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Abstract

This article presents a method for online learning of robot navigation affor-
dances from spatiotemporally correlated haptic and depth cues. The method
allows the robot to incrementally learn which objects present in the environ-
ment are actually traversable. This is a critical requirement for any wheeled
robot performing in natural environments, in which the inability to discern veg-
etation from non-traversable obstacles frequently hampers terrain progression.
A wheeled robot prototype was developed in order to experimentally validate
the proposed method. The robot prototype obtains haptic and depth sensory
feedback from a pan-tilt telescopic antenna and from a structured light sensor,
respectively. With the presented method, the robot learns a mapping between
objects’ descriptors, given the range data provided by the sensor, and objects’
stiffness, as estimated from the interaction between the antenna and the ob-
ject. Learning confidence estimation is considered in order to progressively
reduce the number of required physical interactions with acquainted objects.
To raise the number of meaningful interactions per object under time pressure,
the several segments of the object under analysis are prioritised according to
a set of morphological criteria. Field trials show the ability of the robot to
progressively learn which elements of the environment are traversable.

keywords: autonomous robots, self-supervised learning, affordances, terrain
assessment, depth sensing, tactile sensing



1 Introduction

The ability to safely navigate is as vital as complex for any useful embodied agent operating
in natural environments. These environments exhibit high variability and the agent is subject
to varying lighting conditions and noisy sensing. All these challenges compelled evolution
to end up with agents capable of exploiting multi-modal sensory input. The same trend is
typically followed by roboticists, which frequently find in sensor fusion a key element for a
simultaneously robust and computationally parsimonious engineered solution. However, this
path leads to high dimensional design spaces that can easily reach unmanageable complexity
for the human designer. As a result, contemporary roboticists have turned to machine
learning as an escape to this curse of dimensionality, which, nevertheless, brought its own
challenges. How to teach these robots to make sense of their sensory feedback? Do we
actually need to teach them, or they can learn by themselves?

In the context of safe navigation, the meaning that can be extracted from the sensory feed-
back is completely grounded on motor actions. That is, the goal of perception in safe
navigation is to determine which motor actions are feasible and, from these, which ones are
optimal for the given task. To autonomously learn such perceptual skills, the agent needs
to try out its motor actions repertoire in the environment and associate the outcome of
these actions (e.g., did or did not overcome the obstacle) with the multi-modal appearance
of the same environment. The incrementally acquired associative memory can then be used
to estimate what motor actions are feasible in forthcoming interactions, given distal sensory
feedback (e.g., visual). This self-supervised learning mechanism follows the affordance prin-
ciple studied by Gibson for the animal kingdom [14]. The concept of affordances links the
ability of a subject, through its actions, to the features of the environment and, so, to learn
an affordance the agent needs to interact with the environment.

Humans are known to be extremely good in the ability to learn affordances, particularly
because they can efficiently correlate visual and haptic cues [20, 37]. Following the same
rationale, this article presents a method for the self-supervised learning of navigation affor-
dances, given the outcome of haptic interactions between the robot and the environment.
To this end, a wheeled robot is equipped with an active antenna for actively probing the
objects present in the environment and check whether these are traversable or not by the
robot. As the presence of vegetation in the environment is the most common cause of false
obstacle detection, particular emphasis is herein given to vegetation stiffness assessment.

The outcome of the antenna-object interaction process is associated with a descriptor of the
object, which is computed from range data provided by a depth sensor fit to the robot. The
resulting associative memory is used to classify subsequent objects imaged by the sensor.
When these new objects look unfamiliar to the robot, new antenna-object interactions must
be engaged. As interactions unfold, the robot’s associative memory grows and the need for
physical interactions gets reduced. As a consequence of the learning process, the robot’s
spatial reasoning look-ahead grows, thus fostering safer navigation.

With the proposed approach, the robot designer only needs to specify that the inability of the
antenna to bend or trespass the object under analysis is a sufficient cue about the object’s



Figure 1: Proposed system’s major steps. (Top-Left) The robot finding an object with its
depth sensor. (Top-Right) As the object’s class is still new to the robot, the latter physically
interacts with so as to learn its traversability. (Bottom-Left) The robot overcoming the
traversable object. (Bottom-Right) The robot determines that just finished crossing the
object.

high stiffness and, hence, of not being traversable by the robot. This active perception
[4, 1, 7] approach reduces considerably the design space when compared to one in which the
traversable/non-traversable range-based classifier would have to be fully hand-crafted. This
latter approach would also be surely less adaptive and, consequently, less robust in dynamic
and unstructured environments. Fig. 1 depicts a caricature of the proposed method.

Fig. 2 depicts the wheeled robot prototype designed for experimental validation of the pro-
posed method. The robot prototype is based on a 45 cm × 35 cm × 65 cm 4-wheeled robot
with differential locomotion, fitted with a custom telescopic antenna with pan-tilt control.
The antenna is capable of stretching up to 1m and cover 180 degrees in both pan and tilt
axes. The current drawn by the antenna’s servos is used by the robot to determine whether
the antenna is blocked against a highly stiff object in the environment. This implements a
form of proprioception.

As depth sensor, the robot uses a Microsoft Kinect, which employs modulated light to capture
tridimensional point clouds of the environment. In a different context, this sensor has been
shown to be able to acquire accurate enough 3D information for vegetation classification
[3]. It is applicable robustly outdoors during the night and at most in the presence of dim
daylight. For daylight operation the robot would have to be equipped, for instance, with a
binocular vision sensor. As the noise model of these two sensory modalities is rather similar,
the proposed model should be easily applicable to binocular vision and, as a result, enable
daytime outdoors operation.

The system is implemented on the top of Robotics Operating System (ROS) [27] and relies
on Point Cloud Library (PCL) [29] for low-level point clouds acquisition and processing.



Figure 2: The robot prototype with its antenna stretched to its maximum range. (1) Antenna
tip (a rubber ball). (2) Depth Sensor frame of reference origin. (3) Antenna’s frame of
reference origin.

This paper is an extended and improved version of a conference paper [6], and it is organised
as follows. Section 3 describes the proposed system. Then, the results obtained from a set of
field trials are presented in Section 4. Finally, a set of conclusions and future work avenues
are given in Section 5.

2 Related Work

Robots are being applied to increasingly more demanding application domains in natural
environments. Some outstanding examples include environmental and remote monitoring
[10], support to search & rescue operations [26], humanitarian demining [31], patrol and
reconnaissance [17], and agriculture [18].

To assess navigation cost in natural environments, a particularly difficult task given the lack
of structure often found therein, these robots must rely on complex perceptual apparatus.
Typically, the volumetric signature of obstacles is used for their detection from range data
acquired by either laser scanners [8, 42, 39, 24] or binocular vision systems [22, 30, 34,
32]. Monocular appearance cues are also useful when exploiting known structures from the
environment, such as the existence of paths to be followed [33, 28].

From all the challenges related to terrain navigation cost assessment, the ability to determine
which objects are actually obstacles is possibly the most difficult one. For instance, vege-
tation often generates volumetric signatures that can be confounded with non-traversable
structures. To mitigate this problem, previous work analysed which descriptors computed
from range data can be exploited to discriminate vegetation from other materials [21, 44].



In a parallel research thread, tree canopy characterisation from range data was also analysed
[3, 25]. However, a binary vegetation / non-vegetation characterisation is a rather limited
input for most robot control systems. For example, although grass and shrubs are both
vegetated structures, only the former is traversable by small robots. Adds to this the fact
that vegetated structures are highly heterogeneous, exhibit high intra-class variability, and
change considerably from environment to environment. As a result, hand-crafting traversable
/ non-traversable robust decision heuristics is practically infeasible, as it is the production
of significant hand-labelled ground-truth for supervised learning strategies.

The learning challenge for the problem of safe navigation in natural environments can be
tackled by exploiting the fact that the goal is to learn visual categories that are grounded
in the robot’s actions. That is, the robot needs to learn how to predict whether the object
under analysis affords a desired robot motor action. The most relevant affordance in safe
navigation is surely to be overcome. As in the affordances framework the learning supervision
signal is the outcome of the robot’s motor action, which is available for instance through
proprioception, the learning process can proceed autonomously. This is essential as the robot
needs to adapt its control system throughout its lifetime.

Self-supervised learning has been studied for load bearing estimation and obstacle detection
in densely vegetated terrains from laser scans [43], as well as for cost assessment for terrain
navigation from stereo vision [5] and overhead imagery [38, 16]. Traversability affordances
from laser scans for indoor robots were studied as well [41]. In all these cases, the robot
learns what perceptual features better predict a given robot-terrain interaction, provided
these can be measured by proprioception (e.g., collision detection, vibration sensing) while
the robot traverses the environment. The associative mapping can then be used to predict
the robot-terrain interaction, given sensory feedback from the far field obtained with distal
sensors.

The need for the robot to traverse the environment in order to learn the corresponding
environment-robot interaction can be harmful for either environment or robot and, hence, it
is a limitation of the work described in the previous paragraph. In alternative, and inspired by
previous work on learning of grasping and manipulation affordances in humanoids (e.g., [9]),
this paper proposes the use of a robotic antenna to perform the robot-environment interaction
whenever learning about a given object’s traversability is required. The underlying idea is
that the high controllability of the antenna-based interaction process ensures accuracy to the
learning process and safety to both robot and environment. The goal is to learn how to infer
from range data which objects in the robot’s field of view are bendable, i.e., traversable, by
the robot.

Antennas and whiskers are interesting active sensing probes as these can exhibit high signal-
to-noise ratio, are inexpensive, small, and provide low-bandwidth sensing. These properties
of whiskers had led researchers to study their application to contact detection [12, 2], object
recognition [36, 19], and surface texture discrimination [11].



Figure 3: Side (left) and front (right) views of the robot model with main frames of reference
overlaid. (1) Locomotion system. (2) Depth sensor. (3) Robotic antenna.

3 The Proposed Method

3.1 Method’s Workflow

This section describes the proposed method, which aims at incrementally develop the ability
to assess the cost of navigating in natural off-road environments. For this purpose, the robot
learns a mapping between objects’ depth-based descriptors and objects’ stiffness.

Depth-based descriptors are computed from tridimensional (3D) point clouds of the sur-
roundings, acquired by a depth sensor. The stiffness of objects is estimated by physically
interacting with them with a small pan-tilt-telescopic controlled antenna. If throughout the
physical interaction with the object the antenna gets stuck, which is verified by propriocep-
tion, the object is said to be stiff. Fig. 3 shows a schematic of the robot model and its main
frames of reference.

Fig. 4 depicts an overview of the method’s workflow. While executing a given mission, e.g.,
moving towards a specified waypoint, the robot may face an object. This object can be
traversable (e.g., vegetation) or not (e.g., a rock). To assess it, the robot creates a depth-
based descriptor of the found object and uses it to search its memory for the outcome of
previous encounters with similar objects, themselves described using a depth-based descriptor
of the same kind. If these previous encounters taught the robot that the object is traversable
then the robot does not expend the effort of avoiding it. However, while traversing the object
the robot may find itself stuck and, consequently, needs to update the memory to report
that the object is not traversable.

The more different the object faced by the robot is from the objects faced in previous
encounters, the less confident the robot should be on classifying the object based on its
memory. Bearing this in mind, in addition to classifying objects as either traversable or
non-traversable, the method also produces a classification confidence level. Low confident
classifications lead the robot to perform an haptic interaction with the object. The result of
the interaction is then used to update the memory in terms of how traversable is the object.
Moreover, the higher the confidence the robot has on the contents of its memory, the coarser



Figure 4: Proposed method’s workflow.

the haptic interaction must be. This allows the robot to reduce the time of interaction as the
object gets known and, in the limit, when confidences rises to a certain level, the interaction
is skipped altogether.

The next sections detail the several components required to implement the just described
method’s workflow. Section 3.2 describes the procedure employed to learn the geometric
mapping between the depth sensor and the antenna. The resulting mapping is consulted by
the robot whenever it intends to reach the position of a 3D point described in the sensor’s
frame of reference. Section 3.3 presents the object descriptor, which is the structure mem-
orised when a new object is encountered and it is used whenever is necessary to perform
subsequent object-object comparisons. These comparisons are memory recalling processes,
which are described in Section 3.4. Whenever the system finds necessary to interact with
the object, an interaction plan must be produced (see Section 3.5) and executed (see Sec-
tion 3.6). Finally, the process employed to determine when the robot fully traversed the
object, e.g., an extended grass field, is presented in Section 3.7.



3.2 Haptic-Visual Mapping

With only 3 degrees of freedom, the telescopic pan-tilt controlled antenna’s inverse-
kinematics can be approximated with a simple tridimensional transformation from cartesian
to polar coordinates. This transformation allows the antenna to reach a given tridimensional
point in its workspace. These points are those determined as interesting in the tridimen-
sional point cloud extracted from the depth sensor. A homogeneous point p = [x y z 1]T in
the robot’s workspace is described with respect to the antenna frame of reference, A, and
sensor frame of reference, C, as

pA = [xA yA zA 1]T , (1)

pC = [xC yC zC 1]
T . (2)

Given the point coordinates in the camera frame of reference, the robot uses a 4 × 4 rigid
body transformation matrix M to get the corresponding coordinates in the antenna’s frame
of reference,

pA = MpC. (3)

To learn matrix M, the robot antenna performs a babbling behaviour in order to cover
its configuration space. Simultaneously, the robot tracks the antenna’s tip with the depth
sensor. This behaviour, which is engaged during an offline calibration phase, allows the
robot to accumulate a set of n correspondences between points in the antenna’s and in the
sensor’s frames of reference,

p
j
A ↔ p

j
C, ∀j = 1, 2, . . . , n, (4)

where a ↔ b represents a correspondence between point a and point b. Matrix M is
estimated with a least-square SVD-based closed-form solution to the following minimisation
problem [15]:

argmin
M

(

n
X

j=1

||pj
A −Mp

j
C||

2

)

. (5)

Fig. 5 shows a time lapse image of a typical babbling behaviour used by the system to
calculate the several correspondences between points in the sensor and in the antenna frames
of reference. Table 1 lists the several points in the antenna frame of reference considered for
the exemplifying babbling behaviour.

To estimate the position of the antenna’s tip during the babbling behaviour, a background
subtraction approach is used. First, the robot retracts its antenna so that it is surely away



Figure 5: Time lapse image of the babbling behaviour used to learn the rigid transformation
between the range sensor and the antenna frames of reference.

from the sensor’s field of view and a reference 3D point cloud is acquired from the depth
sensor. To reduce processing, only the 3D points that are within the antenna’s reach are
considered in the following steps. This point cloud, which is representative of the background,
is called reference point cloud. The reference point cloud feeds a reference octree for later
processing.

The next steps are to stretch the antenna to the first position as defined by the babbling
behaviour and acquire a new point cloud. This new point cloud already depicts the antenna
overlaid on the background. To segment the foreground, that is, the antenna, the new point
cloud is used to update the octree. All octree nodes that have been changed due to the
introduction of the new point cloud are said to be the foreground, which includes antenna,

Point xA yA zA
1 -0.3 0.1 0.6
2 -0.3 0.2 0.6
3 0 0 0.8
4 0.1 0.1 0.8
5 -0.2 0.1 0.8

Table 1: Points used for calibration (points described in the antenna’s frame of reference).



(a) Front view (b) Side view

Figure 6: Antenna’s tip corresponding segmented point clouds, as perceived throughout the
babbling behaviour. The black dots inside the spheres represent their centroids.

noise, and moving background segments. Due to the materials employed in the antenna
design, only the tip of the antenna is actually capable of properly reflecting the structured
light pattern projected by the sensor. As a result, only the tip of the antenna is densely
represented by the acquired point cloud. Nevertheless, other portions of the antenna, noise,
and moving background segments are likely to be present as well.

To eliminate all 3D points that are not part of the antenna’s tip, a RANSAC [13] procedure is
employed. Iteratively, RANSAC samples a minimal point set to generate a model hypothesis
and then checks how many of the remaining points are explained by the model, i.e., are inliers
of the model. The model hypothesis with highest number of inliers is picked as the final
solution. As the antenna’s tip is spherical, the model herein estimated by RANSAC is the
one of a sphere, which is represented by its radius and position in the sensor’s frame of
reference. This method shows robust enough to discriminate between the antenna’s tip and
other spurious point segments. This technique applied directly to the original point cloud,
rather than to the foreground cloud, would be computationally more intensive. It would
also be faultier in the presence of background segments whose shape could be mistakenly
confused with the tip of the antenna.

Finally, the centroid of the points labelled as inliers by RANSAC is used as the antenna’s
tip estimated position. Fig. 6 shows the antenna’s tip segmentation that results from the
background subtraction process and application of the RANSAC procedure.

3.3 Object Descriptor

To ensure fast processing, the point cloud is down-sampled so as to ensure that no point is
within a 1 cm radius of another point. This also counteracts the depth-dependent 3D point
density variation imposed by perspective projection. Then, the object is segmented from the
background by simply dropping all the 3D points that are out of the antenna’s reach. This is
a sufficient strategy given the low vantage point of the robot’s sensor. Other configurations
might require more complex object segmentation strategies. Finally, a descriptor of the
object is built. The object’s descriptor will represent the object in memory and will be used
for comparisons with other objects. It must be rich enough for a robust comparison but



simple enough for fast computations. Bearing this in mind, a set of four simple metrics
based on a bidimensional histogram built from the 3D points distribution are considered.

Let us assume that the optical axis of the depth sensor is aligned with the robot’s forward
motion, i.e., parallel to the ground plane, and that the z-axis of the sensor is aligned with its
optical axis, the y-axis is perpendicular to the ground plane pointing downwards, and the
x-axis pointing to the right of the robot (see Fig. 3). The first step in building the descriptor
is to project all 3D points onto a bidimensional histogram, H, coinciding with the sensor’s
xy-plane. A bin in this histogram represents the number of 3D points that are encompassed
by the parallelepiped that crosses the corresponding small squared region of the xy-plane
and extends to the sensor’s maximum range.

The descriptor is based on a set of density and continuity metrics computed from the his-
togram. This option follows from the assumption that the object’s stiffness is inferable from
the object’s density and surface continuity. Intuitively, this assumption holds true for most
situations in natural environments (e.g., tree trunk vs small bush). Moreover, density and
continuity metrics are fast to compute. Let us call line to the set of histogram’s bins sharing
the same y-coordinate. Let LH be the set of all lines present in histogram H. Let us call
cluster to a set of adjacent occupied bins, in a given line, that are separate from other clus-
ters by empty bins. For a line l, the first metric is the number of clusters, nl. The second
metric corresponds to the number of bins found in the largest cluster, i.e., its size, sl. The
third metric is the point density, dl, which is computed by adding the number of points in
the line divided by the number of bins composing the same line. Finally, the fourth metric
is the maximum number of points found in any of the clusters belonging to the line, ml.

Once the four metrics are computed for all the lines of histogram H, being these represented
by the set LH , the j-dimensional descriptor of object o is built, j = 4|LH |,

{(no
l , s

o
l , d

o
l ,m

o
l ), ∀l ∈ LH}. (6)

3.4 Memory Recall

The memory is composed of descriptor-traversability tuples. A tuple associates the de-
scriptor of the observed object and the traversable / non-traversable binary-valued outcome
resulting from the physical interaction. In the current implementation, forgetting has not
been implemented. Therefore, all interactions are stored and maintained throughout the
robot’s lifecycle.

When facing an object, the robot will search for similar objects stored in memory in order to
determine the most likely navigation cost of the object. This search demands for the ability
to compute a dissimilarity metric between the descriptor of a just observed object, o, and
the descriptor of any other object stored in memory, o0. This dissimilarity is computed based
on local dissimilarity metrics, each one focused on a single element of the descriptor:



Φn(o, o
0) = Γ

✓

ζ|no
l − no0

l |

◆

, (7)

Φs(o, o
0) = Γ

✓

β|sol − so
0

l |

◆

, (8)

Φd(o, o
0) = Γ

✓

γ|dol − do
0

l |

dol

◆

, (9)

Φm(o, o
0) = Γ

✓

δ|mo
l −mo0

l |

mo
l

◆

, (10)

where ζ, β, γ, and δ are scale factors resulting from the sensor’s characteristics and typical
object structure and Γ(·) is a clamping function so as to ensure that the several metrics are
within the interval [0, 1]. To compensate for the large variations that can be observed in the
density of points and maximum number of points per cluster, the corresponding dissimilarity
metrics exhibit a scaling division by dol and mo

l , respectively. This scaling helps maintaining
fine comparisons between similar objects.

The four dissimilarity metrics are fused into a global dissimilarity metric:

Φ(o, o0) =
1

4|LH |

X

8l2LH

✓

Φn(o, o
0) + Φs(o, o

0) + Φd(o, o
0) + Φm(o, o

0)

◆

. (11)

The simple recall of the most similar object stored in memory would be a brittle solution,
as there is a high chance that noise has polluted the descriptor and the haptic interaction’s
outcome of being an outlier. As a result, a k nearest neighbour approach is followed. The k
nearest neighbours of the just observed object o are gathered in a set O and then segmented
into two sub-sets. The sub-sets O+ and O� correspond to the objects in O that have been
classified by the haptic interaction as traversable and non-traversable, respectively.

The average similarity between the observed object, o, and the objects stored in sub-set O+ is
used to compute the level of confidence that the system holds on classifying o as traversable.
Conversely, the average similarity between o and the objects stored in sub-set O� is used
to compute the level of confidence that the system holds on classifying o as non-traversable.
Formally, the confidence levels associated with both traversable and non-traversable labels
are:

c+(o) =
1

k

X

o+2O+

✓

1− Φ(o, o+)

◆

, (12)

c�(o) =
1

k

X

o�2O�

✓

1− Φ(o, o�)

◆

. (13)



The label associated with the highest confidence level is the one used to classify the observed
object o:

arg max
l2{+,�}

(cl(o)). (14)

Finally, the confidence level on the object’s classification is the confidence level on the cor-
responding label:

c(o) = max(c+(o), c�(o)). (15)

This confidence level serves the purpose of deciding whether the robot should traverse / avoid
the object or, instead, physically interact with the object in order to improve its knowledge
about it. The lower the confidence the higher the chances of engaging on a new haptic
interaction.

3.5 Haptic Interaction Motion Planning

The position of each 3D point present in the point cloud is a candidate to contact point and,
thus, a putative element of the motion plan. However, as most 3D points are redundant in
terms of interaction results, a 3D point is only considered if farther than 5 cm from any other
point already append to the motion plan. The points selected with this procedure are said
to constitute a set P , need to be sorted according to a given objective function in order to
become a useful motion plan.

The haptic interaction between the robotic antenna and the object under assessment should
be as efficient as possible, otherwise it becomes time and energy over-consuming. In other
words, the antenna’s motion plan should be short and highly directed towards highly in-
formative contact points. Interacting with the leafs of a bush provides little information
regarding the overall object’s stiffness. Conversely, hitting the main branch of the same
bush will most probably block the antenna’s motion and, as a result, rapidly inform the
robot that the object is non-traversable. Bearing this in mind, the ideal motion plan should
be mostly composed of contact points located in the structural elements of the object, such
as the main branch of a bush. Hopefully, right after the first iteration the robot gets to know
what label must associate to the object’s descriptor.

The objective function applied to a given 3D point, candidate to the motion plan, p =
(xC, yC, zC), with p ∈ P , weighs three criteria. The first criterion builds from the intuition
that bending higher areas of the object (e.g., leafs) is usually easier than their lower areas
(e.g., main branch). This intuition is formalised as a Gaussian function of the point’s height:

sh(p) = exp

 

−
|yC − g|2

2 · σ2

!

, (16)



where g is the sensor’s distance to the ground minus the height of the tallest traversable
obstacle, given the robot’s kinematic characteristics, and σ an empirically defined scalar.

The second criterion builds on the intuition that the object’s centroid should be the most
dense and, thus, most difficult to bend. As a result, this criterion is defined as a Gaussian
function of the distance from the point in question to the object’s centroid, c:

sc(p) = exp

 

−
||p− c||2

2 · σ2

!

. (17)

The third criterion is defined as the density of points in the neighbourhood of the position
in question. The higher the density, the more likely the position is of belonging to the
most difficult-to-bend object’s part. This criterion, sd(p), is computed by dividing the total
number of neighbours inside a predefined radius of the point in question, r. The total number
of neighbours can be approximated as:

2π · r2

vw · vh
, (18)

where vw and vh correspond to the voxel width and height, respectively. This formulation
exploits the fact that the point cloud has been discretised into a regular grid, i.e., it has been
voxelised.

Finally, the three criteria are combined in the objective function used to sort all points in
the motion plan, p ∈ P :

s(p) = θh · sh(p) + θc · sc(p) + θd · sd(p), (19)

where θh + θc + θd = 1 are empirically defined scalars that would be ideally learned from
data.

Fig. 7 shows that points with score above 0.7, as computed with the objective function, do
correspond to the portions of the object that are more likely to block the antenna. These
points are located in the central and denser region of the object.

3.6 Haptic Interaction Plan Execution

Once the observed object is classified as traversable or non-traversable (Section 3.4), the
classification confidence level is used to determine whether an haptic interaction is required.
High confident memory recalls should result in low probable haptic interactions, as it is likely
that the robot has learned sufficiently about the object in previous encounters. Conversely, if
the memory recall is low confident, then the robot should interact with the object in order to
learn more about it. This principle is implemented by exploiting the fact that the sequence
of points to be analysed, i.e., the motion plan, is sorted by relevance (Equation 19).



Figure 7: Typical interaction points suggested by the system as motion plan. Top row: input
range images (only RGB information depicted). Yellow rectangles represent the regions
containing the objects. Bottom row: segmented input range image. Red and blue filled
squares represent the points with a score higher and lower than 0.7, respectively. Left
column: a rock as representative of non-traversable objects. Right column: light vegetation
as representative of traversable objects.

For a given observed object o, the confidence-based interaction depth, m, is controlled by
pruning the already sorted set P . That is, only the m points with higher score (Equation 19)
are selected for subsequent haptic interactions. The score threshold is defined as a proportion
of the memory recall confidence level (Equation 15).

Formally, the set P is pruned as follows:

I =

⇢

pj, j ∈ {1, . . . ,m}

�

, (20)

where j indexes pj in P and m is determined so that the following conditions is met:

s(pm�1) < α · c(o) ∧ s(pm) > α · c(o), (21)

where α is an empirically defined scalar controlling how cautious the system must be.

With a high α, the system reduces the number of interaction points and favours past expe-
riences, whereas a low α increases the number of interactions, making the system to behave
more cautiously. As a result, α can be used by a higher-level reasoning system to adapt the
speed-accuracy trade-off exhibited by the system depending, for instance, on exogenous en-
vironmental stress. Such a system would be following the rationale that haptic interactions
are slower but more accurate than visual cues.



Figure 8: Typical haptic interaction execution. The antenna stretches to the distance of
the furthest interaction point then follows the plan. Note that this behaviours results in a
scanning pattern that bends traversable obstacles.

The motion plan being built, the robot proceeds with its execution. The plan execution
starts by picking the robot-centric rightmost point in I and successively moving the antenna
to the point in I that is closest to the previously picked one. This proceeds until all points
have been scanned or the antenna gets blocked. In the latter case, the object is labeled as
non-traversable and traversable otherwise.

To raise the chances of getting the antenna blocked due to the presence of a non-traversable
object, the points to be reached are translated 5 cm along zC. The sweeping-like motion
resulting from following the plan scans the environment in a way that the presence of non-
traversable objects are likely to block the antenna motion. Fig. 8 and Fig. 9 depict such
a typical haptic interaction. If, instead, the points were simply pushed by the antenna in
a sequence, i.e., without employing a sweeping behaviour, the chances of slithering by the
object would be rather high.

3.7 Environment Change Detection

If the object facing the robot is considered traversable, either via highly confident memory
recall or via haptic interaction, the robot will try to traverse it. In some cases the object is
in fact a large extension of vegetation which fills the sensor’s field of view while the robot
traverses it. As a result, the robot faces recurrently the same object at each new progression
step. To avoid recurrent traversability assessments and putative interactions with the same
object, whose traversability was assessed at the onset of the progression, a mechanism to
detect that the object is no longer present in the sensor’s field of view or that another object
within the original object (e.g., a rock surrounded by vegetation) was found is required.

Due to the robot’s small size, surrounding vegetation covers most of its sensor’s field of view.



Figure 9: A typical motion plan (sequence of arrows connecting thick dots) overlaid on
supporting point cloud (thin dots).

Thus, the changes to be captured when the robot leaves the object are scene-wise. Scene-
wise descriptors are often known as gist descriptors [40] and are rather useful in order to
determine, for instance, when a given robot behaviour is appropriate, given the context of the
current scene [35]. A scene’s reference gist is computed before the robot starts traversing
the object. Then, at each progression step, a new point cloud is captured and its gist is
compared with the reference gist. If this difference is greater than an empirically defined
scalar, ω, then the robot may engage on a new interaction (e.g., check the rock found that
is surrounded by vegetation).

A fast processing solution is herein proposed for the calculation of the gist descriptor from
range images. First, the point cloud is reduced by superposing a regular grid on it. The
centroids of the grid elements are taken as the reduced point cloud. Then, the number of
points composing the original point cloud and the reduced point cloud are computed. The
ratio between both quantities is the gist descriptor of the scene. This ratio describes, in a
concise and fast to compute way, the average point density of the point cloud, which was
found to be sufficient for the problem at hand.

As the implemented gist descriptors are scalars, comparing differences between them is
defined as the absolute difference between their descriptors. If this difference is greater
that an empirically defined scalar, then the environment is assumed to have changed.



4 Experimental Results

4.1 System Parameterisation

The bidimensional histogram used as object descriptor has 16 × 14 bins, meaning that
|LH | = 14 (Section 3.3). These dimensions shows a proper tradeoff between detail and
computational parsimony. Memory recall relies on a set of scale factors considered in local
dissimilarity computation, ζ, β, γ, and δ (Equation 8-10), which were set to 0.5, 0.2, 2, and
2, respectively. These values were obtained from the geometry of the sensor and typical
object’s characteristics. The number of neighbours considered in the memory recall process
was set to k = 5.

Follows the parameterisation for the haptic interaction motion planning process (Section 3.5).
For the point cloud simplification step, a voxel size of 4 cm3 was used. By taking into account
the robot’s morphology, the scalar g in Equation 16 and σ in Equations 16-17 were set to
−0.1 and 0.8, respectively. To compute the interaction points sorting criteria (Equation 19),
the scalars θh, θc, and θd, were set to 0.3, 0.2 and 0.5, respectively. These were picked by
observing the final score in a set of typical point clouds. The radius used to find the point
neighbours in sd(·), r, was set to 0.1m.

Finally, a density change detection threshold of ω = 0.03 was set for the voxel size of 0.01m3

(Section 3.7).

4.2 Classification Accuracy from Haptic Interactions

To assess the system’s classification accuracy based on haptic interactions, the robot was
asked, in a controlled environment, to move forward until an object was found.

Throughout the process the robot faced 9 different objects, (a). . . (i), one at a time. Let
us call these 9 objects data set 1. With each of them, the robot engaged on the haptic
interaction process so as to determine whether the object is traversable or not. The set of
objects includes four traversable plants, a non-traversable wall, a non-traversable plant, two
piles of non-traversable logs, and a non-traversable rock (see Fig. 10). Fig. 11 shows the
point clouds captured and haptic points suggested by the system.

Table 2 presents the number of interaction points in P within a given score interval (see
Section 3.5) selected by the system for each tested object. The table shows that the number
of points grows from higher scores to lower scores. This is consistent with the intuition that
the good interaction points are fewer than the poor interaction points. Fig. 7 illustrates
this phenomenon on a typical vegetated object. As expected, denser objects, such as logs
and rocks, tend to exhibit a higher number of high scoring points than thin vegetation.
For all objects, interacting with points with a score above 0.7 was enough to give a correct
traversable / non-traversable classification.



Figure 10: Objects used for classification accuracy analysis in a controlled environment, as
seen from the robot with its depth sensor. The yellow rectangles represent the objects’
bounding boxes. (a) Wall (non-traversable); (b) Rock (non-traversable); (c) Big plant
(non-traversable); (d) Shrub (traversable); (e) Small shrub (traversable); (f) Tall plants
(traversable); (g) Tall Plant (traversable); (h) Vertical logs (non-traversable); (i) Horizontal
logs (non-traversable).

4.3 Classification Accuracy from Learning

To assess the robustness of the object descriptor (Section 3.3) and the memory recalling
process (Section 3.4), a leave-one-out cross-validation analysis was undertaken based on the
9 objects. The principle used is to leave one of the objects out of the training set and then
classify it based on the remaining training set, which has been hand-labelled. As depicted
in Fig. 12, the system produced a correct traversable / non-traversable classification 67% of
the times for k = 1 and 78% of the times for k = 3. This an interesting result given the lack
of redundancy present in the data set. That is, for k = 3, the system recognises the objects
based on their intra- and inter-class resemblance.

Score (a) (b) (c) (d) (e) (f) (g) (h) (i)
[0.9, 1.0] 3 0 0 0 0 0 0 0 0
[0.7, 0.9[ 5 3 2 1 3 2 2 4 2
[0.5, 0.7[ 11 2 14 11 4 14 10 2 2

Table 2: Number of points selected for haptic interaction within a given score interval.



Figure 11: Object point clouds captured. The red points are the high-score interaction points
suggested by the system.

To evaluate the ability of the system to incorporate new knowledge on the top of the 9 al-
ready known objects, the robot was asked to travel towards two unseen objects (see Fig. 14).
In a first test, the robot approaches the first object from various angles and for each ap-
proach it tries to recall it from memory. The memory grows with the result of each of the
new interactions. Fig. 13 shows that the system managed to recognise the object with a
tendentially growing confidence as the number of interactions unfolded. The variability in
the confidence level results from the fact that in each approach the object looked different
to the robot - the object is anisotropic and the depth sensor is impinged with considerable
noise. After 20 encounters with the first object, the robot was presented for the first time
to the second object, which resulted in a low confident classification. As for the first object,
the system managed to recognise the second object with a confidence level that tendentially
grew with the number of encounters. Also as for the first object, the second object was
approached from various angles. Let us call the several samples obtained from the novel two
objects data set 2.

Let us now assume that the robot’s memory is filled with the samples from the two novel
objects, i.e., data set 2. Let us also assume that the robot is unaware of the original 9 objects,
i.e., data set 1. In this case the robot is said to be knowledgeable of an environment composed



Figure 12: Confusion matrix obtained from leave-one-out cross-validation.

Figure 13: Classification confidence plot corresponding to progressive acquaintance the
episodic incorporating two new objects into memory. Typical classification confidence pro-
gression. The two interrupted lines represent two piece-wise linear regressions of the confi-
dence level before and after meeting the second object.

of objects contained in data set 2. In a real situation, when entering a new environment, the
robot will progressively find new objects that must be capable of classifying and, potentially,
integrate in its knowledge base. Table 3 shows that in most situations the robot is capable of
properly classifying novel objects from data set 1 as traversable or non-traversable, given its
prior knowledge about different objects from data set 2. This owes greatly to the redundancy
in the appearance of objects in natural environments. Interestingly, erroneous classifications
are also low confident, which forces the robot to interact with its haptic actuator to carefully
assess the actual navigation affordances of the object.



Figure 14: Novel traversable (top) and non-traversable (bottom) learned objects, and re-
spective point cloud histogram.

4.4 Haptic Interaction Plan Execution

Low classification confidence compels the robot to engage on haptic interactions so as to
robustly classify the object as traversable or non-traversable. The lower the confidence the
higher the number of haptic interactions are engaged. This relationship is scaled by an
empirical scalar α (see Section 3.6). To provide some intuition about the parameterisation
of this scalar, Fig. 15 shows its effect on the number of haptic interactions while Table 4
shows the associated confidence levels after each encounter. The plot was built by varying
the number of samples provided to the robot of object 1 from data set 2. This variation
emulates the effect of learning from various interactions. The higher the number of samples
in memory the higher the confidence on the classification and, hence, the fewer the required
haptic interactions. The figure also shows that the higher the value of α the more the system
values memory over haptic interactions. As expected, α shows itself as a good modulator
for the speed-accuracy trade-off.

4.5 Environment Change Detection

To avoid repeating haptic interactions while traversing a given object, the robot deter-
mines an environment density change before reconsidering a new haptic interaction (see
Section 3.7). Fig. 16 depicts three objects used to assess this capability with a density
change detection threshold of ω = 0.03, while the voxel size used was 0.01m3. For this
test, the robot was asked to move across the object. To do that, the robot meets the ob-



Object Traversable Confidence Classification
(a) No 0.42 Not Traversable
(b) No 0.37 Traversable
(c) No 0.33 Not Traversable
(d) Yes 0.65 Traversable
(e) Yes 0.48 Traversable
(f) Yes 0.49 Traversable
(g) Yes 0.60 Traversable
(h) No 0.44 Traversable
(i) No 0.23 Traversable

Table 3: Classification of objects in data set 1 given knowledge about objects in data set 2
with k = 5. Mis-classified objects: (b), (h), and (i).

Figure 15: Impact of different α on the number of haptic interactions.

ject, performs a haptic classification, which returned traversable for all cases, and then tries
to traverse the object. While doing it, the robot evaluates periodically if an environment
density change occurred. If it occurs the robot stops and performs a new haptic verification.

Two situations were studied for object A. In the first situation, A-1, the robot met open space
when leaving the object, whereas in the second situation, A-2, the robot met an introduced
wall-like object. In both situations the robot detected the density change, i.e., from object to
open safe and from object to wall. When traversing object B the robot got stuck hampering
it from progressing across the object. Correctly, the system remained without reporting any
environment density change. As the robot gets stuck it becomes clear that the object is non-
traversable despite did not look like it in the first haptic interaction. Corrective measures
should be triggered correspondingly. Object C offered no difficulties to the robot resulting
in a fast traversal and easy change detection. These results are summarised in Table 5 and
they show that environment density is a simple yet effective metric for change detection in
the context of object traversal.



Memory position Confidence Level Classification
6 0.38 Traversable
10 0.54 Traversable
13 0.57 Traversable
16 0.64 Traversable
18 0.67 Traversable

Table 4: Confidence levels and systems guess between same object encounters.

Figure 16: Objects used for environment change detection tests. (A) Small shrub; (B) Flimsy
canes; (C) Twigs with thin leaves.

Object 1st 2nd 3rd 4th Change
Detected

A-1 0.019 0.013 0.014 0.055 Yes
A-2 0.011 0.009 0.021 0.031 Yes
B 0.020 0.018 0.008 - No
C 0.014 0.059 - - Yes

Table 5: Environment density change detection results.

5 Conclusion

A method for online learning of robot navigation affordances from spatiotemporal correlated
haptic and depth cues was presented. The method was implemented on a wheeled robot
prototype and validated on a set of field trials. The results show that the method allows the
robot to incrementally learn how to determine which objects present in the environment are
actually traversable, most often vegetation. For the acquisition of haptic cues the robot relies
on a low-cost pan-tilt telescopic antenna, whereas for distal sensory feedback the robot uses
a low-cost depth sensor. Despite not being limited to this sensing apparatus, the system’s
simplicity offers a solution to small sized robots, which are useful tools for domains like
environmental monitoring and search & rescue. These domain applications require from
robots the ability to cope with the unstructured configuration of natural environments.
This challenge is mitigated by the incremental learning of perceptual skills ensured by the
proposed method.



Currently, we are assessing alternative depth descriptors, machine learning mechanisms, and
haptic motion planning and execution policies. We are also studying how the method can
learn its parameters offline from real and synthetic datasets. The method is also being
migrated to the medium-sized all-terrain robotic platform INTROBOT [23]. This robot is
equipped with stereo vision, a tilting laser scanner, and a 6-DOF robotic arm, thus posing
new challenges to the proposed method.
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