
1 23

Semigroup Forum
 
ISSN 0037-1912
 
Semigroup Forum
DOI 10.1007/s00233-012-9380-8

On explicit representation and
approximations of Dirichlet-to-Neumann
semigroup

H. Emamirad & M. Sharifitabar



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Semigroup Forum
DOI 10.1007/s00233-012-9380-8

R E S E A R C H A RT I C L E

On explicit representation and approximations
of Dirichlet-to-Neumann semigroup

H. Emamirad · M. Sharifitabar

Received: 13 February 2012 / Accepted: 21 February 2012
© Springer Science+Business Media, LLC 2012

Abstract In his book (Functional Analysis, Wiley, New York, 2002), P. Lax con-
structs an explicit representation of the Dirichlet-to-Neumann semigroup, when the
matrix of electrical conductivity is the identity matrix and the domain of the problem
in question is the unit ball in R

n. We investigate some representations of Dirichlet-
to-Neumann semigroup for a bounded domain. We show that such a nice explicit
representation as in Lax book, is not possible for any domain except Euclidean
balls. It is interesting that the treatment in dimension 2 is completely different than
other dimensions. Finally, we present a natural and probably the simplest numeri-
cal scheme to calculate this semigroup in full generality by using Chernoff’s theo-
rem.

Keywords Dirichlet-to-Neumann operator · Lax’s Dirichlet-to-Neumann
semigroup · γ -harmonic lifting

Communicated by Jerome A. Goldstein.

This research was in part supported by a grant from IPM.

H. Emamirad (�) · M. Sharifitabar
School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5746, Tehran, Iran
e-mail: emamirad@ipm.ir

M. Sharifitabar
e-mail: sharifitabar@ipm.ir

H. Emamirad
Laboratoire de Mathématiques, Université de Poitiers, Teleport 2, BP 179, 86960 Chassneuil du
Poitou Cedex, France
e-mail: emamirad@math.univ-poitiers.fr

Author's personal copy

mailto:emamirad@ipm.ir
mailto:sharifitabar@ipm.ir
mailto:emamirad@math.univ-poitiers.fr


H. Emamirad, M. Sharifitabar

1 Introduction

We consider a bounded smooth domain � ⊂ R
n, and γ (x) an n×n symmetric matrix

with smooth (enough) real elements which has uniformly bounded positive eigenval-
ues, i.e., there exist 0 < c1 < c2 such that for every x ∈ � and ξ ∈ R

n,

c1‖ξ‖2 ≤ ξT γ (x)ξ ≤ c2‖ξ‖2.

This matrix is known as the electrical conductivity. Let X := L2(�) or C(�) and
let the corresponding boundary space be ∂X := L2(∂�) or C(∂�). We solve the
following Dirichlet problem {

∇ · (γ∇u) = 0, in �,

u = f, on ∂�.
(1.1)

For any f ∈ ∂X, we write u = Lγ f . Such a function is called the γ -harmonic lifting
of f and Lγ the γ -harmonic lifting operator. The function u represents the electrical
potential where this potential on the surface of the substance is f and the substance
is in electrical equilibrium. Now define the action of the generalized Dirichlet-to-
Neumann operator on f as the normal outward derivative of u on the boundary, i.e.,

�γ f := ν · γ∇u.

In other words, we define �γ := ν ·γ∇Lγ where ν(y) is the unit outer normal vector
at y ∈ ∂�, and �γ is called Dirichlet-to-Neumann operator. In the simplest case
where γ is the identity matrix, we denote these operators by L0, the harmonic lifting
operator, and �0, the corresponding Dirichlet-to-Neumann operator.

We consider �γ as an unbounded operator on ∂X with the domain,

D(�γ ) = {f ∈ ∂X : �γ f ∈ ∂X}.
See [1, 6, 9] for various properties of this domain. The operator −�γ generates an
analytic compact semigroup of contractions on these spaces, C(∂�) and L2(∂�).
This semigroup can be identified as the trace of the solution to the following problem
with dynamical boundary condition,⎧⎪⎨

⎪⎩
∇ · (γ∇u(t, ·)) = 0, for every t ∈ R

+, in �,

∂tu + ν · γ∇u = 0, for every t ∈ R
+, on ∂�,

u(0, ·) = f, on ∂�.

(1.2)

In fact, by taking the trace of this solution (see [1] for uniqueness) and denoting it by
u(t, x)

∣∣
∂�

, we can also define the Dirichlet-to-Neumann semigroup as,

e−t�γ f := u(t, x)
∣∣
∂�

, for every f ∈ ∂X.

It is easy to see that the L2(∂�) version of �γ is selfadjoint and nonpositive, and
hence the generator of an analytic semigroup of maximal angle π/2. Further proper-
ties such as contraction, compactness, positivity, irreducibility and Markov character
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of e−t�γ can be found in [9] and [5]. In [7], J. Escher showed that the C(�) version
of �γ generates also an analytic semigroup of some positive angle θ .

In the sequel, we are specially interested in the case where γ is the identity matrix
In, so u will satisfy the following system,⎧⎪⎨

⎪⎩

u(t, ·) = 0, for every t ∈ R

+, in �,

∂tu + ν · ∇u = 0, for every t ∈ R
+, on ∂�,

u(0, ·) = f, on ∂�.

(1.3)

In this case K.-J. Engel [6] showed that θ = π/2 even for the C(�) version of �γ . In
his book [8, 36.2], P. Lax got the same result under the additional assumption that � is
the unit ball in R

n. But Lax also had a simple proof and a new explicit representation
of this semigroup. The Lax semigroup is defined by,(

e−t�0f
)
(x) = (L0f )

(
e−t x

)
. (1.4)

The main advantage of this representation is that, it is only necessary to solve the
problem {


u = 0, in �,

u
∣∣
∂�

= f, on ∂�,
(1.5)

in order to calculate the action of the semigroup in all times.
Here, two questions arise:

Question 1 Does Lax’s representation hold for � not a ball?

Question 2 Is there an extension of Lax’s ideas for γ not a multiple of the identity
and for � not a ball that give an explicit representation of Dirichlet-to-Neumann
semigroup?

We give a negative answer to the Question 1 in the two next sections. Concerning
Question 2, this question remains open, however we will find a natural and good ap-
proximation to the Dirichlet-to-Neumann semigroup in his whole generality. In fact,
by using the Chernoff’s theorem we find an approximating family to this semigroup
with some motivations in numerical calculations in the last section.

2 Optimality of Lax representation in R
n, n > 2

In this section, we try to find a representation to this semigroup as is represented in
[8]. Here we take γ = In. we begin by proving the following lemma.

Lemma 2.1 Let � : � → � be a function of class C2. Then � has the property
that u ◦ � is harmonic for all harmonic functions u, if and only if �(x) = Ax + b,
where the matrix A is a multiple of an orthogonal matrix and b is a constant vector,
provided that n > 2.
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Proof Let (�1, . . . ,�n) be the components of � and suppose that 
(u ◦ �) = 0
whenever 
u = 0. Taking u(x) = xi , u(x) = xixj and u(x) = x2

i − x2
j for 1 ≤ i <

j ≤ n results in


�i = 0, (2.1)

∇�i · ∇�j = 0, (2.2)

|∇�i |2 − |∇�j |2 = 0. (2.3)

The properties (2.2) and (2.3) are equivalent to say that the matrix D� is multiple of
an orthogonal matrix, i.e. D�D�T = |det D�|2/nIn. This is equivalent to say that the
mapping � is conformal (see [2]), i.e. the mapping � preserves the angle between
transversal curves. Note that this equation easily implies that D� is invertible or
D� = 0.

Taking the gradient of (2.2) and (2.3) yields that,

D2�i∇�j + D2�j∇�i = 0, (2.4)

D2�i∇�i − D2�j∇�j = 0, (2.5)

and we mean the Hessian matrix by D2. Now for i, j, k distinct, we multiply (2.4) by
∇�k and use the same equation for other indices to obtain

0 = ∇�k · D2�i∇�j + ∇�k · D2�j∇�i

= ∇�j · D2�i∇�k + ∇�i · D2�j∇�k

= −∇�j · D2�k∇�i − ∇�i · D2�k∇�j

= −2∇�i · D2�k∇�j .

Therefore we have ∇�i · D2�k∇�j = 0. Again we multiply (2.4) by ∇�j and using
(2.5) yields,

0 = ∇�j · D2�i∇�j + ∇�j · D2�j∇�i

= ∇�j · D2�i∇�j + ∇�i · D2�j∇�j

= ∇�j · D2�i∇�j + ∇�i · D2�i∇�i.

Hence if we look at the matrix D�D2�iD�T , all of its entries are zero except on
i-th row and column and also on its main diagonal and the trace of this matrix is
(2 − n)∇�i · D2�i∇�i . But since trD2�i = 
�i = 0 and D� is an orthogonal
matrix times a scalar, the trace of D�D2�iD�T is also zero. We conclude that ∇�i ·
D2�i∇�i = 0 which implies D�D2�iD�T = 0. Hence D2�i = 0 and therefore we
must have �j(x) = aj · x + bj which completes the proof.

The converse is almost obvious. Since



(
u(Ax + b)

) = ∇ · (AT ∇u(Ax + b)
) =

∑
1≤i,j,k≤n

ajiaki

∂2

∂xj ∂xk

u(Ax + b),
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and A being a multiple of an orthogonal matrix, so
∑

i ajiaki = c2δjk . Furthermore∑
j

∂2

∂x2
j

u = 0 and consequently we have 
(u(Ax + b)) = 0. �

Remark 2.1 In two dimensions, the properties (2.2) and (2.3) automatically imply
(2.1). In fact � being conformal implies that the components of � are harmonic
functions. Hence in two dimensions we have � or its conjugate is an analytic func-
tion.

Now let us hope that we may find (t, ·) : � → � such that (L0f )((t, x)) is
the solution to the system (1.3), where (t, ·) is a smooth function for all t ≥ 0 and
also they are independent of the choice of initial condition f , i.e. the family (t, ·)
depends only on the geometry of �.

Theorem 2.2 Let (t, x) be as above and u(x) be the solution of (1.5). In order that
u((t, y)), y ∈ ∂�, to be the Dirichlet-to-Neumann semigroup, it is necessary (and
also sufficient) that � is a ball in R

n.

Remark 2.2 Note that in this theorem we have no assumption on the dimension of
space. The case n > 2 is proved here and we postpone the proof for n = 2 to the next
section.

Proof for n > 2 For a fixed t ∈ R
+, the previous lemma states that (t, x) = A(t)x +

b(t). On the other hand, if u = L0f , then u ◦  must satisfy the second equation of
the system (1.3). But,

∂t (u ◦ ) = ∂t · ∇u ◦ ,

ν · ∇(u ◦ ) = ν · DT ∇u ◦  = Dν · ∇u ◦ .

Hence,

(∂t + Dν) · ∇u ◦  = 0.

Now note that this equation is satisfied by every harmonic function u and taking
u(x) = xi results in,

∂t + Dν = 0, on ∂�. (2.6)

This implies A′(t)y + b′(t) + A(t)ν(y) = 0. Since (0, y) = y, we have A(0) = In

and we conclude at least near t = 0 that ν(y) = −A(t)−1A′(t)y −A(t)−1b′(t). Since
the left hand side is independent of the time, we have ν(y) = By + c. Since ‖ν(y)‖ =
1, this shows that ∂�, at least locally, is a level set of ‖Bx + c‖2. Therefore ν is in
the direction of the gradient of ‖Bx + c‖2. But this gradient is calculated as,

∇((
xT BT + cT

) · (Bx + c)
) = ∇(

xT BT Bx + 2cT Bx
)

= 2BT Bx + 2BT c

= 2BT (Bx + c).
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We conclude that for every y ∈ ∂�, the vector ν(y) is an eigenvector of BT and this
may happen only when BT is a multiple of the identity. Hence ν(y) = ky + c and
again ‖ν(y)‖ = 1 implies that the domain � is a ball of center −k−1c and radius
k−1. �

The above argument shows that we may have an explicit representation of
Dirichlet-to-Neumann semigroup as in [8], only when we are on a sphere for n > 2.
We will see in the following section that this is also true for n = 2.

3 Optimality of Lax representation in R
2

In the case n = 2, we consider the mappings as maps on the subdomains of complex
plane, i.e if h : � ⊂ R

2 → R
2, we consider it as h(x + iy) = [ 1

i

] · h(x, y). We saw in
our analysis that (t, ·) or its conjugate should be an analytic map and this is enough
to satisfy the first equation of (1.2). Since (0, z) = z, the conjugate case is ruled
out. Also we may write the condition (2.6) in complex sense as,

∂t + ν∂z = 0, on ∂�.

Since ∂z(0, ·) �= 0, for small enough t > 0 we have ν = −∂t/∂z which means
that the function ν(z) on ∂� is extendible to an analytic function inside �. Assuming
that g(z) is the analytic extension of ν inside �, we have{

∂t + g(z)∂z = 0, in �,

(0, z) = z.
(3.1)

So (t, z) = z wherever g(z) = 0 and this can happen at finite number of points.
Outside these finite possible points, we can locally find a primitive function for 1/g,
i.e. d

dz
G = 1/g and since d

dz
G �= 0, this function has local inverses and the solution

to (3.1) may be written down as

(t, z) = G−1(−t + G(z)
)
.

It is worth mentioning here that the system (3.1) is equivalent to the following:{
∂t + g() = 0, in �,

(0, z) = z.

So the problem is reduced to the problem of extending ν(z) and we are done by
finding such extension.

This procedure is used in [4] and we reuse it to recover the Lax semigroup. Since in
the case of the unit ball we have ν(x, y) = (x, y), so g(z) = z is the desired extension
and therefore G(z) can be chosen as any branch of log z and we have G−1(z) =
exp(z) and,

(t, z) = exp(−t + log z) = e−t z.
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Fig. 1 The ellipse
x2 + b2y2 = 1

In order to understand what type of pathology appears if we choose ∂� different
of a circle, let us consider � to be an ellipse in R

2, where its boundary ∂� can be
written as x2 +b2y2 = 1, b > 1 (see Fig. 1). Rewriting this equation in complex form,
we obtain, (

1 − b2)z̄2 + 2
(
1 + b2)zz̄ + (

1 − b2)z2 − 4 = 0. (3.2)

Hence we may solve z̄ as an analytic function of z around the boundary,

z̄ = (1 + b2)z − 2b
√

z2 − β2

b2 − 1
, β2 = 1 − b−2. (3.3)

Note that by removing the interval (−β,β) from the real line, we may choose an
analytic branch for

√
z2 − β2. Now,

ν2 =
(

x + ib2y

‖x + ib2y‖
)2

= ((1 − b2)z̄ + (1 + b2)z)2

(z + z̄)2 − b4(z − z̄)2

= 4b2(z2 − β2)

(1 − b4)(z2 + z̄2) + 2(1 + b4)zz̄
(by using (3.3))

= 4b2(z2 − β2)

(1 + b2)(4 − 2(1 + b2)zz̄) + 2(1 + b4)zz̄
(by using (3.2))

= b2(z2 − β2)

1 + b2 − b2zz̄

= (1 − b2)(z2 − β2)

(1 − b2)(b−2 + 1) + (1 + b2)z2 − 2bz
√

z2 − β2
(by using (3.3))

= (1 − b2)(z2 − β2)

(1 + b2)(z2 − β2) − 2bz
√

z2 − β2

Author's personal copy



H. Emamirad, M. Sharifitabar

= 1 − b2

1 + b2 − 2bz/
√

z2 − β2
.

The denominator equals to zero exactly at z = ±(b + b−1)/(b − b−1) which are real
numbers with absolute values greater than 1. Hence we may write,

ν−1 =
√

1 + b2 − 2bz/
√

z2 − β2

1 − b2
, (3.4)

and we must choose the suitable square root such that ν is the outward normal and
this definition may be extended inside the ellipse except on the real interval (−β,β)

where
√

z2 − β2 is undefined. In fact if we try to extend ν inside the domain, there
exist two singularities at the points z = ±β (in the sense that g(±β) = 0) and we will
also have a discontinuity along a curve which connects these two points.

Now we investigate the extension problem. Let g(z) be a local analytic extension
of ν(z) on the boundary, i.e. g(z) is defined and analytic in a neighborhood U of z0 ∈
∂� and is identical to ν(z) along the boundary of �. Assume that ζ = α + iβ : I ⊂
R → ∂� be a local parametrization of speed one, i.e. ‖ζ ′(t)‖ = 1. Now g = w + iv
being holomorphic says that,

wx = vy, wy = −vx, in U. (3.5)

Unitarity of the vector ν implies,

w
(
ζ(t)

)2 + v
(
ζ(t)

)2 = 1, for all t ∈ I, (3.6)

and the normality of the vector ν to the boundary says that,

w
(
ζ(t)

)
α′(t) + v

(
ζ(t)

)
β ′(t) = 0, for all t ∈ I. (3.7)

Differentiating (3.6) with respect to t gives,

0 = w(ζ )
(
wx(ζ )α′ + wy(ζ )β ′)

+ v(ζ )
(
vx(ζ )α′ + vy(ζ )β ′)

= w(ζ )
(
wx(ζ )α′ + wy(ζ )β ′)

+ v(ζ )
(−wy(ζ )α′ + wx(ζ )β ′) (by using (3.5))

= wx(ζ )
(
w(ζ )α′ + v(ζ )β ′)

+ wy(ζ )
(
w(ζ )β ′ − v(ζ )α′)

= wy(ζ )
(
w(ζ )β ′ − v(ζ )α′) (by using (3.7)).

Equation (3.7) together with this result imply that wy(ζ )g(ζ )ζ ′ = 0. Since both g(ζ )

and ζ ′ has modulus 1, we conclude wy(ζ ) = 0, i.e. ∂� is locally the 0-level set of the
harmonic function wy . Now we are in position to state the following theorem.
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Theorem 3.1 Let � be a bounded smooth subdomain of R
2 and ν(z) is the normal

outer unit vector on the boundary of �, considered as a complex valued map. One
can extend ν as an analytic function inside the domain �, if and only if � is a ball.

Proof If we want to do the previously mentioned extension globally on whole �, then
wy = 0 on ∂�. But wy is harmonic, so wy equals to zero in all of � which means
that g(z) = kz + c, k ∈ R, and this implies that ∂� = {z ∈ C : |g(z)| = |kz + c| = 1}
is the circle of center −k−1c and radius k−1. Note that this also completes the proof
of Theorem 2.2 for n = 2. �

Remark 3.1 In [5, Theorem 5.4] it is proved that there exists a probability measure μ

such that

lim
t→∞ e−t�0f =

∫
∂�

f (σ )dμ(σ). (3.8)

So if such representation exists, then (t, y) must converge to some point ỹ and
u(ỹ) = ∫

∂�
f (σ )dμ(σ). But such a point may not exist except when the domain is a

ball and property (3.8) is the well-known formula

u(0) = 1

meas(Sn−1)

∫
Sn−1

u(σ )dσ.

4 An approximating family

Here we are going to approximate the Dirichlet-to-Neumann semigroup by means of
Chernoff’s Theorem. Let us recall this Theorem which is proved in [3].

Theorem 4.1 (Chernoff’s product formula) Let X be a Banach space and {V (t)}t≥0
be a family of contractions on X with V (0) = I . Suppose that the derivative V ′(0)f

exists for all f in a set D and the closure � of V ′(0)|D generates a C0-semigroup
S(t) of contractions. Then, for each f ∈ X,

lim
n→∞V

(
t

n

)n

f = S(t)f,

uniformly for t in compact subsets of R
+.

This procedure was done in [5] by choosing the approximating family as V (t)f =
u(etγ x), where ‖x‖ = 1 and � = {x ∈ R

n : ‖x‖ < 1}. In this section we find a natural
approximation to the generalized Dirichlet-to-Neumann semigroup.

Now let 0 < α ≤ 1 be a parameter. We may construct an approximating family
as follows. Since ν · γ ν ≥ c1 everywhere on ∂�, there exist T > 0 such that for all
t ≤ T and every x ∈ ∂�, we have x − tγ (x)ν(x) ∈ �. Now define,

V (t)f (x) =
{

(1 − α)u(x) + αu(x − α−1tγ (x)ν(x)), 0 ≤ t ≤ αT ,

V (αT )f (x), t > αT ,
(4.1)
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where u = Lγ f and x ∈ ∂�.
Obviously V (0)f = f and maximum principle yields that V (t) is a contraction of

C(∂�). Also we have,

V ′(0)f = −ν · γ∇u = −�γ f.

Now we apply Chernoff theorem to conclude,

e−t�γ f = lim
n→∞V

(
t

n

)n

f.

This result has a motivation in numerical point of view. Let us fix two parameters

t and 
x and try to discretize the semigroup equation in a finite difference explicit
scheme. The result would be the following,

u(j+1)(x) − u(j)(x)


t
+ u(j)(x) − u(j)(x − 
xγ (x)ν(x))


x
= 0.

Equivalently,

u(j+1)(x) =
(

1 − 
t


x

)
u(j)(x) + 
t


x
u(j)

(
x − 
x


t

tγ (x)ν(x)

)
.

So in fact u(j+1) = V (
t)u(j) with the choice of parameter α = 
t/
x. We con-
clude that the finite difference explicit scheme is convergent provided that 
t ≤ 
x.
In the simplest case 
t = 
x, the recursion formula is reduced to u(j+1)(x) =
u(j)(x − 
tγ (x)ν(x)). This result has a significant effect on numerical calculations
because one only need to solve the lifting problem recursively and there is no need to
deal directly with the operator �γ and specially its resolvent.

Acknowledgements We wish to thank Professor Ralph deLaubenfels who was the instigator of this
method, for his collaboration with the first author which ends up with this paper.

References

1. Arendt, W., Ter Elst, A.F.M.: The Dirichlet-to-Neumann operator on rough domains. arXiv:1010.1703
(2010)

2. Blair, D.E.: Inversion Theory and Conformal Mapping. American Mathematical Society, Providence
(2000)

3. Chernoff, P.R.: Note on product formulas for operator semigroups. J. Funct. Anal. 2, 238–242 (1968)
4. deLaubenfels, R.: Well-behaved derivations on C[0 1]. Pac. J. Math. 115, 73–80 (1984)
5. Emamirad, H., Laadnani, I.: An approximating family for the Dirichlet-to-Neumann semigroup. Adv.

Differ. Equ. 11, 241–257 (2006)
6. Engel, K.-J.: The Laplacian on C(�) with generalized Wenzell boundary conditions. Arch. Math. 81,

548–558 (2003)
7. Escher, J.: The Dirichlet-Neumann operator on continuous functions. Ann. Sc. Norm. Super. Pisa 21,

235–266 (1994)
8. Lax, P.D.: Functional Analysis. Wiley, New York (2002)
9. Vrabie, I.I.: C0-Semigroups and Applications. North-Holland, Amsterdam (2003)

Author's personal copy

http://arxiv.org/abs/arXiv:1010.1703

	On explicit representation and approximations of Dirichlet-to-Neumann semigroup
	Abstract
	Introduction
	Optimality of Lax representation in Rn, n>2
	Optimality of Lax representation in R2
	An approximating family
	Acknowledgements
	References


