˇ , H1 , H2 are 0, 2, 3 and 3, respectively, we
can get y! by adding a specific multiple of a 2–form supported on a neighborhood of
D6 to z! as in Proposition 6.1, so as to satisfy

R
˛ y! D 0 and

R
H1
y! D RH2

y! D 2
R
ˇ y! .

The last equality can be achieved because the ratio between the intersection numbers
ŒD6� �H1 D ŒD6� �H2 and ŒD6� �ˇ is 2

3
, which is greater than 1

2
.

Therefore one only need to compute the expected Maslov index 2 holomorphic discs in
the classes ˇ , H1�ˇ , H2�ˇ , H1�ˇC˛ , H2�ˇC˛ and H1CH2� 3ˇC k˛ ,
�1� k � 2 to prove:

Conjecture 7.4 There is a monotone T .1; 2; 9/ torus of the form T c
r;0

in CP1�CP1 ,
bounding 9 families of Maslov index 2 holomorphic discs, that is neither symplecto-
morphic to the monotone Chekanov torus nor the monotone Clifford torus.
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