
On Exploiting Hierarchical Label Structure
with Pairwise Classifiers

Johannes Fürnkranz
Knowledge Engineering Group

TU Darmstadt
juffi@ke.tu-darmstadt.de

Jan Frederik Sima
Cognitive Systems Research Group

Universität Bremen
sima@informatik.uni-bremen.de

ABSTRACT
The goal of this work was to test whether the performance of a reg-
ular pairwise classifier can be improved when additional informa-
tion about the hierarchical class structure is added to the training
sets. Somewhat surprisingly, the additional information seems to
hurt the performance. We explain this with the fact that the struc-
ture of the class hierarchy is not reflected in the distribution of the
instances.

1. INTRODUCTION
The pairwise approach, which learns one classifier for each pair of
classes and aggregates the results by voting, has shown a good per-
formance in various learning scenarios, including classification [5]
and multi-label classification [7; 14]. It is an interesting question
whether additional information on the structure of the output space
can be used for an improved performance.
In this paper, we report on an experiment that aimed at improving
pairwise classification in the presence of hierarchical class struc-
tures. The key idea is to augment the training sets for the binary
base classifiers with additional examples that utilize the hierarchi-
cal structure of the class labels: each binary classifier Mij dis-
criminating between classes λi and λj is given additional training
examples: examples of classes that are closer to λi in the training
data are added to the examples for class λi, and examples of classes
that are closer to λj are added to λj .
We start with a brief recapitulation of pairwise classification (Sec-
tion 2) and hierarchical classification (Section 3).

2. PAIRWISE CLASSIFICATION
Pairwise Classification is a method to solve multi-class classifica-
tion problems by dividing them into several binary problems. These
2-class problems will then be solved independently of each other
using a binary base classifier [4]. Contrary to the conventional one-
against-all or one-vs-rest approach, the pairwise classifier trains
one classifierMij for each pair of classes (λi, λj). This classifier
is trained on all examples from these two classes; all other exam-
ples are ignored. Thus, for c classes, one has to train c · (c− 1)/2
binary classifiers. By aggregating the predictions of all base classi-
fiers with voting, one can eventually obtain a prediction for the ac-
tual multi-class task. Despite the quadratic number of classifiers, it
has been shown that training is even faster than in the one-against-
all approach [5], and that classification can be sped up to almost
linear in the number of classes [17], making the pairwise approach
competitive in terms of efficiency and superior in terms of accuracy.

λ1

/ \
λ2 λ3

/ \ / \
λ4 λ5 λ6 λ7

Figure 1: Hierarchical structure corresponding to the following par-
tial order on the class labels L = {λ1, . . . λ7}:
λ1 = λ2, λ1 = λ3, λ2 = λ4, λ2 = λ5, λ3 = λ6, λ3 = λ7.

3. HIERARCHICAL CLASSIFICATION
In hierarchical classification, the set of labels L = {λ1, . . . λm}
is structured with a partial order relation =, which imposes a tree
structure upon the label set, as shown in in Figure 1. This distin-
guishes hierarchical from conventional classification, whereL is an
unordered set. Many real-world classification problems, in partic-
ular text classification problems such as the REUTERS benchmark
datasets [11; 12] or classification of Web catalogues [13], exhibit
such a hierarchical structure in the labels. Several techniques have
been proposed to exploit such a structure [9; 15; 1; 18].
A simple approach to hierarchical classification has become known
as the Pachinko machine classifier [9]. Its key idea is to associate
one classifier with each interior node of the label hierarchy tree.
Its task is to decide which path will be followed. For example,
in Figure 1, one classifierM1 is trained to discriminate labels λ4

and λ5 from labels λ6 and λ7. Depending on the outcome of the
prediction, either classifierM2 decides between labels λ4 and λ5

or another classifierM3 decides between λ6 and λ7.
Strictly speaking, there are two different scenarios for hierarchical
classification. In the first, only the leaves of the hierarchy (labels
λ4, λ5, λ6, and λ7) can be predicted, in the second the examples
can be labeled with all nodes in the hierarchy. As described in the
next section, both cases can be tackled with pairwise classification.
In the first we only need to train a pairwise classifier for the subset
of leaf labels, in the second with all labels.

4. HIERARCHICAL PAIRWISE CLASSIFIER
In many applications of hierarchical classification, the class hierar-
chy corresponds to an ISA-hierarchy, where higher nodes are super-
concepts of the nodes in their sub-trees. A natural assumption to
be made in such a case is that the distance of classes within the
class tree corresponds to the actual distances between their exam-
ples in the training set. We call this the class fidelity assumption.
If, e.g., we have a topic hierarchy with the concepts Politics, Econ-
omy, Sports, etc., it is natural to assume that the subconcepts of the
node Sports (such as Basketball, Baseball, Football) are closer to
each other than to subconcepts of Politics or Economy.

SIGKDD Explorations Volume 12, Issue 2 Page 21



The key idea of the proposed augmented pairwise classifier (APC)
is to enforce the assumed class fidelity by using additional training
examples of similar classes for the training of each classifier. For
example, in Figure 1, we would add the λ4 examples to the λ5

examples when training the classifier M5,6. Our expectation is
that this approach will outperform a “flat” classifier which simply
ignores the hierarchical relationships between the classes because
the additional training examples will improve the predictions of the
pairwise classifiers on examples of other classes.
To formalize this process, we first have to define a notion of (se-
mantic) closeness relation within the hierarchy.

DEFINITION 1 (MOST SPECIFIC SUPER-CONCEPT).
λmssc = mssc(λi, λj) is the most specific super-concept of two
classes λi and λj iff

1. λmssc = λi ∧ λmssc = λj

2. 6 ∃λ s.t. (λ = λi ∧ λ = λj) ∧ λmssc = λ

Based on this, we defined the similarity or closeness between two
nodes in the hierarchy as the depth of the most specific super-
concept. In Figure 1, λ4 and λ5 have a closeness of 1, whereas
λ4 and λ6 have closeness of 0.
The key idea of our approach is to train the binary classifierMij

by adding all examples that are closer to λi to this class, and adding
all examples that are closer to λj to that class.

DEFINITION 2 (AUGMENTED PAIRWISE CLASSIFIER).
The augmented pairwise classifier (APC) consists of one classifier
Mij for each pair of labels, which is trained on the examples of
the following sets of positive (Pij) and negative (Nij) labels:

Pij = {λ ∈ L|mssc(λ, λj) = mssc(λ, λi)}
Nij = {λ ∈ L|mssc(λ, λj) < mssc(λ, λi)}

For example, for training the classifierM56 with the class structure
of Figure 1, the examples labeled as λ4 are added to those with
label λ5, and the examples labeled as λ7 are added to λ6. If the
prediction task includes the interior nodes of the hierarchy, label
λ2 will also be added to λ4 and λ5, and label λ3 to λ6 and λ7.
Examples with label λ1, which has the same mssc (itself) for both
λ5 and λ6, are ignored. Note that Pij trivially includes λi and
Nij trivially includes λj , i.e., the training sets of the augmented
pairwise classifier are super-sets of the regular pairwise classifier.
Many hierarchical classification problems are also multi-label, i.e.,
each example may be associated with more than one label [19].
Pairwise classification can be easily extended to multi-label clas-
sification. In this case, the binary model Mij is trained on all
examples ~x for which one of the two labels λi and λj is associ-
ated with ~x and the other is not. For a new example, we can then
predict a ranking of all classes, just as with single-label pairwise
classification [14]. The top-portion of the ranking can then be pre-
dicted as a multi-label set for this example. For establishing the
split-point in the ranking, separate techniques have to be used. Al-
ternatively, the calibrated label ranking algorithm tightly integrates
ranking and splitting [7]. In this paper, we will ignore this aspect
and only compute a ranking.
For adding hierarchical information to the multi-label pairwise clas-
sifier, we adopt the approach of the previous section. In this case,
the identification of additional training examples becomes a bit
more complicated, because one of the multiple labels of the train-
ing example might be closer to λi than to class λj but at the same
time some other label from the same example might be closer to λj

than to λi. Thus, an example is added to the class λi if at least one
of its classes is closer to λi than to λj , and no other class is closer
to λj than to λi.

5. EQUIVALENCE TO PACHINKO
MACHINE CLASSIFIER

After first experiments with a preliminary implementation it turned
out that the predictions of the augmented pairwise classifier are
the same as the predictions of the Pachinko machine classifier [9],
which we briefly described in Section 3. This came unexpected
to us, because while both methods, the Pachinko classifier and the
augmented pairwise classifier reduce the hierarchical classification
problem to an ensemble of binary classifiers, the Pachinko machine
classifier uses fewer binary classifiers, which are arranged in a hi-
erarchy, whereas the pairwise classifier uses one classifier for each
pair of labels, each contributing one vote to the final prediction.
Upon closer inspection, it turns out that the two classifiers are, in
fact, equivalent. The reason lies in the fact that the augmentation
process described in Section 4 makes many of the pairwise classi-
fiers equivalent.

LEMMA 1. In the augmented pairwise classifier, the binary clas-
sifiersMij andMkl receive the same training examples if λik ←
mssc(λi, λk) and λjl ← mssc(λj , λl) are in different subtrees,
i.e., λik 6= λjl and λjl 6= λik.

PROOF. The node λ = mssc(λjl, λik) separates the two sub-
trees Sik rooted in λik and Sjl rooted in λjl. From λik 6= λjl

and λjl 6= λik it follows that λ 6= λjl and λ 6= λik. Thus, all
paths going to the labels in Sik and Sjl share the same sub-path
up to node λ, and differ from then on (otherwise λ would not be
the mssc). Similarly, λi and λk share the same path down to λik,
which contains the path to λ as a (proper) sub-path. Therefore,
mssc(λk, λj) = mssc(λk, λi) must hold and λk must be associ-
ated with Pij according to Definition 2. With an analogous argu-
ment we can show that λl must be in Nij . Thus, Pkl ⊆ Pij and
Nkl ⊆ Nij . By the symmetry of the arguments, it follows that
Pkl = Pij andNkl = Nij .

LEMMA 2. Each binary classifierMab, which is trained to dis-
criminate between two successor branches Sa and Sb of a node λ,
corresponds to a binary classifier of the augmented pairwise clas-
sifier, and vice versa.

PROOF. By the previous lemma, all classifiers Mij and Mkl

for λi, λk ∈ Sa and λj , λj ∈ Sb are identical to each other. Thus,
P(Mij) = P(Mkl) =

S
λ∈Sa

λ and N (Mij) = N (Mkl) =S
λ∈Sb

λ. These are the positive and negative training sets of the
Pachinko classifier at node λ.
Conversely, each binary classifier Mij of the APC must corre-
spond to the binary classifier that discriminates between the corre-
sponding two successor branches of the node λ = mssc(λi, λj).

By the previous lemma, we already know that all binary classifiers
of the augmented pairwise classifier correspond to a classifier that
discriminates between two successor branches of an interior node
λ. If the class structure is binary, i.e., each interior node has only
two successors, this is the classifier trained by the Pachinko ma-
chine.
What remains to be shown is that the voting strategy of the aug-
mented pairwise classifier leads to the same class label as the hier-
archical path expansion of the Pachinko machine.

THEOREM 1. For binary class hierarchies, the augmented pair-
wise classifier is equivalent to the Pachinko machine.

PROOF. Each interior node λ of the binary class structure cor-
responds to one binary classifier Mab of the Pachinko machine

SIGKDD Explorations Volume 12, Issue 2 Page 22



classifier. This classifier is identical to all pairwise classifiersMij

with λi ∈ Sa and λj ∈ Sb. If Sa contains a nodes and Sb contains
b nodes, we have a · b such identical binary classifiers, which all
vote in the same way. Assume thatMab selects branch Sa. Then,
all of the above-mentioned a · b binary classifiers will vote for the
class in Sa, i.e., each class in this branch will receive b votes from
these classifiers. On the other hand, each class in Sb will receive
0 votes from these classifiers. Thus, classes in Sb can only receive
votes from the comparisons among themselves, i.e., each class in
Sb can receive at most b − 1 votes. Thus, all classes in Sa will be
ranked above all classes in Sb, which corresponds to the decision
that is taken by the binary classifierMab.

For general multi-class class hierarchies, the situation is a bit more
complex. Assume that node λ has successor subtrees {Sai}, i =
1 . . . s, each branch having ai nodes. Here, we need a multi-class
classifier to decide which branch to follow. If this multi-class clas-
sifier is realized with a pairwise classifier, then the equivalence still
holds if the selected subtree Sai is predicted by all pairwise models
Maiaj that compare Sai with some other branch Saj . If one such
modelMaiaj makes an inconsistent prediction for the subtree Saj ,
i.e., if it predicts Saj even though the final selection of the pairwise
classifier is Sai , then the hierarchical pairwise classifier may make
a different selection (Saj ) if aj � ai. Thus, in case of unbalanced
class hierarchies, the hierarchical pairwise classifier may exhibit a
bias towards larger subtrees if the binary classifiers do not make
consistent predictions.
It should be noted that this result only holds for hierarchical singe-
label classification. As discussed in Section 4, the technique can
be straight-forwardly extended to multi-label classification. In this
case, the equivalence between hierarchical pairwise classifiers and
the Pachinko machine classifier no longer holds. In fact, an ex-
tension of the Pachinko machine to hierarchical classification is
not obvious, so that one interpretation of the above result could
be that the augmented pairwise classifier is a generalization of the
Pachinko machine classifier to multilabel problems.

6. RESULTS ON THE REUTERS DATASET
In order to evaluate the augmented pairwise classifier, we performed
experiments on the REUTERS RCV1 corpus [12]. We emphasize
that we were not so much interested in the absolute performance
of the method, but only focused on the comparison between reg-
ular pairwise classification and augmented pairwise classification.
Our expectation was that additional knowledge about the class hi-
erarchy should be able to improve the performance of the pairwise
classifier, and we wanted to verify this hypothesis. All experiments
were conducted in Weka, using its support vector machine SMO
with default parameters as the base classifier.
We used a version of the REUTERS RCV1 corpus which consists
of five datasets, each containing 3000 training and 3000 test exam-
ples.1 Each example is encoded with about 40,000 attributes repre-
senting the TF-IDF values of the words in the text. From these, we
performed a feature selection based on document frequency on the
training sets, i.e., for each of the five datasets we only kept the 5000
features which had the highest number of non-zero values in the
training set. This performed quite well in the experiments reported
in [20]. The dataset is a multi-label dataset, where each example is
on average assigned to four label of a total of 101 labels. The class
hierarchy is up to 4 levels deep. 23 of the 101 labels correspond to
interior nodes in the hierarchy.

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multilabel.html

Table 1: Ranking Error on the REUTERS RCV1 dataset
Dataset 1 2 3 4 5

pairwise classification (PC)
Precision@4 0.58 0.61 0.59 0.58 0.62
Recall@4 0.56 0.60 0.60 0.58 0.60
F1@4 0.58 0.60 0.60 0.58 0.61
Hamming@4 0.03 0.03 0.03 0.03 0.03
Margin Loss 10.30 10.28 10.57 10.97 10.48
One Error 0.17 0.13 0.11 0.18 0.12
Rank Loss 0.04 0.04 0.04 0.04 0.04
Avg Precision 0.73 0.75 0.75 0.73 0.76
First Irrelevant 2.90 3.10 3.03 2.89 3.07

augmented pairwise classification (APC)
Precision@4 0.49 0.57 0.56 0.56 0.59
Recall@4 0.49 0.57 0.57 0.56 0.57
F1@4 0.49 0.57 0.56 0.56 0.58
Hamming@4 0.04 0.03 0.03 0.04 0.03
Margin Loss 24.62 16.50 15.15 18.62 14.63
One Error 0.27 0.17 0.14 0.22 0.17
Rank Loss 0.14 0.08 0.08 0.10 0.07
Avg Precision 0.66 0.73 0.73 0.72 0.75
First Irrelevant 2.83 3.16 3.16 3.10 3.22

Table 1 shows the results of pairwise classification (top) and aug-
mented pairwise classification (bottom) in terms of nine evaluation
measures. The first four measures assume that first four labels of
the ranking are relevant and compute the precision, recall and F1-
measures as well as the error (Hamming loss) on the predicted la-
bels. For example, a precision value of 0.6 means that 60% of the
predicted labels were actually relevant, a recall value of 0.6 means
that 60% of the relevant labels were actually predicted. The remain-
ing five values try to capture the quality of the ranking: margin loss
is the difference in the ranking position of the first irrelevant la-
bels and the last relevant label, one error is the percentage of test
instances where the top rank is not a relevant class, rank loss is
the fraction of label pairs for which the irrelevant label is ranked
before the relevant (an adaptation of Kendall’s tau for multi-label
problems), average precision is the averaged precision values at the
position of each relevant label, and first irrelevant is the ranking po-
sition of the first irrelevant label. All reported values are averaged
over all test instances.
The results show that according to all but one measures the aug-
mented pairwise classifier does not improve over the regular pair-
wise classifier (better results are shown in bold). Particularly strik-
ing is the large difference in margin loss, i.e., the position of the last
relevant label is typically much lower for the APC. Interestingly,
the APC seems to have a slight advantage in terms of the position
of the first irrelevant label. However, this difference is not sig-
nificant and does not change the overall result that the augmented
pairwise classifier did not improve over the pairwise classifier, but,
in fact, seems to perform somewhat worse.

7. RESULTS ON ARTIFICIAL DATA
The negative result on the REUTERS data came somewhat surpris-
ing and asked for an explanation. Possible explanations are:

1. Augmenting the hierarchical classifiers with additional ex-
amples makes the decision surface more complex and thus
harder to learn

2. Datasets violate the class fidelity assumption, upon which the
idea of the augmented pairwise classifier is based

SIGKDD Explorations Volume 12, Issue 2 Page 23



Figure 2: Class hierarchy (top) and spatial layout (bottom) of the
artificial dataset

.

To test these two assumptions, we generated an artificial, single-
label dataset with 12 classes organized in the hierarchical structure
that is shown in the upper part of Figure 2. The examples were
assigned labels roughly following the spatial layout shown in the
lower part of Figure 2. For each class, we generated 100 train-
ing examples using a 2-dimensional Gaussian distribution with the
mean in the center of the rectangle and the standard deviations pro-
portional to the side lengths of the enclosing rectangles. We tried
five different settings (numbered from 1 to 5), corresponding to
1/3, 1/2, 1, 3/2, 2 times the breadth and width of the rectangle.
The motivation for generating the data in this way was primarily
that we wanted to be sure that the hierarchical class structure is
reflected in the instance space. This property is mostly true, but one
can also find exceptions. For example, the center of class 3 is closer
to the center of class 7 than to the center of class 1. Moreover, the
classes in each internal node of the hierarchy should be linearly
separable. This is the case for the lowest variance level, but with
increasing variances this property will be weakened.
Finally, as an additional test for the influence of the class fidelity
assumption, we also generated a version of this dataset in which
the classes 3 and 10 were swapped in instance space, resulting in a
dataset that clearly violates the above assumption.
Figure 3 shows the results of PC and APC over increasing variance
around the class centers, on both versions of the dataset. First, we
can see that the pairwise classifier dominates the augmented pair-
wise classifier in both scenarios. Moreover, there is no noticeable
difference in performance between the normal dataset and the one
with swapped classes. This is not surprising, as PC does not ex-
plicitly make use of the class hierarchy. On the other hand, for low
variance levels, the performance of APC clearly depends on the
class fidelity assumption: APC’s performance is en par with PC’s
for the case where the hierarchy is reflected in instance space, but
it is much worse in the case where this assumption is violated.
Both, PC and APC suffer when the variance of the data around the

Figure 3: Results on artificial data

center increases. Again, this is not surprising because the problem
becomes less and less linearly separable and thus harder to solve.
However, it seems that the advantage of PC over APC increases
with increasing variance. This seems to indicate that the unaug-
mented binary classifiers are easier to train, in particular when the
augmentation does not respect the class fidelity.
Based on the above observations, we want to verify the class fidelity
of the REUTERS dataset. To this end, we tried to measure class
fidelity in the following way: If we train a binary classifier Mij

for discriminating classes λi and λj (without seeing examples of
any of the other classes), then classes that are closer to λj than to
λi should be more likely to be classified as λj than as λi. We used
this for computing a class fidelity index which is simply the fraction
of all examples that are assigned according to the expectation of the
hierarchy, averaged over all binary classifiers of the PC (examples
where the label is equally likely for both sides are ignored). For
multi-label data, we use the same extension as defined in Section 4,
namely that an example is assumed to be closer to class λi if at
least one of its labels is closer to λi than to λj , and no other class
is closer to λj than to λi.
Table 2 shows the class fidelities for all datasets. We can see that
even for the artificial data, the class fidelity is not perfect, because
of the minor violations in class fidelity discussed above. However,
clearly, the index is worse for the dataset where two labels were
swapped in instance space. Also, the class fidelity is clearly de-
creasing with increasing variance around the class centers. The re-
sults for REUTERS, although maybe not directly comparable be-
cause this is a multi-label dataset, show an even worse class fi-
delity index. Note that the expected value for the index for the case
when there is no correlation between class hierarchy and location
in instance space would be 0.5. Thus, it is safe to conclude that
REUTERS does not exhibit the class fidelity upon which the de-
sign of the augmented pairwise classifier was based.

Table 2: Class fidelity index for all datasets.
1 2 3 4 5

dataset variance level
normal 0.775 0.746 0.735 0.709 0.649
swapped 0.739 0.713 0.700 0.674 0.616

fold #
REUTERS 0.63 0.64 0.64 0.63 0.63

SIGKDD Explorations Volume 12, Issue 2 Page 24



8. DISCUSSION
We think that our primarily negative results are not limited to hi-
erarchical classification, but apply to any attempt to exploiting an
order relation on the label structure by enriching the training ex-
amples in the way outlined in this paper. For example, in ordinal
classification, also called ordinal regression in statistics, the set of
class labels L = {λ1, λ2 . . . λm} is endowed with a natural (to-
tal) order relation λ1 = λ2 = . . . = λm. From a learning point
of view, the ordinal structure of L is additional information that a
learner should try to exploit, and this is what existing methods for
ordinal classification essentially seek to do [10; 3; 2]. On the other
hand, pairwise classification has been previously shown to work
quite well on this problem, even though it disregards this informa-
tion entirely [6].
Obviously, the order information can be exploited in the same way
as sketched above for hierarchical classification: for training the
classifierMij , the examples of class λi are enriched with the ex-
amples of all classes λk for k < i, and the examples of class λj

are enriched with the examples of all classes λl, l > j because of
λk = λi = λj = λl. This approach was tried in [16], but, just as
the results reported here, did not yield any improvements over reg-
ular pairwise classification. This is consistent with the observation
of [8] that the ordering information is not as strongly reflected in
the training data as one might expect.
Recently, [21] have also observed that approaches that attempt to
exploit the hierarchical class structure of a problem do not improve
over approaches that ignore this structure. It remains to be seen
whether these results can also be explained with a lack of class
fidelity.

9. CONCLUSIONS
The negative result reported in this paper, namely that the augmen-
tation of pairwise classifiers with additional training examples does
not improve classification performance, has lead to two interesting
insights. First, we have shown that the method is essentially equiva-
lent to a Pachinko-machine classifier, but can be straight-forwardly
generalized to multilabel data. Second, we have seen that a key as-
sumption behind the augmentation strategy, namely that examples
of classes that are near-by in the class hierarchy are also close in
instance space, does not always hold.

Acknowledgments: This research was supported by the German
Science Foundation (DFG). We would like to thank Eyke Hüller-
meier for inspiring discussions on this subject.

10. REFERENCES

[1] L. Cai and T. Hofmann. Hierarchical document categoriza-
tion with support vector machines. In Proceedings of the 13th
ACM Conference on Information and Knowledge Manage-
ment (CIKM-04), pp. 78–87, Washington, DC, 2004.

[2] J. S. Cardoso and J. F. Pinto da Costa. Learning to classify
ordinal data: The data replication method. Journal of Machine
Learning Research, 8:1393–1429, 2007.

[3] E. Frank and M. Hall. A simple approach to ordinal classifi-
cation. In L. D. Raedt and P. Flach (eds.) Proceedings of the
12th European Conference on Machine Learning (ECML-01),
pp. 145–156, Freiburg, Germany, 2001. Springer-Verlag.

[4] J. H. Friedman. Another approach to polychotomous classi-
fication. Technical report, Department of Statistics, Stanford
University, Stanford, CA, 1996.

[5] J. Fürnkranz. Round robin classification. Journal of Machine
Learning Research, 2:721–747, 2002.

[6] J. Fürnkranz. Round robin ensembles. Intelligent Data Anal-
ysis, 7(5):385–404, 2003.

[7] J. Fürnkranz, E. Hüllermeier, E. Loza Mencı́a, and K. Brinker.
Multilabel classification via calibrated label ranking. Machine
Learning, 73(2):133–153, June 2008.

[8] J. C. Hühn and E. Hüllermeier. Is an ordinal class structure
useful in classifier learning? International Journal on Data
Mining, Modelling and Management, 1(1):45–67, 2008.

[9] D. Koller and M. Sahami. Hierarchically classifying docu-
ments using very few words. In Proceedings of the 14th In-
ternational Conference on Machine Learning (ICML-97), pp.
170–178, Nashville, 1997.

[10] S. Kramer, G. Widmer, B. Pfahringer, and M. DeGroeve. Pre-
diction of ordinal classes using regression trees. Fundamenta
Informaticae, XXI:1001–1013, 2001.

[11] D. D. Lewis. Reuters-21578 text categorization test collec-
tion. http://www.daviddlewis.com/resources/
testcollections/reuters21578/, 1997.

[12] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new
benchmark collection for text categorization research. Journal
of Machine Learning Research, 5:361–397, 2004.

[13] T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and W.-Y.
Ma. Support vector machines classification with a very large-
scale taxonomy. SIGKDD Explorations, 7(1):36–43, 2005.

[14] E. Loza Mencı́a and J. Fürnkranz. Pairwise learning of multi-
label classifications with perceptrons. In Proceedings of the
2008 IEEE International Joint Conference on Neural Net-
works (IJCNN-08), pp. 2900–2907, Hong Kong, 2008. IEEE.

[15] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng.
Improving text classification by shrinkage in a hierarchy of
classes. In Proceedings of the 15th International Conference
on Machine Learning (ICML-98), pp. 359–367, 1998.

[16] G. H. Nam. Ordered pairwise classification. Master’s thesis,
TU Darmstadt, Knowledge Engineering Group, 2007.

[17] S.-H. Park and J. Fürnkranz. Efficient pairwise classification.
In Proceedings of 18th European Conference on Machine
Learning (ECML-07), pp. 658–665, Warsaw, Poland, 2007.
Springer-Verlag.

[18] J. Rousu, C. Saunders, S. Szedmák, and J. Shawe-Taylor.
Kernel-based learning of hierarchical multilabel classifica-
tion models. Journal of Machine Learning Research, 7:1601–
1626, July 2006.

[19] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Block-
eel. Decision trees for hierarchical multi-label classification.
Machine Learning, 73(2):185–214, 2008.

[20] Y. Yang and J. O. Pedersen. A comparative study on feature
selection in text categorization. In D. Fisher (ed.) Proceedings
of the 14th International Conference on Machine Learning
(ICML-97), pp. 412–420, Nashville, TN, 1997.

[21] A. Zimek, F. Buchwald, E. Frank, and S. Kramer. A study
of hierarchical and flat classification of proteins. IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
7:563–571, 2010.

SIGKDD Explorations Volume 12, Issue 2 Page 25


