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ON EXPLOSIONS OF SOLUTIONS TO A SYSTEM OF
PARTIAL DIFFERENTIAL EQUATIONS

MODELLING CHEMOTAXIS

W. JÄGER AND S. LUCKHAUS

Abstract. A system of partial differential equations modelling chemotactic ag-

gregation is analysed (Keller-Segel model). Conditions on the system of param-

eters are given implying global existence of smooth solutions. In two space

dimensions and radially symmetric situations, explosion of the bacteria con-
centration in finite time is shown for a class of initial values.

1. Introduction

The aggregation of organisms sensitive to a gradient of a chemical substance
has been of great interest to biologists and mathematicians, trying to model
and to simulate the observed pattern formation. The most familiar example

of a species showing chemotactic movement is dictyostelium discoideum [G]

Model equations were set up and analysed e.g. by Keller and Segel [K-S], W.

Alt [Al, A2], and R. Schaaf [S]. The following model was introduced by Keller
and Segel to describe the dynamics of a population (concentration u) moving
in a domain Í2 and following a gradient of a chemotactic agens (concentration
v) produced by the population itself,

dtu = Au-xV(uVv)   inQ,

dtv = yAv - pv + ßu,

u(0,-) = u0,        v(0,-) = v0,        Uo,v0>0,

dvu(t,-) = dvv(t,-) = 0   ondQ.

X, y, p, ß are positive constants. Due to the experimental facts the diffusion

coefficient of the substance v is assumed to be large, of order \ , e small, and

ß = ya where a and p are of order 1. From equation (1) we obtain

ü(t)=üö, -(dt - p)v = aü = áü~o~,

where w denotes (l/\Cl\) Jawdx. Therefore, if we consider v := v -v we get

i(d. - p)v = Av - a(u - uö). Hence, for small e we may consider the system

(2) dtu = Au-x^iuVv),        0 = Av -aiu-uf).
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Rescaling
._ v * = JL

aü~o~' «rj

leads to the system

(3) dtu*=Au*-x*Viu*Vv*),     0 = Av*-(u*-l),     X* = aüöX ■

In the following we will drop the * on u and v . By the maximum principle

we immediately obtain that for any solution (u,v) we have u > 0. v can be

directly computed if we know u .

We shall study the dynamic behavior of this approximating system and show

that for small x* there exists a unique smooth global positive solution u if

the initial datas are smooth. For large x* and n > 2 there exist solutions

u which explode in finite time. Explosion in chemotaxis has been observed

by Childress [C]. In this behavior the model equations are showing an effect

similar to the formation of fruiting bodies observed in colonies of chemotactic

microorganisms [G].

2. Mathematical results

We assume that Q is a bounded open set in R2, «9Í2 is a C1-boundary, Mn

is C1 and satisfies the boundary condition.

Theorem, (a) There exists a critical number c(il) such that a -üö • X < c(íl)

implies that there exists a unique, smooth positive solution to (3) for all time.

(b) Let Q be a disk. There exists a positive number c* with the following

property. If a • uôx > c* ihen radially symmetric positive initial values can be

constructed such that explosion of u happens in the center of the disc in finite
time.

More exactly, the following statement, implying (a), holds.

Proposition. Let Q be a domain satisfying the smoothness assumptions.

Let u be a smooth positive solution to (3) and t* the maximal time of exis-

tence, 0 < t* < +oo. There exists a positive number cx (¡Q) such that t* < oo

implies

(4) lim hm** [ (u- k)+ dx > c{(Q).
fc-»oo /Tí* Jçi

Remarks, (i) (a) contains information on the rate of explosion if it happens in

finite time.
(ii) It would be interesting to know more about the set of explosion points

at t*. The solution may globally exist as weak solutions. The development of

singularities after a finite time t* is another important topic to be studied.
(iii) Global existence of smooth solutions to systems similar to ( 1 ) was studied

recently by Pozio and Tesei [P-T].

3. A priori estimates

We are going to prove the proposition (a) concerning smooth solutions for

small time. Consider the test function (p = (u- k)+~l where k > 0, m > 1,

and multiply the system

(5) dtu-Au + x*V(uVv) = 0,        -Av-(u-l) = 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PARTIAL DIFFERENTIAL EQUATIONS 821

by tp and integrate over Q. Partial integration leads to

0 = 4-— Í (w - *)7 dx + A^-^- [ \V(u - k)f>2\2 dxdt m Jçf        /+ m2   Ja

-X* Jjv-v[^-(u-k)^ + k(u-k)^dx.

We use the second equation of (5) in order to compute the last integral /.
Collecting the proper terms we get

m - 1
/ =

m

2m-1

m

Altogether, we obtain

Í (u-k)™dx + k f(u- k)™~1 dx - -^-i- Í (u - k)™+l dx

f (u-k)™dx-k2 ((u-k)f-ldx.
Ja Ja

~ f(u-k)^dx + 4^-^- f \V(u-k)"l2\2dx
dt m Jçf m2   Ja

-X*^—^- f(u-k)^+ldx
(6) m    Ja

+ X*k(k-1) [ (u-k)™~xdx.
Ja

The integral with power m + 1 has to be estimated. To this purpose we may

¿Ichoose k large enough such that measure{x|(u - k)+(x) = 0} > i|£2|.  We
apply the Sobolev inequality in the case n = 2,

Í tp2dx<cx(Q) ( [ \Vtp\dx\

and obtain

jiu - k)™+i < cx(Q) ( j |V(w - k){f+l)/2\ dx)

<Cl(Q)^±I)  J¿u-k)+dxJjV(u-k)™/2\2dx.

Setting (u - k)f   =:w,we have, using the Cauchy-Schwarz inequality,

\V(u - k){f+l)'2\ = \Vw{+x""\ = ^-^-\wl'm\ - IVwI .
m

The inequality implies

4^ / lv(" - ^)+/2|2 dx - ** — ¡iu- k)rl dx
m2   Ja m    Ja

- —(=£*) «tßwfi-v,*m2

x / \V(u-k)fl2\2dx.
Ja
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If the inequality (4) does not hold, we could estimate the bracket { } by a
positive number for t close to t* and k large, t > to, k > ko . Thus we would

get from (6),

(?)       4- [ iu-k)™dx<c2iCl,k) + c3(k) f(u-k)™dx   for t > r,
dt Ja Ja

and therefore finally obtain a bound for the Lm -norms of the solution.

Using the equations (5) and standard arguments for elliptic and parabolic

equation, one can control all Sobolev-norms needed to show smoothness for all

time.

4. Blow up of radially symmetric solutions

We now prove part (b) of the theorem. The main tool is the construction

of the lower solutions, but not to the system directly. We restrict ourselves to

radially symmetric case and remark that radially symmetric smooth initial datas

imply the local existence of smooth symmetric solutions.

i-Vp
Uit,p):=        (u(t, r) - l)r dr,        r = \x\,0<p<R.

Jo

Integrating the first equation of (5) over B^p = {\x\ < ^fp} , we obtain for each

term,

-/.

/      dtudx = 2ndtU(t, p),
Jb^p

Audx = 2nsfpdrpU(t, yfp)
RsfP

I
= 2n^pd^ (ApdJ) U(t, p) = inpd2U(t, p),

V(uVv) dx = 2n^fpudwrpV
i

= (2dpU+l)[     Av dx =-2n(dpU2 + U),
Jb.íd

and therefore

(8) dtU-4pd2U-x*dpU2-x*U = 0.

U satisfies the following initial-boundary conditions

U(0,p)= [    (uo-l)rdr,        U(t, 0) = U(t, R) = 0.
Jo

We may assume that the initial values «o are such that U(0, •) > 0 in ]0, R[.

This can be obtained by a positive function monotonely decreasing with respect

to r and sufficiently large at the origin. See the Figure.

We now construct a subsolution W satisfying

(9) dtW-ApdjW -X*dpW2-x*W <0,

W(0,p)<U(0,p),        W(t,0) = W(t,R) = 0
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Figure

1, 3 Graphs of subsolution W at time fo and time t\ < t.

2 Graph of solution U at time io.

and therefore W(t, p) < U(t, p) for all t, p considered. We shall produce a

weak subsolution up to time 7, such that

(10) lim sup W(t, p) > co > 0
t^'t p<£

for each e > 0. This will mean blow up must have occurred at a time t* < 1

in the center of the disk.
Choose parameters 0 < p\ < P2 < 1, and define

t    ap

W(t,p) = l
P + T3

for p< pi,

K1-'-0^) for"i'-

where

r = Po~bt, y=(l-pi-l£lj£ll} apx

Pi      J     Pi + r*'

a, po, b are parameters to be chosen such that (9) holds.  Obviously (10) is

satisfied by this W. For p < p\ we obtain

3br2
dtW-   ^f-^-W,    dpW■-

p + r5 ip + T*)2
w,

dtW - 4pd2W - 2x*WdpW - x*w

for 0 < p < 1, if

ax* - 4 > 0   and   b <
ll(2-ax*-S)xt
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For p > p\ we compute

r2

dtW=tW=™l_W,        dpW = -y{t)(l-2{P2-p)+\,
7 Pi + r3 p n'\ Pi       J '

r -2y(0    ,

I for p > p2,

«W - 4/7Öp2IF - 2x*HrÖ/,IF - x'rV

,2M+ _8 /   _    *\l,p <0
I    />1 /»2(1 -/»2> V I-P2J)

if a <\(i - pf), X* > 8/>2(l - Pi- 2a) and «?>/>o sufficiently small.
In p = px, the first derivative with respect to p has a positive jump and

therefore the correct sign. Assume that U(0, •) is strictly positive in ]0, 1[.
Since

dpU(0, 0) = {(u0(0) - 1) > 0,        dpU(0, 1) = \(u0(0) - 1) < 0

by assumption and

dpW(0,0) = a/pl        dpW(0,l) = -y(0),

we can p0 choose large enough in order to obtain W^O, •) < U(0, •). Thus,

the comparison is possible. The explosion time is bounded by po/b .

References

[Al]      W. Alt, Orientation of cells migrating in a chemotactic gradient, Lecture Notes in Biomath.,

vol. 38, Springer-Verlag, 1980, pp. 353-366.

[A2]      _, Biased random walk models for chemotaxis and related diffusion approximations, J.

Math. Biol. 9 (1980), 147-177.

[C]        S. Childress, Chemotactic collapse in two dimensions, Lecture Notes in Biomath., vol. 55,
Springer, 1984, pp. 61-68.

[G]        G. Gerisch et al., Philos. Trans. Roy. Soc. London Ser. B 272 (1975), 181-192.

[K-S]    E. F. Keller and L. A. Segel, J. Theoret. Biol. 26 (1970),

[K]       E. F. Keller, Assessing the Keller-Segel model: How has it fared, Lecture Notes in Biomath.,

vol. 38, Springer-Verlag, 1980, pp. 379-387.

[P-T]    M. A. Pozio and A. Tesei, Global existence of solutions for a strongly coupled parabolic

system, Preprint, Istituto per le Applicatione del Calcólo "Mauro Picone", Roma, 1988.

[S]        R. Schaaf, Global branches of one dimensional stationary solutions to chemotaxis systems

and stability, Lecture Notes in Biomath., vol. 55, Springer, 1984, pp. 341-349.

Sonderforschungsbereich 123, Universität Heidelberg, Im Neuenheimer Feld 294, W-

6900 Heidelberg, Germany

Institut für Angewandte Mathematik, Universität Bonn, Wegeler Strasse 6, W-5300
Bonn 1, Germany

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


