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Abstract—Effective data forwarding in Delay Tolerant Net-
works (DTNs) is challenging, due to the low node density,
unpredictable node mobility and lack of global information in
such networks. Most of the current data forwarding schemes
choose the nodes with the best cumulative capability of contacting
others as relays to carry and forward data, but these nodes
may not be the best relay choices within a short time period,
due to the heterogeneity of the transient node contact patterns.
In this paper, we propose a novel approach to improve the
performance of data forwarding in DTNs by exploiting the
transient node contact patterns. We formulate the transient node
contact patterns based on experimental studies of realistic DTN
traces, and propose appropriate forwarding metrics based on
these patterns to improve the effectiveness of data forwarding
decision. When applied to various data forwarding strategies, our
proposed forwarding metrics achieve much better performance
compared to existing schemes with similar forwarding cost.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) [12] consist of mobile

nodes which contact each other opportunistically. Due to

the low node density and unpredictable node mobility, only

intermittent connectivity among mobile nodes exist in DTNs.

To forward data to a destination within a given time constraint,

node mobility is exploited to let nodes physically carry the data

as relays, and forward data opportunistically upon contacts

with others. The key problem for data forwarding in DTNs

is therefore how to make effective data forwarding decision,

to ensure that the data is carried by the relays with the best

chance to contact the destination within the time constraint.

In most of the current data forwarding schemes in DTNs,

due to the lack of global information at individual nodes

about how to reach the destination, data forwarding decision is

made based on the prediction of node capability of contacting

others. This capability is indicated by various destination-

independent data forwarding metrics, which differ in the

network information being used, as well as how it is used, for

the aforementioned prediction. Some schemes [20], [7], [25]

estimate such capability by predicting node mobility and sub-

sequent co-location events. Some others [8], [15], [13] propose

data forwarding metrics by exploiting node contact pattern

as abstraction of node mobility pattern. Since node contact

pattern exhibits the long-term social relation among nodes

with better stability, they make data forwarding decision more
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effective and less susceptible to the node mobility randomness.

In these schemes, the data forwarding metrics are calculated

based on the nodes’ cumulative contact characteristics.

We observe that the transient contact characteristics of

mobile nodes during short time periods in DTNs usually differ

a lot from their cumulative contact characteristics. The relays

selected by existing schemes therefore may not be the best

choices for forwarding data with a short time constraint. Based

on this observation, in this paper we improve the performance

of data forwarding in DTNs, by exploiting the transient node

contact patterns from the following two perspectives.

• Transient contact distribution, which may be highly

skewed during different time periods. For example, a

student A may contact his classmate B frequently in the

daytime but not at night, while B’s roommate C contacts
B frequently at night but not in the daytime. Then, if there
is data destined to B, it is better to deliver the data to
A in the daytime, but to C in the nighttime. However,

cumulative contact distribution cannot differentiate these

two cases. Thus, we use transient contact distribution to

better represent the skewness of contact distribution and

improve the data forwarding performance.

• Transient connectivity, which indicates that some nodes

in DTNs may remain connected with each other during

specific time periods to form transient connected subnets

(TCS), despite the general absence of end-to-end paths

among them. For example, a student remains connected

with his classmates during the class and they form a TCS

during that time period. Similarly, vehicles also form a

TCS when they are waiting for the traffic light at the

crossroads [26]. A node has “indirect” contacts with all

the nodes in a TCS, as long as it directly contacts any

node in that TCS. The contact capability of mobile nodes

is then increased by exploiting these indirect contacts.

The major contribution of this paper is two-fold. First,

we formulate the transient node contact patterns based on

experimental studies of realistic DTN traces. Transient contact

distribution is formulated as intermittent appearances of short

“on-period” where most of the node contacts accumulate, and

transient connectivity is formulated as the number of nodes

inside a node’s TCS during different time periods. These two

perspectives are then uniformly represented in the form of

Gaussian function. Second, based on the transient contact

patterns, we develop data forwarding metrics to analytically



predict the contact capability of mobile nodes with better

accuracy, so as to improve the effectiveness of data forwarding

decision. Through extensive trace-driven simulations, we show

that our approach significantly outperforms existing schemes

in terms of data delivery ratio, with similar forwarding cost.

The rest of this paper is organized as follows. Section

II briefly reviews the existing work. Section III gives an

overview on how to exploit transient node contact patterns for

data forwarding. Section IV formulates the transient contact

patterns based on experimental observations from realistic

DTN traces, and Section V describes our data forwarding

approach in detail. Section VI evaluates the performance of our

approach by trace-driven simulations. Section VII discusses

and Section VIII concludes the paper.

II. RELATED WORK

The research on data forwarding in DTNs originates from

Epidemic routing [24] which floods the entire network. Later

studies develop data forwarding strategies to approach the

performance of Epidemic routing with lower forwarding cost,

which is measured by the number of data copies created in the

network. While the most conservative approach [23] always

keeps a single data copy and Spray-and-Wait [22] holds a fixed

number of data copies, most schemes leave such numbers as

dynamic and make data forwarding decision by comparing the

nodes’ data forwarding metrics. In [3], [8], a relay forwards

data to another node whose forwarding metric is higher than

itself. Delegation forwarding [11] reduces the cost by only

forwarding data to the node with the highest metric.

The data forwarding metric, which measures the nodes’ ca-

pability of contacting others, is generally independent from the

data forwarding strategies mentioned above. Various metrics

can be applied to the same forwarding strategy for different

performance requirements. Some schemes predict node con-

tact capability by estimating their co-location probabilities in

different ways, such as the Kalman filter [7] and semi-Markov

chains [25]. In some other schemes, node contact pattern is

exploited as abstraction of node mobility pattern for better

prediction accuracy, based on the experimental [5], [17] and

theoretical [4] analysis on the node contact characteristics.

Recent trace-based study on campus wireless networks [14]

shows that different nodes have heterogeneity in their contact

patterns, and the nodes’ capability of contacting others in the

future can be predicted based on their cumulative contact

records in past. MaxProp [3] estimates the node contact

likelihood based on the contact counts in past, and PodNet [18]

forwards data to nodes based on their received data enquiries in

past. In recent social-based forwarding schemes, SimBet [8]

uses ego-centric betweenness as the data forwarding metric,

and BUBBLE Rap [15] considers node centrality hierarchi-

cally in social community structures. [13] estimate pairwise

node contact probabilities in the future based on the previous

cumulative node contact rates, by assuming the exponential

distribution of pairwise node inter-contact time. However, due

to the heterogeneity of transient contact distributions, such

estimations may be inaccurate during short time periods.
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Fig. 1. Overview of transient node contact patterns

Most schemes predict node contact capability only based

on the direct contacts among mobile nodes. Contact duration

has only been analyzed for the properties of temporal network

topology [6], or has been considered in case of limited channel

bandwidth to determine the appropriate data transmission

order [3], [2], [19]. Various weighting methods [3], [2] and the

willingness of mobile users [19] are considered to maximize

the bandwidth utilization during the limited contact duration.

However, contact duration has never been studied for indirect

contacts and transient connectivity among nodes, which can

significantly increase the node contact capability.

III. OVERVIEW

The major focus of this paper is to develop appropriate

data forwarding metrics, by exploiting the transient node

contact patterns, for more accurate prediction of node contact

capability within the given time constraint. Without loss of

generality, we consider forwarding one data item to a specific

destination. We assume that the data size is small, so that it

can be carried by any node, and can be completely transmitted

during a contact. The considerations of limited node buffer and

bandwidth are orthogonal to the major focus of this paper.

We consider that the time constraint for data forwarding is

shorter than one day. In this case, the transient contact char-

acteristics of mobile nodes differ a lot from their cumulative

contact characteristics, and data forwarding decisions based on

transient contact patterns are more effective. Such advantage

is illustrated in Figure 1, where relay A at 12pm carries data

with a 6-hour forwarding time constraint, and needs to decide

whether to forward data to nodes B and C.
In Figure 1(a), the transient rate (λt) of a node contacting

others during different hours in a day is listed. The cumulative

contact rate during the whole day is calculated as λc =
∑n

i=1 Ti ·λti/
∑n

i=1 Ti, where Ti is the length of the i-th time
period. Based on the strategy that a relay forwards data to the

node whose forwarding metric is higher than itself, A forwards
data to B but not C if λc is used as the forwarding metric.

However, considering that the transient contact distribution of

B is skewed and λt of node B during the time period between
12pm and 18pm is essentially low, C is a better relay choice

than B due to its higher λt during that time period.

Indirect contacts among mobile nodes can also be exploited

to improve the performance of data forwarding. As shown

in Figure 1(b), although C has a higher λt than B, such
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Fig. 2. Alternative appearances of on-period and off-period

λt is calculated by counting only the direct contacts among

mobile nodes. In contrast, node D has transient connectivity

with nodes G and H . By contacting D, node B has indirect

contacts with G and H . Node B therefore has higher contact

capability than node C, and is a better relay choice.

IV. TRACE-BASED PATTERN FORMULATION

In this section, we formulate transient node contact patterns

based on experimental observations from realistic DTN traces.

These patterns are formulated with the daily period, which has

been shown as the dominant period of node contact patterns

in previous trace studies [10], [21].

A. Traces

We study the transient node contact patterns on two sets

of DTN traces. These traces record contacts among users

carrying hand-held mobile devices on university campus. The

devices are equipped with Bluetooth or WiFi interfaces, so

as to detect and communicate with each other. In the MIT

Reality trace [10], the devices periodically detect their peers

via their Bluetooth interfaces, and a contact is recorded when

two devices move close to each other. In the UCSD trace

[21] which consists of WiFi-enabled devices, the devices

search for nearby WiFi Access Points (APs) and associate

themselves to the APs with the best signal strength. A contact

is recorded when two devices are associated to the same AP.

As summarized in Table I, the two traces differ in their scale,

detection period, as well as the contact density and duration1.

TABLE I
TRACE SUMMARY

Trace MIT Reality UCSD

Network type Bluetooth WiFi
Number of devices 97 275

Number of internal contacts 114,046 123,225
Duration (days) 246 77
Granularity (secs) 120 20

Average contact duration (hours) 0.57 10.45
Average inter-contact time (hours) 84.13 47.17

B. Transient Contact Distribution

For each pair of nodes, we formulate their transient contact

distribution as alternative appearances of “on-period” and “off-

period”. Most contacts happen during the on-periods, and

only very few contacts can be found during the off-periods

at random.

Definition 1: An on-period [ts, te], which is in units of
hours and 0 < ts − te < 24, is uniquely determined by a

1For any contact with the same starting and ending time, we set its duration
to be a half of the detection period.

(a) MIT Reality (b) UCSD

Fig. 3. Skewed distribution of node contacts

(a) On-period (b) Off-period

Fig. 4. Length distributions of on-period and off-period of the MIT Reality
trace

set S of node contacts happened at time t1, t2, ..., t|S|, such

that for any 1 < k ≤ |S|, tk − tk−1 < Ton, where Ton is a

pre-defined threshold.

According to Definition 1, an on-period at least contains

two contacts, and we fix Ton = 8 hours, which is the normal
daily working hours. Only the contact process during the on-

periods is considered as stable and predictable, and is exploited

to predict the node contact capability in the future for data

forwarding decision. Individual contacts happened during off-

periods are considered as random and unpredictable. This

pattern formulation is illustrated in Figure 2, where each

vertical arrow indicates a contact. Lon,i (Loff,i) denotes the

length of the i-th on-period (off-period). Note that an off-
period may last longer than one day; e.g., a student may not

contact his classmates during the entire weekend.

This pattern formulation is validated by the skewed distri-

bution of node contacts during different hours in a day, which

is shown in Figure 3. In Figure 3(a) of the MIT Reality trace,

over 50% of the contacts happen between 12pm to 16pm,

while only about 7% of the contacts happen between 22pm

to 7am. Similar distribution is shown in Figure 3(b) for the

UCSD trace. Such skewed distributions show that most of the

contacts happen during the on-periods, which are generally

shorter than the off-periods.

We then study the length distributions of on-period and off-

period, which may vary as illustrated in Figure 2. The length

of off-period is restricted in the modulus of 24 hours, and the

results over all pairs of nodes are shown in Figures 4 and 5.
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Fig. 5. Length distributions of on-period and off-period of the UCSD trace

TABLE II
NUMERIC PARAMETERS OF ON-PERIOD AND OFF-PERIOD

Trace MIT Reality UCSD

On-period
Mean (µon) 5.3239 8.1611

Variance (σ2
on) 6.5889 25.109

Percentage of contacts (%) 89.312 85.624

Off-period
Mean (µoff ) 18.631 15.334

Variance (σ2

off
) 11.387 25.191

Percentage of contacts (%) 11.687 14.376

We have two observations. First, the length distributions of

on-period and off-period are accurately approximated by nor-

mal distribution, using the mean and variance of the recorded

lengths of on/off-periods as parameters. These parameters

are summarized in Table II. Second, in Table II we have

µon + µoff ≈ 24 hours for both traces, and over 85% of

contacts happen during on-periods which only occupy 25%

(MIT Reality) to 33% (UCSD) of the total time. These results

validate that transient contact distribution can be formulated

as alternative appearances of on-period and off-period.

C. Transient Connectivity

The transient connectivity of a node is represented by its

TCS size during different time periods.

Definition 2: The Transient Connected Subnet (TCS) of a

node i during the time period [t1, t2] is the connected graph
Gi = (Vi, Ei), where i ∈ Vi, and for ∀(j, k) ∈ Ei, the nodes j
and k remain directly contacted with each other during [t1, t2].
The size of a TCS is then defined as |Vi|.
The TCS size change during different time periods is shown

in Figure 6, where the lines between nodes indicate contacts.

At time t1 (Figure 6(a)), node A has indirect contacts with

nodes C and D by directly contacting node B, and A’s TCS
therefore has 4 nodes. Later at time t2 > t1 (Figure 6(b)), the
TCS size of node A reduces to 3 because node D moves away

and joins another TCS containing nodes E and F .
The transient connectivity depends on the distribution of

contact duration, which is shown in Figure 7. In both traces,

there are a large portion of contacts with non-negligible

durations. In the MIT Reality trace, there are over 20% of the

contacts with durations longer than 1 hour, and this percentage

in the UCSD trace is around 30%. Particularly, there are 7%

t1 t2

Fig. 6. Illustration of TCS size change

Fig. 7. Cumulative Distribution Function (CDF) of contact durations

of the contacts in the UCSD trace with durations longer than

24 hours, and these long contacts make the average contact

duration to be longer than 10 hours.

Nodes that have contacts with long durations have good

chances to maintain transient connectivity with others. To

study transient connectivity, we replay the traces and calculate

the TCS size of each node once every hour to take the average.

The results in Figure 8 show that the TCS sizes of over 50% of

nodes are larger than 3 in the MIT Reality trace. The transient

connectivity is more prevalent in the UCSD trace, where the

contacts are recorded based on AP associations.

Moreover, Figure 9 shows that the average TCS size over

all the nodes during different time periods in a day can be

accurately approximated by Gaussian function in the form of

G(t) = A · e−
(t−µ)2

σ2 , (1)

(a) MIT Reality (b) UCSD

Fig. 8. The average TCS sizes



TABLE III
NUMERIC PARAMETERS ON THE TCS SIZE DISTRIBUTION

Trace MIT Reality UCSD

A 4.6413 132.85
µ 16.406 12.795

σ2 49.954 224.97

(a) MIT Reality (b) UCSD

Fig. 9. The temporal distributions of the TCS sizes

and the numerical parameters in Eq. (1) are listed in Table III.

By comparing Figure 9 with Figure 3, it is easy to see that

the TCS size during a specific time period is proportional to

the amount of contacts happened during that time period.

In general, transient contact distribution and transient con-

nectivity can be represented by uniform formulations based

on Gaussian approximation. This uniformity facilitates us to

combine the two perspectives of transient contact patterns

to predict node contact capability in the future for data

forwarding decision.

V. DATA FORWARDING APPROACH

A. Overview

In our approach, the data forwarding metric of a mobile

node is its capability of contacting others in the future,

measured by the expected number of nodes that it can contact

within the given time constraint for data forwarding. This

constraint is (tc, te] with respective to the notations in Table
IV, which are used throughout this section.

It is easy to see that such metric is time-dependent. Since

the metric of node i is calculated every time when a relay
decides whether to forward data to i, we use Ci to indicate

the metric of node i at time tc without any loss of generality.
Ci is calculated in an accumulative manner, such that

Ci =

N
∑

j=1,j �=i

cij , (2)

where N is the total number of nodes in the network, and

cij indicates the expected number of nodes that i can contact
within the time constraint by contacting node j. In the rest of
this section, we will focus on how to calculate cij based on
the transient node contact patterns.

If we only consider direct contacts among mobile nodes, cij
is equivalent to the probability for node i to directly contact

TABLE IV
NOTATION SUMMARY

Notation Explanation

tc Current time
te The data expiration time
tl The time of the last contact happened before tc
tn The time of the first contact to happen after tc
tls The starting time of the last on-period before tc
tle The ending time of the last on-period starting before tc
tns The starting time of the first on-period after tc
Non The total number of on-periods before tc
Noff The total number of off-periods before tc
Lon The total length of on-periods before tc
Con The number of contacts happened during the past on-periods
λ The average contact rate during the past on-periods

node j within the time constraint. We evaluate this pairwise
node contact probability by exploiting the transient contact

distribution of nodes i and j. The basic idea is to calculate
this probability only based on the contact process during on-

periods.

The node contact capability is further improved by consid-

ering the indirect contacts among nodes. cij is then defined
as the expected number of nodes that i can contact in j’s
TCS, by having contacted with j. We predict this expected
number of nodes based on the transient connectivity of node

j. Particularly, by taking indirect contacts into account, a relay
can decide whether to forward data to a node as long as

they are within the same TCS. If a relay and the destination

are within the same TCS, the data can be delivered to the

destination immediately via multi-hop transmission within that

TCS, and the data delivery ratio therefore can be improved.

B. Characterization of Transient Contact Patterns

Each node characterizes its transient contact patterns at real-

time according to the pattern formulations in Section IV. First,

for each pair of nodes i and j, the parameters of their on-period
and off-period are updated every time they directly contact

each other. The update process is described in Algorithm 1

for the case that i contacts j at time tc, with respective to the
notations in Table IV. The quantities Non, Noff , Con and Lon

are initialized as 0 when the network starts. tls is initialized as
0 and tle is initialized as a small positive real number to ensure
that the first contact between i and j starts an on-period.
Second, each node detects its TCS whenever it directly

contacts another node, by broadcasting a detecting beacon

message. In order to detect the TCS in a multi-hop range,

such message is broadcasted among the nodes within the TCS,

and each node having received the message acknowledges to

the original sender. Transient connectivity is then updated by

Gaussian curve fitting based on the recorded TCS sizes during

different hours in past. The time needed for transmitting a

beacon message is generally much shorter than the contact du-

ration, and the transient connectivity hence can be accurately

characterized. Since the broadcasting of beacon messages is

only triggered by node contact events, and the sizes of beacon

messages and acknowledgements are very small, such TCS

detection only produces little data transmission overhead.



Algorithm 1: Updating On/Off-Periods (i, j, tc)

if tc − tl ≤ Ton then // In an on-period

Con ← Con + 11

λ ← Con/(Lon + tc − tls)2

if tls < tle then // New on-period3

µold ← µoff4

µoff ← µoff ·Noff+tl−tle
Noff+15

σ2
off ← Noff (σ

2
off+µ2

old)+(tl−tle)
2

Noff+1 − µ2
off6

Noff ← Noff + 17

tls ← tl8

if tc − tl > Ton then // In an off-period9

if tls > tle then // New off-period10

µold ← µon11

µon ← µon·Non+tl−tls
Non+112

σ2
on ← Noff (σ

2
on+µ2

old)+(tl−tls)
2

Non+1 − µ2
on13

Non ← Non + 114

tle ← tl15

Lon ← Lon + tle − tls16

tl ← tc17

C. Pairwise Contact Probability

When only direct contacts among mobile nodes are consid-

ered for data forwarding, cij at time tc is equivalent to the
probability pij for node i to contact node j during (tc, te]. We
consider that only the contact process during on-periods are

stable and predictable, and pij is calculated based on the past
contact records during the on-periods. Since the time period

(tc, te] in this paper is shorter than one day, node j can be
contacted by node i during (tc, te] in the following two cases:

1) The current time tc is within an on-going on-period
which continues after tc, as illustrated in Figure 10(a).

2) The current time tc is within an on-going off-period, but
the next on-period will start before te, as illustrated in
Figure 10(b).

In general, a predictable contact only occurs if at least one

on-period overlaps with (tc, te], and the occurrence probability
is proportional to the overlapping length. In the first case,

we estimate the remaining duration (tc, tle] of the current on-
period after tc, and in the second case we predict the starting
time tns of the next on-period after tc. In contrast, node i
and j will not contact during (tc, te] in the case illustrated by
Figure 10(c), where (tc, te] is totally included in an off-period.

The three cases illustrated in Figure 10 are complete and

mutually exclusive for predictable contacts. Therefore, we

have pij = p
(1)
ij + p

(2)
ij , where p

(1)
ij and p

(2)
ij are the contact

occurrence probabilities for the cases 1) and 2), respectively.

As a prerequisite, we define pc(t1, t2) as the probability that
node i and node j contact during the time period [t1, t2] within
an on-period. Since the contact process between node i and j
during on-periods is considered as stable and predictable, we

assume that this contact process is a homogeneous Poisson

process with the parameter λ, which is updated at real-time

c e
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Fig. 10. Cases of predictable node contacts

according to Algorithm 1. As a result, we have

pc(t1, t2) = 1− e−λ(t2−t1). (3)

1) Case 1: For ∀tle ∈ (tc, te], node i has the probability
pc(tc, tle) to contact node j. Therefore, due to the memoryless
nature of Poisson process we have

p
(1)
ij =

∫ T

0

pc(0, T ) · fon(t)dt, (4)

where T = te − tc, and fon(t) is the Probability Density
Function (PDF) of the length distribution of the on-periods

between node i and j, such that

fon(t) =
1√

2πσon

· e−
(t+tc−tls−µon)2

2σ2
on . (5)

By substituting Eqs. (3) and (5) into Eq. (4), we have

p
(1)
ij =

1

σ
√
π
·
∫ T

0

(1 − e−λt) · e−
(t−µ)2

σ2 dt

=
1

2

(

erf(
T − µ

σ
) + erf(

µ

σ
)−

e
1
4λ

2σ2−λµ ·
(

erf(
λσ2 + 2T − 2µ

2σ
)− erf(

λσ2 − 2µ

2σ
)

))

,

(6)

where µ = µon + tls − tc, σ =
√
2σon, and erf(x) is the

Gaussian error function [1].

2) Case 2: Similarly we have

p
(2)
ij = P(tle < tc) ·

∫ T

0

(1− e−λ(T−t)) · foff(t)dt,



where

foff(t) =
1√

2πσoff

e
−

(t+tc−tle−µoff )
2

2σ2
off ,

and

P(tle < tc) = Φ(
tc − tls − µon

σon
)

with Φ(x) indicating the Cumulative Distribution Function
(CDF) of standard normal distribution. Therefore,

p
(2)
ij =

Φ( tc−tls−µon

σon
)

σ
√
π

·
∫ T

0

(1− e−λ(T−t)) · e−
(t−µ)2

σ2 dt

=
1

2
· Φ( tc − tls − µon

σon
) ·

(

erf(
T − µ

σ
) + erf(

µ

σ
)−

e
1
4λ

2σ2−λ(T−µ) ·
(

erf(
λσ2 + 2µ

2σ
)− erf(

λσ2 + 2µ− 2T

2σ
)

))

,

(7)

where µ = µoff + tle − tc, σ =
√
2σoff .

D. Exploiting Transient Connectivity

We improve the node contact capability by considering the

indirect contacts among nodes within the same TCS, and we

estimate cij by applying the transient connectivity of node j
to the two cases analyzed in Section V-C.

In Section IV-C, the change of the TCS size of node j
during different hours in a day is described by the Gaussian

function

NG(t) = AG · e−
(t−µG)2

σ2
G .

Hence, for Case 1 in Section V-C, Eq. (4) is rewritten as

c
(1)
ij =

∫ T

0

pc(0, T ) ·NG(t) · fon(t)dt.

Since transient contact distribution and transient connectiv-

ity are represented in uniform forms of Gaussian function, and

the set of Gaussian functions is closed under multiplication,

we have c
(1)
ij = A · p(1)ij , where p

(1)
ij takes the similar form as

in Eq. (6), with the only difference that

σ =

√

σ̄2
on · σ2

G

σ̄2
on + σ2

G

, (8)

µ =
σ2
Gµ̄on + σ̄2

onµG

σ2
G + σ̄2

on

, (9)

and

A = AG · e−
(µG−µ̄on)2

σ2
G

+σ̄2
on , (10)

where µ̄on = µon + tls − tc, σ̄on =
√
2σon.

Similarly for Case 2 in V-C, c
(2)
ij = A · p(2)ij . Note that

p
(2)
ij takes the similar form as in Eq. (7), and the quantities

µ̄off = µoff + tle− tc and σ̄off =
√
2σoff are used to substitute

µ̄on and σ̄on in Eqs. (8)-(10). Finally we have cij = c
(1)
ij +c

(2)
ij .

E. Analysis on Prediction Error

The prediction error on node contact capability mainly

comes from the node contact randomness in the following two

perspectives, which may not follow the node contact patterns.

ls

on

on

le l

Fig. 11. Illustration of an unclassifiable contact

1) Unclassifiable Contacts: We cannot classify a contact

into one of the two cases shown in Figure 10, if it happens

in the case shown in Figure 11. Such a contact is the last one

happened before tc, but does not belong to the last recorded
on-period. Hence, we cannot determine whether this contact

starts a new on-period, or it just happens at random during the

off-period starting at tle. Especially when tc − tle approaches
µoff , the calculation of contact probability for either case in

Figure 10 may produce non-negligible prediction error.

2) Long Off-periods: In practice, the lengths of some off-

periods may exceed 24 hours. For example, two classmates

may have no contact during the weekend. The long off-periods

affect the prediction accuracy of Case 2 in Figure 10, by

postponing the next on-period to happen after te.
Nevertheless, the results in Section IV-B show that the alter-

native appearances of on-period and off-period accurately fit

the daily period, and over 85% of node contacts happen during

on-periods. Therefore, the unclassifiable contacts and long off-

periods are only occasionally found among the nodes with

low contact frequency. Since in our approach data is mainly

forwarded among the nodes with high contact frequency, the

aforementioned prediction error can be effectively eliminated.

VI. PERFORMANCE EVALUATION

In this section, we compare the performance of our data

forwarding approach with existing data forwarding schemes

based on cumulative node contact characteristics.

A. Simulation Setup

Our evaluations are performed on the DTN traces described

in Section IV-A. We first randomize the data generation time,

and then randomly pick the data sources and destinations

among the nodes with non-zero contact counts within the time

constraint for data forwarding. The transient contact patterns

are characterized in real-time as described in Section V-B.

We evaluate the performance of our approach in data deliv-

ery ratio and forwarding cost measured by the number of data

copies created in the network, and each experiment is repeated

500 times for statistical convergence. The data delivery delay

is not considered, as long as the data can be delivered on time.

We compare our data forwarding metric with the following

existing metrics based on cumulative contact characteristics:

• Contact Counts (CC) is calculated cumulatively since

the network starts. It was used in [3] for data forwarding

decision.

• Betweenness evaluates the social importance of a node

facilitating the communication among others. It was used

in [8], [15] for social-based data forwarding decision.
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Fig. 12. Delivery ratio with the Compare-and-Forward strategy

(a) MIT Reality (b) UCSD

Fig. 13. Forwarding cost with the Compare-and-Forward strategy

• Cumulative Contact Probability (CCP) [13] evaluates

the probability of a node contacting others based on its

cumulative contact rates.

These data forwarding metrics are applied to the following

forwarding strategies. The performance of Epidemic routing

is also evaluated as a basic benchmark.

• Compare-and-Forward: it has been used in FRESH [9],

where a relay always forwards data to the nodes whose

forwarding metrics are higher than that of the relay itself.

• Delegation Forwarding [11]: each relay records the

highest value of data forwarding metric it has ever seen,

and only forwards data to the nodes whose forwarding

metric is higher than the recorded highest value.

• Spray-and-Wait [22]: the maximum number of data

copies in the network is fixed as K . The source forwards
data to K nodes, such that for ∀j ∈ [1,K), the (j + 1)-
th node has a higher forwarding metric than the j-th
node has. Each relay then follows the Compare-and-

Forward strategy, and deletes its local data copy after

having forwarded the data to another node.

B. Performance Comparison

We first evaluate the data forwarding performance of our

approach with the Compare-and-Forward strategy. For fair-

ness, indirect contacts are exploited in all the schemes for

comparison, such that the data is delivered from a relay to the

destination as long as they indirectly contact each other.

The results are shown in Figures 12 and 13. Generally

speaking, our approach achieves higher data delivery ra-

tio. In cases of short time constraints, the transient contact

characteristics of nodes differ more from their cumulative

characteristics, and the advantage of our approach is therefore

larger. In the MIT Reality trace, as shown in Figure 12(a),

when the time constraint is shorter than 3 hours, our approach

achieves similar delivery ratio with that of Epidemic, and

performs over 100% better than CCP. The performance of

other forwarding metrics, including CC and Betweenness, is

lower due to their coarse estimation of node contact capability.

In the UCSD trace, our approach benefits from the prevalent

transient connectivity shown in Figures 8(b) and 9(b). Hence,

in Figure 12(b), our approach performs as better as 150%-

200% when the time constraint is shorter than 6 hours.

When data forwarding lasts longer, the transient and cu-

mulative node contact characteristics tend to be consistent,

and the advantage of our approach decreases accordingly.

Nevertheless, during a long time period up to 20 hours, our

approach still performs at least 20% better.

Figure 13 shows that the forwarding cost of our approach

is similar with that of CCP, and is generally 15%-20% lower

than that of CC and Betweenness. When data forwarding

lasts longer, the data source and relays have higher chance

to contact other nodes, and the forwarding cost increases

accordingly in all the schemes.

We also perform the performance evaluation using the

Spray-and-Wait forwarding strategy with K = 5. The results
are shown in Figures 14 and 15. Similar to Figure 12, our

approach achieves much higher data delivery ratio, especially

in the UCSD trace. The limit on the maximum number of

data copies in the network leads to a decrease on delivery

ratio, which can be up to 20%-30% compared to that with the

Compare-and-Forward strategy. This limit also significantly

reduces the data forwarding cost, as shown in Figure 15. In

cases of short time constraints, the data source usually cannot

contact and forward data to the maximally allowed K nodes,

and hence the actual forwarding cost is much lower than K .
In summary, the Compare-and-Forward strategy leads to

higher data delivery ratio by fully exploiting node contacts

for data forwarding, and the Spray-and-Wait strategy achieves

better data forwarding cost-effectiveness by limiting the data

forwarding cost. Our approach significantly outperforms other

schemes with both forwarding strategies by exploiting tran-

sient node contact patterns.

C. Impact of Transient Contact Distribution

In our approach, transient contact distribution is exploited to

estimate the pairwise node contact probability, and therefore

has obvious impact on the data forwarding performance.

1) Different Values of Ton: We first evaluate the impact of

different values of the on-period detection threshold Ton. In

the previous sections Ton is fixed as 8 hours, which is validated

by Figure 16 as the optimal value to achieve the highest

delivery ratio. The reason is that both traces are collected from

university campus, where the 8-hour working day is applied.

The delivery ratio decreases when the value of Ton deviates

from 8 hours, and this decrease is related to the time constraint
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Fig. 14. Delivery ratio with the Spray-and-Wait strategy

(a) MIT Reality (b) UCSD

Fig. 15. Forwarding cost with the Spray-and-Wait strategy

TL for data forwarding. The delivery ratio is more sensitive to

the change of Ton when TL is small. As shown in Figure 16,

in case of TL = 3 hours, the delivery ratio decreases by 50%-
75% when the value of Ton changes to the smallest (1 hour)

or the largest (20 hours). When TL increases to 12 hours, the

delivery ratio only decreases by 15%-25% in similar cases.

2) Excluding Transient Connectivity: To evaluate the stan-

dalone impact of transient contact distribution on data forward-

ing performance, we exclude the consideration of transient

connectivity (TC) and indirect contacts from the data forward-

ing decision of our approach. More specifically, we calculate

the data forwarding metric Ci of node i only based on its
pairwise contact probabilities pij , which are calculated in Sec-
tion V-C. We compare the data forwarding performance of our

approach to the CCP forwarding metric with the Delegation

forwarding strategy. The other forwarding metrics, including

CC and Betweenness, are not considered for comparison due

to their low performance shown in Figures 12 and 14.

The results on the MIT Reality trace are shown in Figure

17. When data forwarding is only based on the direct contacts

among mobile nodes, the delivery ratio and forwarding cost

of both our approach and CCP decrease accordingly, due to

the reduction on the nodes’ capability of contacting others.

Nevertheless, as shown in Figure 17(a), our approach still

outperforms CCP by as high as 30%-50% when the time

constraint is shorter than 6 hours. This result shows that our

approach provides more accurate estimation on the pairwise

node contact probabilities, compared to the estimation made

by CCP based on cumulative node contact characteristics.

3) Two Cases for Predicting Contacts: In Section V-C,

node contacts in the future are predicted in two cases, and

we evaluate the impact of each case on the data forwarding

performance. To do this, whenever a relay contacts the desti-

nation, we classify this contact into one of the two cases.

The results are shown in Figure 18. When the time con-

straint is short (< 3 hours), over 70% of successful data

delivery benefits from contacts of Case 1, which indicates that

a currently on-going on-period continues in future. The major

reason is that the accuracy of predicting the future on-period

occurrences, which corresponds to Case 2, is generally low

during such a short time period. When the time constraint in-

creases, the prediction accuracy of Case 2 can be significantly

improved, and therefore the importance of the two cases on

successful data delivery is gradually balanced.

VII. DISCUSSIONS

A. Node Buffer Constraint

As stated in Section III, the node buffer constraint is not

considered in this paper, and the reason is as follows. When

only one data item is forwarded in the network, a relay only

drops data if it does not have enough buffer to carry the data,

and hence considering the buffer constraint is trivial. When

multiple data items are forwarded in the network, [13] has

shown that data forwarding with the consideration of buffer

constraint is formulated as a knapsack problem, where various

data forwarding metrics can be applied integrally. In such

cases, the consideration of node buffer constraint is orthogonal

to the main focus of this paper, which is on developing

appropriate data forwarding metrics. The limitation of channel

bandwidth is not considered in this paper for similar reason.

B. Daily Pattern Period

In this paper, we study the transient node contact pattern

with the daily period, although weekly or monthly period has

been used for other trace studies [10], [21]. The major reason

is that we focus on forwarding data within a short time con-

straint, in which the transient contact characteristics of nodes

differ more from their cumulative contact characteristics, and

the existing data forwarding schemes will not perform well in

this case. On the other hand, the transient and cumulative node

contact characteristics tend to be consistent during a longer

time period, and hence data forwarding will not benefit much

by exploiting transient contact patterns with longer periods.

C. Transient Patterns of Social Network Characteristics

Social network characteristics in DTNs, including centrality

[8] and social communities [15], are also related to transient

node contact patterns. For example, when a student keeps

transient connectivity with his classmates during the class,

they also form a social community with transient existence.

Despite this relation, existing methods for distributed commu-

nity detection in DTNs [16] suggest that the transient patterns

of social network characteristics are much more complicated

than the aforementioned simple example. Hence, we leave the

study of transient patterns of social network characteristics as
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Fig. 16. Impact of different values of Ton
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Fig. 17. Data forwarding performance on the MIT Reality trace with the
Delegation forwarding strategy

future work, and plan to exploit these patterns to improve the

performance of social-based data forwarding in DTNs.

VIII. CONCLUSIONS

In this paper, we propose effective forwarding metrics to

improve the performance of data forwarding in DTNs, by

exploiting the transient node contact patterns. We formu-

late these patterns based on experimental observations from

realistic DTN traces, and exploit these patterns for more

accurate prediction on the node contact capability. Through

extensive trace-driven experiments, we show that our approach

significantly improves the data delivery ratio, while keeping

similar forwarding cost with the existing schemes based on

cumulative node contact characteristics. Future work includes

(a) MIT Reality (b) UCSD

Fig. 18. Impacts of the two cases for predicting contacts on data delivery
ratio

the evaluation on the communication overhead for identifying

the transient node contact patterns, as well as the actual impact

of prediction error on the data forwarding performance.
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