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Abstract. The importance of service composition has been widely rec-
ognized in the Internet research community due to its high flexibility in
allowing development of customized applications from primitive services
in a plug-and-play manner. Although much research in defining architec-
tures, choreography languages and etc, has been conducted, little atten-
tion has been paid to composite services’ runtime performance-related
aspects (e.g., network bandwidths, path delay, machine resources), which
are of great importance to wide-area applications, especially those that
are resource-consuming. Service composition in the wide area actually
creates a new type of routing problem which we call QoS service rout-
ing. We study this problem in large networks and provide distributed
and scalable routing solutions with various optimization goals. Most im-
portantly, we propose ways to reduce redundancies in data delivery and
service execution through explorations of different types of multicast (ser-
vice multicast and data multicast) in one-to-many application scenarios.

Keywords: service composition, QoS, multicast, application-level rout-
ing, overlay networks

1 Introduction

The Internet has long been recognized as an environment with heterogeneity
everywhere and in every aspect, and this heterogeneity problem has been fur-
ther exacerbated with the increasing popularity of small devices using wireless
connections in recent years. With a diverse spectrum of devices (ranging from
powerful desktops, to less powerful and energy-sensitive laptops, hand-held com-
puters, PDAs, and mobile phones etc) communicating over networks of different
bandwidths by using different protocols, there is a strong need to perform proto-
col and content translations between communicating parties to bridge the gaps.
Value-added, transformational services have been created for such purposes [1,
2]. However, given the range of diversity involved in the Internet, developing
monolithic transformational services to bridge all conceivable end-to-end het-
erogeneities would be some task that requires tremendous amount of effort, if
not totally impossible.

Fortunately, the component service model, which allows complex services to
be dynamically and rapidly aggregated from primitive ones, has been proposed
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and started to be adopted in the Internet (e.g., the Web and peer-to-peer net-
works) for service flexibility and reusability [3–5]. This new, flexible service model
has triggered many interesting and useful Internet applications. Imagine a mo-
bile phone user that wants to retrieve the content of a Web document written in
Latin and hear it through speech in English, the original data can flow through a
sequence of services (such as an html2txt converter, a Latin2English translator,
and a text-to-speech converter) to get itself transformed before being delivered
to the destination (Figure 1(a)). We call an end-to-end network path comprising
a sequence of primitive service instances in a one-to-one scenario a service path.

At the service deployment time, for the sake of robustness, each service needs
to be replicated in multiple network locations (i.e., have multiple instances).
Service composition should happen at the runtime, and it is desirable to select
service instances based on current network and machine conditions, so that the
service path not only meets service functional requirements, but also satisfies
certain performance requirements (e.g., ensuring that there is sufficient network
bandwidth between the output and input of every pair of consecutive compo-
nents). Since service composition includes a broad range of issues (e.g., architec-
ture, language standard), we create and use the terminology service routing for
focus on functional correctness and performance aspects involved during the run
time of service composition. We will assume Web services are deployed at proxies
(be them regular caching proxies or dedicated application-specific proxies).

Interesting composite services can be also useful in one-to-many application
scenarios. Imagine the Web news video distribution application that involves a
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Fig. 1. Two Web scenarios that make use of composite services: (a) A mobile phone
user retrieves a Web document written in Latin and hears it through speech in English;
(b) news video from CNN or Yahoo server is customized within a service network
according to end users’ network and machine capacities. When there are multiple end
users interested in receiving the same source data, service multicast can be employed
for resource optimization purposes.
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single sender and multiple receivers, each of which requiring the original video
content to be customized according to its own resource conditions (Figure 1(b)).
Although it is feasible to have end-to-end service paths individually built, such
a unicast delivery model may incur waste of bandwidths (due to redundancies in
data delivery) and machine resources (due to redundancies in service execution).
We propose to build a single service tree, rather than multiple independent
service paths, through which the data should be delivered to save both network
bandwidths and machine resources. We term such a group delivery model service
multicast, to distinguish it from the traditional (data) multicast. To differentiate
the two delivery modes, hereafter we will use the terminologies service unicast
(routing) and service multicast (routing) for service routing in one-to-one and
one-to-many scenarios, respectively.

For composite services to be widely acceptable and useful, automating the
service routing process at the middleware layer has become critical to enable
seamless provisioning of integrated services at the application layer despite the
fact that an integrate service might be actually distributed over multiple hosts
in wide-area networks. Service unicast routing has been reasonably addressed in
the literature [6–9]. Some of the existing work, e.g., [8, 9], adopt a global planning
approach which, concerning its limited scalability, is not suitable for the current
Web. Scalable routing falls into two approaches: hierarchical [6] and distributed
[7], each with its own advantages and disadvantages. The routing approach to
be adopted in this paper follows the latter category, because distributed routing
based on on-line probing involves with more updated (thus more accurate) rout-
ing state. In the unicast context, a distributed solution based on local heuristics
has been described in [7]. However, the local optimality alone often will incur long
service paths. We remedy this shortcoming by using the geometric information
of the network hosts as guidance to compute more delay-efficient paths.

Our major focus would be on the less investigated, more challenging QoS
service multicast routing problem, whose usefulness has been illustrated in Figure
1(b), and whose importance is undubious due to resource constraints. While
source-based (pure) service multicast has been proposed and studied in [10,
11] for small service networks, in this paper, we consider the problem in the
current Web scale. In such a large scale, centralized planning is certainly not a
viable solution, for it becomes infeasible for a single network node to maintain
full state information of the whole network. For better scalability, we devise a
fully distributed approach for service multicast. Moreover, we propose to further
optimize resource usages by integrating data multicast into service multicast.
We call such a combined multicast delivery mode hybrid multicast.

The remainder of this paper will be structured as follows. We first describe
some background and related work in Section 2, followed by the foundation
of our solution design in Section 3. We present our distributed solutions for
service unicast, pure service multicast, and hybrid multicast in Sections 4, 5,
and 6, respectively. The solutions are implemented in the well-known network
simulator ns-2 and in Section 7 we provide some performance results. Section 8
gives some concluding remarks of this paper as well as directions for our future
research.
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2 Background and Related Work

To realize service composition in the Internet, many important issues need to
be addressed. (1) service description: When a developed service component
is to be deployed, it needs to be described by an unambiguous name and/or an
interface describing the component’s inputs and outputs. WSDL (Web Service
Description Language) is an XML-based language for describing Web services.
(2) service discovery: Service components need to be published and later on
discovered before being composed. UDDI (Universal Description, Discovery and
Integration) creates a standard interoperable platform that enables companies
and applications to publish and find Web services. Scalable ways of performing
service discovery have been also investigated in peer-to-peer networks [12, 13].
(3) service request compilation: At the application design or run time, given
service specifications of two communicating ends, it needs to be further verified
which service components are to be composed and in which order, i.e., to obtain
a compositional service model or a service request1. Research in this area can be
found in [14, 5].

Since a service discovery system’s task is only to locate instances of single
services, and a QoS compiler’s task is only to obtain a system-independent service
graph, there needs to be a process, which we call service routing, that resides
above these tasks and that can choose appropriate service instances (returned
by a discovery system) for the basic components in a service request (returned
by a QoS compiler), so that users at the application layer will see the application
as an integrated service, rather than separate components (Figure 2).
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Fig. 2. The service routing substrate is resided between the application layer and the
service discovery/QoS compilation layer to make component services transparent to
the application layer.
1 The literature has used different terminologies, e.g., logical service path [3] and

plan [5].
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A sample service request is shown in Figure 3. The functional part of a service
request will be denoted as r = (ps, s1 → s2 → s3 → . . . , pd), which is to find
a service path between the source ps and the destination pd containing s1, s2,
and s3, in sequence. A service path will be denoted as sp = (ps → s1/pα →
s2/pβ → s3/pγ → . . . → pd), where si/pθ means service si is provided by proxy
pj (mapping of a service onto a proxy). Note that different from the traditional
data routing, where paths should be loop-free, in service routing, data loops
are allowed, in the sense that a single network node is allowed to be visited
multiple times in case it is capable of serving multiple (either consecutive or
inconsecutive) services in the request. Therefore, when we refer to “a service
node”, it means mapping of a service onto a proxy (si/pθ). We define service
neighbor of a service si as si’s proceeding service in service graphs. For instance,
if SG1 = s1 → s2 → s3 and SG2 = s1 → s4, then s1’s service neighbor can be
either s2 or s4, depending on which service graph is in use. We also define next
service hop of a node n to be an instance of n’s preceding service in the request.
Thus, if sp = (ps → s1/pα → s2/pβ → s3/pγ → . . . → pd), then ps’s next service
hop is s1/pα, and s1/pα’s next service hop is s2/pβ and so forth.
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Fig. 3. A service request with linear service graph (SG): from the source to the desti-
nation, locate a QoS-satisfied path that encompasses s1 → s2 → s3 in sequence.

Service unicast has been investigated extensively in different domains (e.g,
Web, peer-to-peer networks, or company networks) and in different levels of the
network (e.g., physical network level or overlay network level). Depending on
the size of the network, computations of service routing can be performed in
different ways, e.g., centralized or distributed. In [8, 9], a single network node
is required to maintain the global routing state (QoS and service availability
information) of the network, so that computation of service paths can be per-
formed locally. However, such an approach does not scale because the associated
state maintenance overhead increases quickly with the network size. A remedial
step for increasing scalability is to introduce hierarchies into the network, so
that topology abstraction and state information become possible to significantly
reduce the state maintenance overhead. A hierarchical solution was developed
in [6]. Alternatively, scalable service routing can take a distributed approach by
having the network nodes maintaining state information of a limited neighbor-
hood. [7] describes a distributed, hop-by-hop approach whose routing decision
is based on local heuristics.

Service multicast was proposed in our previous work [10], and two al-
gorithms for building service trees have been devised and their performances
compared. However, since both the construction and the maintenance of service
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trees take a source-based approach, the solution is suitable only for small-scale
networks. A source-based approach is simple, and allows service trees to be com-
puted quickly, and usually path/tree optimizations are better achieved. However,
due to the rapidly increasing routing state maintenance overhead with the net-
work size, scalability is constrained.

Overlay network routing can be performed either on top of structured
topologies [15, 10] or on top of unstructured topologies [16, 9]. The former ap-
proach views the overlay network topology as a partial mesh, so that routing
protocols (such as OSPF and MOSPF) designed for the IP layer can be directly
employed at the overlay layer. In the latter approach, hosts are considered fully
connected, and for each application, a special topology (e.g., a multicast tree) is
built and maintained.

3 Foundation of Our Solution Design

A service discovery system’s task is to return service instances’ locations (typ-
ically the IP addresses of the hosts in which instances are resided). However,
with only the IP address information, it is hard to estimate how far away service
instances are located from each other, thus making distributed routing decisions
also hard if communication delay is a concern. We address this weakness by as-
sociating each Internet host with geometric coordinates and using it to estimate
Internet distances (communication delays) between hosts. The relative geometric
coordinates of a machine can be automatically assigned by the method described
in [17] and, as will be clear later, the added geometric location information will
serve us as guidance in finding more delay-efficient service paths/trees.

To maximize path performances at the overlay layer, in this paper we do not
set network topology constraints (i.e., the initial network is a fully connected,
unstructured topology), and a service path/tree is built for each application sce-
nario. However, while service paths/trees are built on top of an unstructured
overlay topology, another structured mesh topology is maintained for general
control messages. Note that the tree and the mesh are employed for different
purposes: the former is used for content distribution and the latter is used for
control messages. This design choice is similar to that of YOID [16]. For com-
munication efficiency, we connect the overlay network nodes into a Delaunay
triangulation [18], because Delaunay triangulation is a spanner graph that pos-
sesses some nice properties: a path found within a Delaunay triangulation has
length bound by a constant times the straight-line distance between the end-
points of the path. By using such a geometric topology, control messages can
be routed by using an on-line routing method, such as the greedy approach or
compass routing approach [19].

In a large, unstructured service overlay network where service neighbors are
not defined until the runtime, we do on-line probing of the service instances’
resource conditions (e.g., bandwidth and machine capacity) to identify the best
next service hop according to the request, instead of maintaining routing state.
By distributed, we mean not only the construction of service paths/branches,
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but also the maintenance of multicast group tree information, will be performed
distributively. In [10], the functional service tree is centrally maintained at the
root. Thus every join request had to go to the root to learn its functionally
graftable service nodes. Such a centralized approach introduces both a single
point of failure and a bottleneck. In this research, the functional service tree will
be maintained by all on-tree nodes, so that each of them can individually look
for graftable service nodes for other join requests (more details later).

4 Service Unicast

In QoS data routing, starting from one end, the shortest network path towards
the other end is usually probed for QoS. If, at certain point, insufficiency of
resources is detected, the probe will detour to other neighboring links/nodes [20].
While in data routing, there is always the shortest network path (maintained
by, e.g., the distance vector or link state protocol) that serves as guidance for
distributed QoS path finding so that the computed QoS-satisfied path is not
unnecessarily long, in service routing, due to the complex dependency relations
among services, no similar shortest service paths can be maintained as to allow
a node to quickly lookup for the best next service hop2.

Lacking maintenance support, next service hop needs to be discovered at the
runtime. Specifically, starting from the source, we gradually add to the path
instances of required services as we route toward the destination. The source
may first discover the locations of all requested services’ instances by invoking
a service discovery system. A service path can be thus resolved in a hop-by-hop
manner as follows. Each hop sends QoS probe messages to all instances of its ser-
vice neighbor, and then among the instances that satisfy resource requirements,
the current hop will select the best one according to its selection criteria.

However, existing solutions in unicast QoS service routing that follow the
distributed approach are not satisfactory. For example, in [7], selection of next
service hop is solely based on local heuristics, where the next service hop is
the one whose aggregate value of available bandwidth, machine resources and
machine’s up time is optimum. The local heuristics alone, however, would only
help balance the network and machine loads and potentially optimize the path’s
overall concave or multiplicative metrics (e.g., the path’s bottleneck bandwidth
or robustness), but would not pose any constraint on the overall service path
length, which is an additive metric that requires global optimizations. As a
consequence, service paths computed hop-by-hop by adopting local heuristics
tend to be long, and inevitably consume more network resources. We will name
this approach local resource-amplest (LRA) approach.

The weakness of the LRA approach can be remedied by using the hosts’
geometric location information as guidance when performing the hop-by-hop
routing computation. At this point, let us temporarily ignore the load balanc-
ing issue, and concentrate on path delays. We first describe how a QoS-satisfied
delay-efficient service path can be computed. In Section 3, we mentioned Internet
2 By best, we mean the QoS-satisfied service instance that leads to a shortest service

path.
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Fig. 4. Finding a QoS-satisfied and potentially shortest service path hop-by-hop from
ps to pd that satisfies the service graph s1 → s2 → s3.

hosts can obtain their geometric information as described in [17]. Such informa-
tion can then be easily incorporated into a service discovery system, so that the
discovery system is able to tell also the locations of the service instances. With
this location information, we resolve the service path in a hop-by-hop manner as
follows. Each hop sends QoS probe messages to all of its service neighbors, and
then among the instances that satisfy all resource requirements, the current hop
will select the one that potentially leads to the most delay-efficient service path
as the next service hop, by doing some extra computation as shown in Figure 4.

Figure 4 depicts a case where we want to find a path, between the source
ps and the destination pd, in which services s1, s2, and s3 are to be included
in sequence. In Figure 4(a), starting from the source, ps probes resource condi-
tions of both instances of next service in the request, s1/p1 and s1/p2. Resource
conditions in this case may be available bandwidths from ps to p1 and from
ps to p2, and p1 and p2’s available machine capacity. Assuming both instances
have sufficient resources, ps chooses the one that potentially leads to a shorter
service path. This can be computed as shown in Figure 4(a’): by deriving the
correspondent service DAG (Directed Acyclic Graph) based on the service re-
quest and service instances’ availability (returned by a discovery system), and
applying a shortest paths algorithm [21] on top of it, a shortest service path
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(shown in bold lines) can be calculated, and after which next service hop (shown
in shadow) that optimizes the overall path length is chosen. In Figure 4(b), once
at p1, p1 probes the resource conditions of three instances of next service in
the request - s2/p3, s2/p4, and s2/p5. Figure 4(b’) shows how p1 chooses the
most delay-efficient and QoS-satisfied next service hop. Note that in this case,
the probed bandwidth between p1 and p3 does not meet the requirement, thus
the correspondent link is deleted (shown in dashed line) from the service DAG.
Such a hop-by-hop process continues until all of the services in the request are
resolved. We name such an approach GLG, which stands for geometric location
guided.

Since LRA and GLG are intended for individual optimization goals (load
balancing and delay respectively), it can be predicted each one will perform
poorly in terms of the non-optimized metric. For example, LRA would have
poor performance in terms of delay, and likewise, GLG would perform poorly in
terms of load balancing. If we are to consider both metrics at the same time,
then combining LRA and GLG would be necessary. Two derivatives exist: LRA-
GLG and GLG-LRA. In the first one, each hop first identifies the next service
hops that potentially lead to shortest service paths, and then among them, it
makes its selection based on their resource conditions. As an example, if at a
network node p, p detects that both sp1 = (p → s1/pα → . . . → pd) and
sp2 = (p → s1/pβ → . . . → pd) are two potential shortest service paths, then
p may decide which one to go, either pα or pβ , based on pα and pβ ’s resource
conditions. The second derivative, LRA-GLG, is different from GLG-LRA just
in the order of application of two routing features.

5 Pure Service Multicast

When a multimedia stream is delivered to a group of users that require dif-
ferent transformational rules on the stream, then instead of having the stream
transformed and delivered through multiple independent service paths, a more
efficient way is to construct a service multicast tree for the transformation and
delivery purposes. To support the dynamic membership feature of many multi-
media applications, we take an incremental approach for service multicast tree
building, which means that one service path/branch is constructed at a time to
cover the newly joining member.

A key issue in multicast tree building is the graftable on-tree node concept. For
example, in the PIM protocol, a newly joining member m’s request is forwarded
towards the source. If the request hits some on-tree node n before reaching the
source, then n is said to be the graftable on-tree node for m, and a branch starting
from n and ending at m is usually constructed to cover m.

Unlike the conventional data multicast, where every on-tree node functionally
qualifies as a graftable node for all other group members, in service multicast, due
to the functionality issues, not all on-tree nodes functionally qualify as graftable
nodes for other joining members. Rather, an on-tree node n only qualifies as a
graftable node for a member m (whose service request is r) if n’s up-tree service
path (the service path from the root to n) is a prefix of r. Let sp = (ps →
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s1/pα → s2/pβ → s3/pγ → s4/pδ . . . → pd1) denote a service path, and let
r = (ps, s1 → s2 → s3 → s5 → . . . , pd2) denote a service request, then several
nodes in sp qualify as functionally graftable service node for r: ps, s1/pα, s2/pβ,
and s3/pγ . To maximize service sharing, we use the longest match (prefix) [10]
criterion when selecting a graftable service node. We call the graftable service
node selected by the longest prefix criterion the best functionally graftable service
node. In this case, s3/pγ is the best functionally graftable service node, because
the longest prefix of sp and r is prefix = s1 → s2 → s3 and prefix’s last service
s3 is mapped onto pγ .

Construction of our service multicast tree will take the following procedures
(an example will be shown later in the section). Each member joining the mul-
ticast group would send its request r towards the source through the organized
overlay network topology (Delaunay triangulation) by using compass routing.
For each overlay node ni that is hit by the request, it is verified if ni is an on-
tree node. If it is not, then ni simply forwards the original request to the next
hop (computed by compass routing) towards the source, and if it is, it tries to
match r with the locally maintained functional service tree Tf (maintenance of
Tf will be discussed further later) to identify the best functionally graftable ser-
vice node n, and forwards the request accordingly. Between n and m, a service
branch can be constructed hop-by-hop by using a unicast service routing solu-
tion described in Section 4. Note that with a prefix of r satisfied by the found
graftable node, we only need to find a service branch for the suffix of r between
n and m.

We now briefly describe the tree maintenance issue. In data multicast, routers
express their join/leave interests through IGMP (Internet Group Management
Protocol), and since a router has one single function (to forward data as is), it
basically needs to be only aware of its children in the multicast tree. However, the
similar does not hold in service multicast due to service functionality constraints.
Rather, to enable an on-tree node to identify graftable service nodes for others, it
needs to keep the functional tree information of the multicast group. This implies
that whenever the functional aspect of the service tree has been modified, tree
state needs to be updated in all current on-tree proxy nodes by broadcasting
adequate control messages. Although because of the possible loop issue in service
routing, a single proxy may appear in multiple positions of a functional service
tree, only one copy of the tree needs to be maintained per proxy.

Figure 5 depicts an example of how a pure service multicast tree is built and
maintained. In Figure 5(a), assume pd1 is the first member who joins the group.
After pd1 has joined the group, the on-tree proxy nodes ps, p1, p4, p7, and pd1 will
maintain a functional service tree Tf depicted at the right side of Figure 5(a).
When pd2 joins, a service request r2 = (ps, s1 → s2 → s4, pd2) is sent from pd2

towards the source by using compass routing, and the request hit an on-tree node
p1 before it reaches ps. Since every on-tree node maintains Tf , p1 found that p4

is the best functionally graftable node for the current request, thus the request
is forwarded to p4. In Figure 5(b), a service branch is established hop-by-hop
from the graftable node p4 to pd2. Since the graftable node p4 already satisfied
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Fig. 5. (a) A service request message is sent from the newly joining member pd2 towards
the source by using compass routing, and the request hit an on-tree node p1 before it
reaches ps. Since every on-tree node maintains Tf , p1 found that p4 is the best graftable
node for the current request, thus the request is forwarded to p4; (b) a service branch
is established hop-by-hop from the graftable node p4 to pd2.

a prefix of r2, only the correspondent suffix needs to be satisfied by the service
branch from p4 to pd2. After pd2 joins, the functional service tree Tf maintained
by all on-tree nodes becomes that on the right-side figure of Figure 5(b). Note
that Tf only needs to be updated if the functional aspects of the tree have been
modified. If, a third join request has the form r3 = (ps, s1 → s2 → s3, pd3), then
pd3 can get attached to p7, and the functional service tree remains unchanged.

It is easy to see that service multicast definitely helps to save machine re-
sources because each service in the functional service tree gets executed only
once. It should also reduce network bandwidth usages compared to service uni-
cast, as in most of the cases, we can expect the length of a service branch
(satisfying only the suffix of the request) to be shorter than an individually built
service path that needs to satisfy the whole request.

6 Hybrid Multicast

In pure service multicast, each service branch gets directly attached to its best
functionally graftable node. However, in such an approach, bandwidth usage
may not have been optimized. An example is illustrated in Figure 6(a): the
proxy offering the MPEG2H261 transcoding service needs to send four separate
copies of transformed data to its downstream nodes. Likewise, the node of quality
filter will send two separate copies of filtered data to the downstream nodes. This
may cause data delivery in those sub-groups to be sub-optimal. First, it may be
expensive to do so, because bandwidths need to be separately allocated. Second,
after a node’s (e.g., the one offering MPEG2H261) outbound network bandwidth
usage reaches its limitation, then no new service branches can be created starting
from this point.

We address these weaknesses by further employing data multicast in the local
sub-groups. Although IP-layer multicast would be an option, in this research,
we will only exploit data multicast at the application layer because the real
deployment of multicast at the IP layer has been hindered by its need of change in
the infrastructural layers. Two feasible application-layer data multicast trees (for
subgroups 1 and 2) can be built as shown in Figure 6(b). In addition to boosting
the overall cost efficiency of the service tree, exploring data multicast would also
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Fig. 6. (a) Pure service multicasting; (b) hybrid multicasting (service multicasting +
data multicasting).

increase the success rate in finding QoS service branches when resources are
scarce.

To realize such a hybrid multicast scenario, the distributed approach requires
each on-tree proxy and/or service node to keep two trees: one for the global
functional service tree, and the other for local data distribution tree, which we
denote as Tf and Td respectively. Since two types of tree exist in the hybrid
multicast case, we will call nodes on the functional tree Tf on-functional-tree
nodes to explicitly mean they are nodes providing specific functionalities, rather
than nodes that only perform relay of data. The same as in pure service multicast,
each on-functional-tree proxy will keep an updated Tf , which is the functional
service tree of the whole multicast group. In addition to Tf , each on-tree service
node n also keeps a Td, whose root is itself, and whose lower-level members
are its children in Tf (Td should also maintain the location information of its
nodes, for some purpose that will be clear soon). While Tf is global and its
maintenance is still to enable on-functional-tree nodes to individually search
for functionally graftable nodes for other joining requests, Td is local and is
maintained for exploiting benefits of data multicast in subgroups.

When a new service branch b gets attached to a graftable node n, initially,
n’s Td will have b’s first node (say n′) attached to itself. However, as n is aware
of the geometric locations of its Td’s nodes, it will be able to identify which
nodes are closer to n′ than itself. If there is any such node, then n will initiate a
parent switching protocol, so that at the end, n′ gets attached to a closer parent
with sufficient network bandwidth. Note that the parent switching protocol is
only for switching parent in the local data distribution tree, it does not affect
the global functional service tree.

The parent switching protocol works as follows. First, n sends n′ a list of nodes
which are closer in an increasing order of distance. Upon receiving the list, n′

starts to probe the listed nodes for the bandwidth conditions one by one in an
increasing order of distance. Once it finds a node whose outbound bandwidth
to n′ is sufficient for supporting the data stream, n′ sends a request of parent
switching to n, so that n will update n′’s parent in its Td. Different from Tf ,
which is maintained by every on-functional-tree proxy, a different Td needs to
be maintained by every on-functional-tree service node. This means that if a
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Fig. 7. Exploring data multicast in a service multicast scenario: (a) a new service
branch’s first node, p8, is initially directly attached to the graftable service node p4 (p4

as p8’ parent in the local data distribution tree); (b) p8 gets parent-switched to p7 in
the data distribution tree.

single proxy offers different services in the multicast group, then it needs to keep
multiple data trees (one per each service it offers).

Figure 7 depicts what the global functional service tree and the local data
distribution tree would look like in the scenarios. In Figure 7(a), right after
Pd1 and Pd2 have successfully joined the multicast group, the functional service
tree kept by all on-tree service nodes and the data distribution tree at s2/p4

are shown on the right side of Figure 7(a). Subsequently, inside the subgroup
(circled), the parent switching protocol will take place. Suppose p7 is closer to
p8 than p4, and suppose from p7 to p8 there is sufficient bandwidth to support
the data stream, then p8 will ask p4 to switch parent, after which p4’s data
distribution tree becomes the one shown on the right side of Figure 7(b).

It is clear that with the employment of local data multicast, end-to-end
service paths may become longer than in pure service multicast. However, such
a performance degradation is justified by savings on network bandwidths.

7 Performance Study

We implemented service routing (service unicast, pure service multicast, and hy-
brid multicast) in the well-known network simulator ns-2. This section is devoted
to performance studies of the proposed approaches.

7.1 Evaluation Methodology

Our physical Internet topologies are generated by the transit-stub model [22], by
using the GT-ITM Topology Generator software. A number of physical nodes are



128 Jingwen Jin and Klara Nahrstedt

randomly chosen as proxy nodes, whose service capability and machine capacity
are randomly assigned by some functions. The end-to-end available bandwidth
from an overlay proxy node a to another overlay proxy node b is the bottle-
neck bandwidth of the shortest physical path from a to b. Among the physi-
cal network nodes, a small set of them are chosen to be the landmark nodes
– L, based on which the proxies can derive their coordinates in the geomet-
ric space defined by L[17]. We use planar geometric spaces in our simulations,
and calculation of geometric coordinates is done by using the software available
at http://www-2.cs.cmu.edu/˜eugeneng/research/gnp/. Construction of the De-
launay triangulation overlay mesh for control message purposes is aided by the
Qhull software developed by the Geometry Center at University of Minnesota
(http://www.geom.umn.edu/software/qhull).

We use the following performance metrics in the evaluations:

– Link Utilization: is the ratio of used bandwidth to the total initial bandwidth
of the physical network links that measures how much the physical links are
loaded. The ratio may range between 0 to 1: at 0, the physical link has zero
load; at 1, the link is fully loaded.

– Proxy Utilization: is the ratio of amount of machine resources in use to the
machine’s total initial amount of resources. In simulations, we represent a
machine’s computing capacity as a single numerical value, although in reality,
it should be a resource vector of multiple parameters (e.g., memory, cpu).

– Service Path Length: is the sum of individual virtual link lengths that make
up the service path, where the virtual link lengths are end-to-end delays.

– Delay × Bandwidth Product: The purpose of this metric is to measure the
volume that the data occupies in the network. For example, if the streaming
data requires 2MB of bandwidth on a physical link whose single trip delay
is 10ms, then the volume of data is said to be 20MB*ms.

– Path Finding Success Rate: is the rate of finding service paths successfully.
Service path finding failures may occur when resources are scarce, or when
there is no instance of the required service(s). However, in our following tests,
there will be always at least one instance of each service in the system, thus
failures can only be caused by resource scarcity.

7.2 Performances of Different Service Unicast Approaches

In this section, we measure performances of the different service unicast ap-
proaches (GLG, LRA, GLG-LRA, and LRA-GLG) described in Section 4 in
terms of all listed performance metrics.

The simulation settings for these tests are as follows. The physical networks
contain 300 nodes, and among them, 10 are landmarks and 250 are proxies.
We randomly generated 1000 service path requests between randomly selected
pairs of proxies. We compare the performances under two different resource
settings: one with sufficient resources to admit all service requests, and the other
with insufficient resources, where late join requests may be rejected because of
resource scarcity. For each scenario, we run two test cases.
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Fig. 8. Comparisons of: (a) physical link utilization; (b) proxy utilization; (c) service
path length; (d) delay bandwidth product; and (e) path finding success rate among the
different service unicast approaches.

Sufficient-resource settings: In this case, since all service requests get suc-
cessfully admitted, the performance metrics of interest are link utilization, proxy
utilization, service path length, and delay bandwidth product. Figure 8 (a) and (b)
show the physical network link and proxy utilization of the different approaches.
As has been predicted, since GLG genuinely seeks shortest QoS-satisfied service
paths, load balancing in both respects is poor. This is indicated by the fact that
the GLG curves are steepest. LRA does in fact help to keep a more balanced
network and machine load, as the next service hop is the one that maximizes an
aggregate function of available bandwidth and machine capacity. On the other
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hand, LRA performs poorly in terms of service path length (Figure 8 (c)) and
delay bandwidth product (Figure 8 (d)), because service paths computed by LRA
are long, and therefore demand more network resources. However, this time
GLG performs best, because service paths computed by this approach tend to
be short, and as such, require less network resources. GLG-LRA’s performances
are quite close to those of LRA, and LRA-GLG has the best performances in
these two respects.

Insufficient-resource settings: After certain resources get exhausted, a join
request may be denied. The performance metric of interest in such an insufficient-
resources scenario is path finding success rate which, in some way, indicates how
well load balancing is achieved. Figure 8(e) shows the path finding success rates
of the different service unicast approaches. As has been expected, since GLG
does not take load balancing into consideration, certain resources may become
exhausted more quickly than other approaches that consider load balancing, and
as a consequence, path finding success rate was lowest in GLG.

From the above performance analyses, we see that none of the approaches
performs best in all aspects: GLG’s performances in terms of service path lengths
and delay-bandwidth product are significantly superior to others’, but is worst in
path finding success rates; LRA is one of the best in finding service paths suc-
cessfully, but incurs longer service paths than others and as a consequence, tends
to require more network resources. LRA-GLG seems to have best balanced these
contradictory factors, as it incurs relatively short service paths while maintaining
a high path finding success rate.

7.3 Service Unicast vs Pure Service Multicast vs Hybrid Multicast

In this section, we study the performance benefits of employing pure service mul-
ticast and hybrid multicast. Since LRA-GLG is the best service unicast approach
that balances load and optimizes path lengths at the same time, constructions
of multicast tree branches adopt LRA-GLG when selecting service hops. The
two multicast approaches, pure service multicast and hybrid multicast, will be
compared against the corresponding service unicast solution, which is unicast
LRA-GLG.

Sufficient-resource settings: Simulations are run for multicast group size of
100, where service requests are drawn from a pool of size 20. As we can see from
Figure 9 (a), hybrid multicast yields better bandwidth (link) utilization than
pure service multicast. However, there is not too much difference in proxy uti-
lization between pure service multicast and hybrid multicast (Figure 9 (b)). This
is expected, because local data multicast does not further diminish the number
of service executions. Compared to service unicast, both types of multicast incur
longer end-to-end service paths (Figure 9 (c)), but less total tree lengths (Fig-
ure 9 (d)) due to service path sharing. Not surprisingly, the two multicast cases
yield tremendous delay bandwidth product savings compared to unicast (Fig-
ure 9 (e)). While it is intuitive that advantages of hybrid multicast over service



On Exploring Performance Optimizations in Web Service Composition 131

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450 500

ut
ili

za
tio

n 
(%

)

physical links

Link Utilization

Service Unicast
Service Multicast
Hybrid Multicast

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160

ut
ili

za
tio

n 
(%

)

proxies

Proxy Utilization

Service Unicast
Service Multicast
Hybrid Multicast

1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
End−to−End Service Path Length

test cases

av
er

ag
e 

se
rv

ic
e 

pa
th

 le
ng

th
s 

(n
or

m
al

iz
ed

)

UNICAST
SERVICE MULTICAST
HYBRID MULTICAST

1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Total Service Path/Tree Length

test cases

to
ta

l s
er

vi
ce

 p
at

h/
tr

ee
 le

ng
th

s 
(n

or
m

al
iz

ed
)

UNICAST
SERVICE MULTICAST
HYBRID MULTICAST

1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delay Bandwidth Product

test cases

no
rm

al
iz

ed
 d

el
ay

 b
an

dw
id

th
 p

ro
du

ct

UNICAST
SERVICE MULTICAST
HYBRID MULTICAST

1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Path Finding Success Rate

test cases

pa
th

 fi
nd

in
g 

su
cc

es
s 

ra
te

UNICAST
SERVICE MULTICAST
HYBRID MULTICAST

Fig. 9. Comparisons of: (a) physical link utilization; (b) proxy utilization; (c) end-to-
end service path length; (d) total service path/tree length; (e) delay bandwidth product;
and (f) path finding success rate among the different delivery modes: service unicast,
pure service multicast, and hybrid multicast.

multicast (and multicast over unicast) increase with the multicast group size, it
would be interesting to quantify the gains in the future work.

Insufficient-resource settings: Since the major purpose of designing hybrid
multicast was to make even better network bandwidth usage than pure service
multicast, in this test, we only make bandwidth scarce. As Figure 9 (f) shows,
service path finding success rate increases dramatically from unicast to the two
cases of service multicast, and hybrid multicast over-performs pure service mul-
ticast.
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8 Conclusions

In this paper, we have explored performance optimizations in Web service com-
position in several respects. First, we made an improvement over an existing
hop-by-hop service unicast solution – LRA – that makes routing decisions based
on local heuristics only, by introducing and using the geometric location in-
formation of the Internet hosts. The geometric location guidance (GLG) can
significantly reduce service path lengths compared to LRA. We studied differ-
ent combinations of GLG and LRA in terms of several performance aspects.
The simulation performances showed that LRA-GLG best balances the trade-
offs. Second, the paper proposed a fully distributed approach for incrementally
building service multicast trees, by identifying and solving several key differ-
ences (e.g., graftable node, tree maintenance) between service multicast and the
conventional data multicast. Advantages of pure service multicast over service
unicast were also verified through simulations. Third, We proposed to further
explore benefits of data multicast inside service multicast scenarios, and pro-
vided a hybrid multicast solution. We showed how this can be realized, and by
how much hybrid multicast can outperform pure service multicast.

Due to space limitations, failure recovery issues have been left out. Recovery
operations are called for when a physical node or link fails. Since loops are
allowed in service routing, failure of a single physical node may trigger failures
of several points in the service path/tree. As an example, assume a single service
path sp = (ps → s1/pα → s2/pβ → s3/pα → . . . → pd), if pα fails, then
two service nodes (s1/pα and s3/pα) need to be repaired. Failure recovery is
even more complex in multicast scenarios; special failure detection and recovery
mechanisms will be needed. We plan to address these issues in our future work.
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