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0 Introduction

The purpose of this paper is to establish certain multilinear exponential sums
in arbitrary finite fields, extending some of the results from [B] for prime
fields.

Let us first recall the main result from [B].

Theorem A. Let 1 > δ > 0 and r ∈ Z+, r ≥ 2. There is δ′ >
(

δ
r

)Cr
such

that if p is a sufficiently large prime and A1, . . . , Ar ⊂ Fp satisfy

|Ai| > pδ for 1 ≤ i ≤ r (0.1)

r
∏

i=1

|Ai| > p1+δ. (0.2)

Then we have the exponential sum bound
∣

∣

∣

∑

x1∈A1,...,xr∈Ar

ep(x1 . . . xr)
∣

∣

∣
< p−δ′ |A1| . . . |Ar|. (0.3)
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Consider now a field Fq, q = pn. An obvious issue one encounters with
a generalization of Theorem A is the presence of non-trivial subfields. More
surprisingly perhaps, it turns out that even if Fq has no large non-trivial
subfields, the condition (0.2) still needs to be modified.

Theorem 3 on p. 20 below implies the following statement:

Theorem B. Let 0 < δ, δ2 < 1 and r ∈ Z+, r ≥ 2. Let q = pn be sufficiently
large and A1, . . . , Ar ⊂ Fq satisfy

|Ai| > qδ for 1 ≤ i ≤ r (0.4)

|Ai ∩ (aG + b)| < q−δ2 |Ai| for 3 ≤ i ≤ r, (0.5)

whenever a, b ∈ Fq and G a proper subfield

|A1|.|A2|.
r

∏

i=3

|Ai|
1

2 > q1+δ. (0.6)

Then, denoting ψ(x) = ep(TrFq/Fp
x), we have

∣

∣

∑

x1∈A1,...,xr∈Ar

ψ(x1 . . . xr)
∣

∣ < q−δ′ |A1| . . . |Ar| (0.7)

where we may take δ′ = C
− r

δ2

(

δ
r

)Cr
.

Remarks.

(0.8) Condition (0.5) may in fact be replaced by

|Ai ∩ (aG + b)| < |Ai|1−δ2 (3 ≤ i ≤ r).

It follows in particular that if we fix the characteristic p and let n be

prime, we may take δ′ =
(

c δ
r

)Cr
.

(0.9) Assume |A1| = · · · = |Ar| = qσ. Condition (0.6) becomes then

σ >
2

r + 2
. (0.10)

This condition is in some sense optimal, as seen from the obvious ex-
ample Fq = Fpn = Fp[ξ], r = n− 1, A1 = · · · = Ar = Fp + ξFp, σ = 2

n
.
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Multilinear exponential sums arise naturally if one applies Weyl’s differ-
encing scheme to Gauss sums. More precisely, consider B ⊂ Fq, r ∈ Z+, r ≥ 2
and

S =
∑

x∈B

ψ(xr) (0.11)

with ψ as above.
One obtains (cf. [Sch], Lemma 3.1)

|S|2r−1 ≤ |B − B|2r−1−r
∑

x1∈B−B

· · ·
∑

xr−1∈B−B

∣

∣

∣

∑

xr∈B(x1,...,xr−1)

ψ(2rr!x1 · · ·xr)
∣

∣

∣

(0.12)
where

B(x1, . . . , xr−1) =
1

⋂

ε1=0

· · ·
1

⋂

εr−1=0

(B − ε1x1 − · · · − εr−1xr−1). (0.13)

If B ⊂ Fq is a linear subspace over Fp, we derive immediately from Theorem
B and the preceding

Theorem C. Let r ∈ Z+, r ≥ 2, p > r and V a linear subspace of Fpn over
Fp of dimension

m = dim V > (1 + δ)
2n

r + 2
. (0.14)

where 0 < δ < 1.
Assume further that

|V ∩ aG| < q−δ2pm (0.15)

if G is a proper subfield, a ∈ F∗
pn.

Then (assuming q large enough)

max
a∈F∗

q

∣

∣

∣

∑

x∈V

ψ(axr)
∣

∣

∣
< q−δ′pm with δ′ > C

− r
δ2

(δ

r

)Cr

. (0.16)

From Remark (0.9), we see that condition (0.14) on dimV is essentially
optimal.

If e1, . . . , en is an (arbitrary) basis of Fq over Fp, we define a ‘box’ as a
translate of a set

B = {t1e1 + · · ·+ tnen| 1 ≤ ti ≤ Hi, 1 ≤ i ≤ n} (0.17)
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where 1 ≤ H1, . . . , Hn ≤ p. For H1 = · · · = Hn = H , denote (0.17) by BH .
One easily verifies that if G is a proper subfield of Fq and a, b ∈ Fq,

|BH ∩ (aG + b)| ≤ |BH | 12 . (0.18)

Also, in (0.13), the set BH(x1, . . . , xr−1) ia a union of at most 2nr boxes (0.17)
with Hi ≤ H .

From (0.12), one obtains therefore

|S|2r−1 ≤ 2nr|B−B|2r−1−r
∑

x1,...,xr−1∈B−B

n
∏

i=1

min
(

H,
∥

∥

∥

2rr!

p
Tr(x1 . . . xr−1ei)

∥

∥

∥

−1)

.

(0.19)
Denote ϕ = ϕH the function on Fp

ϕ(z) = min
(

H,
∥

∥

∥

z

p

∥

∥

∥

−1)

, z ∈ Fp (0.20)

and

ϕ̂(t) =
1

p

∑

0≤z<p

ϕ(z)ep(−tz). (0.21)

Hence
ϕ(z) =

∑

0≤t≤p

ϕ̂(t)ep(tz)

and

cH <‖ϕ̂‖1 < C(log p)H (0.22)

‖ϕ̂‖2 =
1√
p
‖ϕ‖2 ∼ c

√
H. (0.23)

Thus

(0.19) = 2nr|B − B|2r−1−r
∑

x1,...,xr−1∈B−B

n
∏

i=1

ϕ
(

2rr!(Trx1 . . . xr−1ei)
)

= 2nr|B − B|2r−1−r
∑

x1...xr−1∈B−B

∑

x∈Fq

α(x)ψ(x1 . . . xr−1x) (0.24)
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where

α(x) =
n

∏

i=1

ϕ̂(ti) for x = t1e1 + · · · + tnen

satisfies by (0.22), (0.23)

(cH)n < ‖α‖1 < Cn(log p)nHn (0.25)

‖α‖2 ∼ CnHn/2 (0.26)

The double sum in (0.24) is estimated using Theorem 3 (stated on p. 20),

taking α1 = α
‖a‖1

and α2 = · · · = αr =
1|B−B|

|B−B|
.

Take H = pσ and σ satisfying

σ > (1 + δ)
2

r + 2
(0.27)

(0 < δ < 1). Assume p > p(r, δ). It follows from (0.18) that (8.3) holds
with δ2 = σ

2
. From (0.25), (0.26) and (0.27), (8.2) and (8.4) hold with

δ = min
(

δ
4
, σ

2
). From (8.5), we obtain

|(0.24)| < Cn2r |B|2r−1−1‖α‖1q
−δ′ < Cn2r

(log p)n|B|2r−1

q−δ′ (0.28)

with δ′ > C− r
σ

(

δ
r

)Cr
.

Hence, we proved

Theorem D. Let q = pn, r ∈ Z+, r ≥ 2, 0 < δ < 1 and p > p(r, δ). Let
H = pσ, with

σ > (1 + δ)
2

r + 2
(0.29)

and BH ⊂ Fq the box as defined above. Then, with δ′ > C− r
σ

(

δ
r

)Cr

max
a∈F∗

q

∣

∣

∣

∑

x∈BH

ψ(axr)
∣

∣

∣
< Cn(log p)n2−r+1

q−δ′Hn. (0.30)

Remarks.

1. Both Theorem C and Theorem D remain of course valid if we replace
axr by an arbitrary polynomial f(x) = arx

r+ar−1x
r−1+· · ·+a0 ∈ Fq[X]

with ar 6= 0, as r-fold Weyl differencing leads to the same multi-linear
expression (0.12).
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2. Theorem D should be compared with Theorem 2 from [Sch] on incom-
plete exponential sums in one and several variables (only the 1-variable
result, i.e. s = 1 in the notation from [Sch], is of relevance here).
In [Sch], Theorem 2, a nontrivial estimate on

∑

x∈BH
ψ

(

f(x)
)

is ob-
tained, f(x) ∈ Fq[X] as above, under the assumption

H = pσ, σ >
1

r
(0.31)

which is weaker than (0.29) (and optimal). However the result from [Sch]
is not uniform in n(q = pn), in the sense that it requires p > p(r, n),
while (0.30) provides non-trivial bounds for p > p(r) (assuming σ
fixed). The method from [Sch] relies on geometry of numbers and
the dependence on n results from dimensional factors in Minkowski’s
second theorem. Whether (or to what extent) they are avoidable in
this particular application seems an interesting question.

The reminder of the paper is organized as follows:
In §1, we establish a ‘sum-product’ type result in a general finite field Fq,

which is the main new underlying ingredient (compared with [B]). The later
sections are basically an adjustment from [B] to convert this set-theoretical
property (Lemma 1 below) in bounds on convolutions and exponential sums.

1 A Sum-Product Property

The following will be the substitute for Lemma 2 in [B].

Lemma 1. Let X, Y ⊂ F∗
q and assume Y not contained in a proper subfield

of Fq.
There are elements x1, x2, x3, x4 ∈ ±X and y1, y2, y3, y4 ∈ ±Y ∪ {1} such

that for all X ′ ⊂ X, Y ′ ⊂ Y

|y1X
′ + y2X

′ + y3X
′ + y4X

′ + x1Y
′ + x2Y

′ + x3Y
′ + x4Y

′| ≥

min
{1

6
|X ′| |Y ′| 12 , q

( |X ′| |Y ′|
|X| |Y |

)2}

. (1.1)

Remark. Assuming Y not contained in a multiplicative coset of a proper
subfield, we may take y1, y2, y3, y4 above in ±Y .
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Proof of Lemma 1.
We may clearly assume |X| > 1.
Define

V =
X −X

Y − Y
6= {0}

and notice that the properties

Y V ⊂ V (1.2)

V + V ⊂ V (1.3)

can not both hold unless
V = Fq. (1.4)

Indeed, if (1.2) + (1.3), then V contains any sum of products of elements of
Y and hence the field generated by Y , multiplied with V .

If (1.2) fails, there are y1, y2, y3 ∈ Y (y1 6= y2) and x1, x2 ∈ X such that
ξ = y3

x1−x2

y1−y2
6∈ V .

Hence, if X ′ ⊂ X, Y ′ ⊂ Y, ξ 6∈ X′−X′

Y ′−Y ′ implying

|X ′| |Y ′| = |X ′ + ξY ′|
= |(y1 − y2)X

′ + y3(x1 − x2)Y
′|

≤ |(y1 − y2)X
′ + y3X

′| |(x1 − x2)Y
′ −X ′| |X ′|−1.

Hence, either
|(y1 − y2)X

′ + y3X
′| ≥ |X ′| |Y ′| 12

or
|X ′ + (x2 − x1)Y

′| ≥ |X ′| |Y ′| 12
and certainly

|X ′ + y1X
′ − y2X

′ + y3X
′ − x1Y

′ + x2Y
′| ≥ |X ′| |Y ′| 12 . (1.5)

If (1.3) fails, there are x1, x2, x3, x4 ∈ X and y1, y2, y3, y4 ∈ Y, y1 6= y2, y3 6= y4

such that

ξ =
x1 − x2

y1 − y2
+
x3 − x4

y3 − y4
V.

Let X ′ ⊂ X, Y ′ ⊂ Y and define

Z =
x1 − x2

y1 − y2

Y ′ ∪ x3 − x4

y3 − y4

Y ′.
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Write
|X ′ + Z| = K|X ′|. (1.6)

Applying Corollary 1.5 from [K-S], we obtain a subset X ′′ ⊂ X ′, |X ′′| > 1
2
|X ′|

and such that
|X ′′ + Z + Z| ≤ 4K2|X ′|. (1.7)

Hence

4K2|X ′| ≥
∣

∣

∣
X ′′ +

x1 − x2

y1 − y2

Y ′ +
x3 − x4

y3 − y4

Y ′
∣

∣

∣

≥ |X ′′ + ξY ′|
= |X ′′| |Y ′|

≥ 1

2
|X ′| |Y ′|

and

K >
1√
8
|Y ′| 12 . (1.8)

Returning to (1.6), we showed

|(y1 − y2)X
′ + (x1 − x2)Y

′| + |(y3 − y4)X
′ + (x3 − x4)Y

′| ≥ 1√
8
|X ′| |Y ′| 12

and therefore

|y1X
′ − y2X

′ + y3X
′ − y4X

′ + x1Y
′ − x2Y

′ + x3Y
′ − x4Y

′|

≥ 1

2
√

8
|X ′| |Y ′| 12 . (1.9)

Finally, assume (1.4).

Take ξ ∈ V, ξ = x1−x2

y1−y2
, s.t.

∣

∣

∣

{

(x, x′, y, y′) ∈ X ×X × Y × Y
∣

∣ξ =
x− x′

y − y′

}
∣

∣

∣

≤ |X|2 |Y |2
q

. (1.10)
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If X ′ ⊂ X, Y ′ ⊂ Y , we have

|X ′ + ξY ′| ≥ |X ′|2|Y ′|2
E+(X ′, ξY ′)

(1.11)

where
E+(A,B) = |{(a, a′, b, b′) ∈ A2 × B2; a+ b = a′ + b′}|

is the additive energy.
Clearly

E+(X ′, ξY ′) ≤ |X ′| |Y ′| + (1.10)

implying

|(y1 − y2)X
′ + (x1 − x2)Y

′| ≥ 1

2
min

(

|X ′|.|Y ′|, q
( |X ′| |Y ′|
|X| |Y |

)2)

. (1.12)

Thus (1.1) holds again.

This proves Lemma 1. �

With Lemma 1 at hand, we may follow the method from [B] almost
verbatim (the main steps with details of the modifications will be given).
This part of the analysis in [B] does indeed not depend on the primality of
the field. Of course, in the applications of Lemma 1, one has to ensure that
the set Y under consideration is not contained in a proper subfield.

Recall the following property from additive combinatorics ([B], Lemma
3), which holds in the context of an arbitrary additive group.

Lemma 2. Let Xi ⊂ Fq(1 ≤ i ≤ j) and Y ⊂ Fq. There is y0 ∈ Y such that

∣

∣

∣
(Y − y0) ∩

j
⋂

i=1

(Xi −Xi)
∣

∣

∣
≥

(

j
∏

i=1

|Xi|
|Xi − Y |

)

|Y |. (1.13)

2 Preliminary Estimates (1)

Recall [B], Lemma 5, which is deduced from the Balog-Szemeredi-Gowers
theorem ([B], Prop. 1). Only the additive structure is involved.
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Lemma 3. Let α : Fq → R+ satisfy ‖α‖1 =
∑

x∈Fq
|α(x)| ≤ 1. Fix

1 < K < q. There are the following alternatives.
Either

‖α ∗ α‖2 <
1

K
‖α‖2 (∗ denotes additive convolution) (2.1)

or there is a subset A ⊂ Fq with the following properties (we ignore multi-
plicative constants).

2σ

|A| > α|A >
σ

|A| where 1 ≥ σ > (log q)−6K−3; (2.2)

‖α|A‖1 > (log q)−6K−3 (2.3)

‖α|A‖2 > (log q)−4K−2‖α‖2 (2.4)

|A+ A| < (log q)76K38|A|. (2.5)

The argument is identical to the prime case.

Iteration of Lemma 3 gives ([B], Lemma 6).

Lemma 4. Let α : Fq → R+, ‖α‖1 ≤ 1. Fix 1 ≤ K ≤ q.
Then there is a decomposition (with disjointedly supported components)

α =
∑

j≤J

αj + β (2.6)

where each αj satisfies for some Bj ⊂ Fq

σj

|Bj|
XBj

< αj <
2σj

|Bj |
XBj

with 1 ≥ σj > (log q)−6K−3 (2.7)

and

‖αj‖1 > (log q)−6K−3, (2.8)

‖αj‖2 > K−2(log q)−4‖α‖2. (2.9)

|Bj +Bj | < K38(log q)76|Bj|, (2.10)

J < (log q)6K3, (2.11)

‖β ∗ β‖2 <
1

K
‖β‖2 <

1

K
‖α‖2. (2.12)

10



Denote ψ(x) = ep(Trx), T r = TrFq/Fp
the additive character of Fq, q = pn.

Lemma 5. Let α, β, γ : Fq → R+; ‖α‖1, ‖β‖1, ‖γ‖1 ≤ 1.
Take 1 ≤ K ≤ q.
Then

(2.1) |S| =
∣

∣

∣

∑

x,y,z

α(x)β(y)γ(z)ψ(xyz)
∣

∣

∣
≤ 3|S1| (2.13)

+ 8 max
(∗)

1

|A|.|B|.|C|
∣

∣

∣

∑

x∈A,y∈B,z∈C

ψ(xyz)
∣

∣

∣
(2.14)

where (∗) refers to sets A,B,C ⊂ Fq such that

2σ

|A| > α|A >
σ

|A| where 1 ≥ σ > (log q)−6K−3 (2.15)

(log q)−12K−6‖α‖−2
2 < |A| < K4(log q)8‖α‖−2

2 (2.16)

|A+ A| < (log q)76K38|A| (2.17)

and similarly for B,C and

S1 =
∑

x,y,z

α′(x)β ′(y)γ′(z)ψ(xyz) (2.18)

with 0 ≤ α′ ≤ α, 0 ≤ β ′ ≤ β, 0 ≤ γ′ ≤ γ and

‖α′ ∗ α′‖2 <
1

K
‖α′‖2 or ‖β ′ ∗ β ′‖2 <

‖β ′‖2

K
or ‖γ′ ∗ γ′‖2 <

1

K
‖γ′‖2. (2.19)

Proof. Apply decomposition from Lemma 4 to each of the factors α, β, γ.
Note that in (2.7),

∑

σj ≤ ‖α‖1. In order to justify the characteristic
functions XA.XB,XC in (2.14), we use the fact that if XΩ ≤ f ≤ 2XΩ, then
f may be recovered as an average of ±XΩ′ for subset Ω′ ⊂ Ω, |Ω′| ∼ |Ω|.

Recall also that by Cauchy-Schwarz, we have

|S1|2 ≤
∑

y,z

β ′(y)γ′(z)
∣

∣

∣

∑

x

α′(x)ψ(xyz)
∣

∣

∣

2
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since ‖β ′‖1, ‖γ′‖1 ≤ 1. Hence

|S1| ≤
∣

∣

∣

∑

x,y,z

(α′ ∗ α′)(x)β ′(y)γ′(z)ψ(xyz)
∣

∣

∣

1/2

. (2.20)

For a, b, c > 0, denote ζ(a, b, c) the maximum of

∣

∣

∣

∑

α′(x)β ′(y)γ′(z)ψ(xyz)
∣

∣

∣
(2.21)

where α′, β ′, γ′ : Fq → R+ satisfy

‖α′‖1 ≤ 1, ‖β ′‖1 ≤ 1, ‖γ′‖1 ≤ 1 and ‖α′‖2 ≤ a, ‖β ′‖2 ≤ b, ‖γ′‖2 ≤ c. (2.22)

Lemma 5 implies then that

ζ(‖α‖2, ‖β‖2, ‖γ‖2) ≤ (2.14) + 3
{

ζ
( 1

K
‖α‖2, ‖β‖2, ‖γ‖2

)

+ ′′
}

(2.23)

(′′ referring to the other 2 terms).

3 Preliminary Estimates (2)

We will use the following construction.
Let

S =
∑

α(x)β(y)ψ(xy)

with 0 ≤ α, β; ‖α‖1, ‖β‖1 = 1.
Write

|S|2 ≤
∣

∣

∣

∑

(α ∗ α)(x)β(y)ψ(xy)
∣

∣

∣
,

and more generally (denoting α(ℓ) the ℓ-fold additive convolution of α)

|S|2s ≤
∣

∣

∣

∑

α(2s)(x)β(y)ψ(xy)
∣

∣

∣
. (3.1)

Fix s ∈ Z+ and define L = Ls by

‖α(2s+1)‖2 =
1

L
‖α(2s)‖2. (3.2)
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Applying Lemma 3 with α replaced by α(2s), it follows that there is a subset
A ⊂ Fq satisfying

‖α(2s)|A‖1 > (log q)−6L−3 (3.3)

|A| < L4(log q)8‖α(2s)‖−2
2 (3.4)

|A+ A| < L38(log q)76 |A|. (3.5)

Note that
‖α(2s)|A‖1 ≤ max

x∈F

‖α|x+A‖1.

Replacing A by a translate and denoting α1 = α(2s), it follows from (3.1)
that

|S| ≤
∣

∣

∣

∑

α1(x)β(y)ψ(x.y)
∣

∣

∣

2−s

(3.6)

and there exists a set A ⊂ Fq such that

‖α|A‖1 > (log q)−6L−3 (3.7)

|A| < (log q)8L4‖α1‖−2
2 (3.8)

|A+ A| < (log q)76L38 |A|. (3.9)

where

L =
‖α1‖2

‖α1 ∗ α1‖2

(3.10)

Returning to (2.14), consider

S0 =
1

|A| |B| |C|
∑

x∈A,y∈B,z∈C

ψ(xyz) =
1

|C|
∑

u∈Fp

z∈C

η(u)ψ(uz) (3.11)

with η the image measure of XA/|A| ⊗ XB/|B| under the product map
(x, y) 7→ x.y.

Apply the considerations above with α = η, β = 1
|C|

XC . Fix s ∈ Z+ and

let η1 = η(2s).
Hence from (3.6)– (3.10)

|S0| <
∣

∣

∣

1

|C|
∑

z∈C

u∈F

η1(u) ψ(uz)
∣

∣

∣

2−s

(3.12)
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and there is a set U ⊂ F satisfying
(

U plays the role of A in (3.7)–(3.9)
)

|{x ∈ A, y ∈ B|xy ∈ U}
∣

∣ > (log q)−6L−3|A|.|B| (3.13)

|U | < (log q)8L4‖η1‖−2
2 (3.14)

|U + U | < (log q)76L38|U |. (3.15)

where

L =
‖η1‖2

‖η1 ∗ η1‖2
(3.16)

4 Further Assumptions

We make the following further assumptions on α, β, γ : F∗
q → R+

‖α‖2, ‖β‖2, ‖γ‖2 < q−δ0 (4.1)

‖α‖2.‖β‖
1

2

2 ‖γ‖2 < q−
1

2
−δ1 (4.2)

max
a,b∈F

G proper subfield

{

∑

x∈G

β(ax+ b)
}

< q−δ2 (4.3)

where δ0, δ1, δ2 > 0.
In the definition of ζ(a, b, c) in §2, we make the extra hypothesis that

β ′ satisfies (4.3). Since obviously the left side of (4.3) decreases when β ′ is
replaced by β ′ ∗ β ′ (recall that ‖β ′‖1 ≤ 1), inequality (2.23) still holds in this
restricted setting.

Let B ⊂ Fq be the set corresponding to β from Lemma 5. Thus by (2.15)

2σ

|B| > β|B >
σ

|B| where (log q)−6K−3 < σ ≤ 1. (4.4)

If B0 ⊂ B, clearly ‖β|B0
‖1 > (log q)−6K−3 |B0|

|B|
by (4.4) and (4.3) implies that

B0 is not contained in a set aG + b, G a proper subfield, provided

|B0| > (log q)6K3q−δ2 |B|. (4.5)
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5 Preliminary Estimates (3)

Returning to (3.11) - (3.16), we establish a lower found on |U | using Lemma
1. From (3.14), this will give a bound on ‖η1‖2.

Denote G = {(x, y) ∈ A× B|x.y ∈ U}.
Hence by (3.13)

|G| > (log q)−6L−3|A|.|B|. (5.1)

Define

A0 = {x ∈ A
∣

∣ |G(x)| > 1

2
(log q)−6L−3|B|}

and

B0 = {y ∈ B
∣

∣ |G(y)| > 1

2
(log q)−6L−3|A|}

denoting G(x) and G(y) the fibers of G.
Clearly

|A0| >
1

2
(log q)−6L−3|A| (5.2)

|B0| >
1

2
(log q)−6L−3|B|. (5.3)

We apply Lemma 1 with X = A0;Y = B0. In view of (4.5), (5.3), the
assumption

K.L <
1

2
(log q)−4q

1

3
δ2 (5.4)

ensures that B0 is not contained in a multiplicative coset of a proper subfield.
From Lemma 1 and the related Remark, we obtain a1, a2, a3, a4 ∈ A0∪(−A0)
and b1, b2, b3, b4 ∈ B0 ∪ (−B0) such that

|b1A′ + b2A
′ + b3A

′ + b4A
′ + a1B

′ + a2B
′ + a3B

′ + a4B
′| ≥

1

2
min

{

|A′|.|B′| 12 , q
( |A′|.|B′|
|A|.|B|

)2}

(5.5)

if A′ ⊂ A0, B
′ ⊂ B0.

Next we apply Lemma 2.

Take Xi = G(bi) ⊂ A (1 ≤ i ≤ 4) and Y = A0. From (1.13), there is
A′ ⊂ A0 and a′ ∈ A0 s.t.

A′ − a′ ⊂
4

⋂

i=1

(

G(bi) − G(bi)
)

(5.6)
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and

|A′| ≥
(

4
∏

i=1

|G(bi)|
|G(bi) − A0|

)

|A0| ≥
(

4
∏

i=1

|G(bi)|
|A− A|

)

.|A0|

> (log q)−CK−304L−15|A| (5.7)

by (5.2), (2.17).
By (5.6) and definition of G

b1(A
′ − a′) + b2(A

′ − a′) + b3(A
′ − a′) + b4(A

′ − a′) ⊂ 4U − 4U. (5.8)

Similarly we obtain B′ ⊂ B0 and b′ ∈ B0 s.t.

|B′| > (log q)−CK−304L−15|B| (5.9)

and

a1(B
′ − b′) + a2(B

′ − b′) + a3(B
′ − b′) + a4(B

′ − b′) ⊂ 4U − 4U. (5.10)

From (5.5), (5.8), (5.10), it follows

|8U − 8U | ≥ (log q)−C min{K−456L−23|A|.|B| 12 , qK−1208L−60}. (5.11)

Recalling (3.14), (3.15) and the Plunnecke-Ruzsa inequality, (5.11) im-
plies

|U | ≥ (log q)−C min{K−456L−631|A|.|B| 12 , qK−1208L−668}
and

‖η1‖2 ≤ (log q)C(K228L318|A|− 1

2 |B|− 1

4 + q−
1

2K604L336). (5.12)

From (3.16) defining L and (5.12)

‖η1 ∗ η1‖2 ≤ (log q)CK
151

84 θ
1

336 ‖η1‖
1− 1

336

2 (5.13)

where η1 = η(2s) and

θ = |A|− 1

2 |B|− 1

4 +
1√
q
. (5.14)

The validity of (5.13) is conditional to (5.4), thus

‖η(2s)‖2

‖η(2s+1)‖2

< (log q)−4q
1

3
δ2K−1. (5.15)
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Set
K = qδ3 where δ3 = 10−4 min(δ1, δ2). (5.16)

From (5.13), (5.15), either

‖η(2s+1)‖2 < q−
1

4
δ2‖η(2s)‖2 (5.17)

or
‖η(2s+1)‖2 < K2θ

1

336 ‖η(2s)‖1− 1

336

2 . (5.18)

Note also that since η ≥ 0, ‖η‖1 = 1, the sequence ‖η(2s)‖2 is monotonically
decreasing in s.

Iterating (5.17)-(5.18) s1 = s+ [ 5
δ2

] times, we obtain

‖η(2s1 )‖2 <
1

q
+K672θ1−( 335

336)
s

‖η‖(
335

336)
s

2

< K672q
1

2(
335

336)
s

θ. (5.19)

Choose s such that
(

335

336

)s

<
δ1
100

which is possible for s1 satisfying

2s1 < 32(δ−1

2
)

(

100

δ1

)300

. (5.20)

From (5.16), (5.19), we conclude that

‖η(2s1 )‖2 < q
δ1
10

(

|A|− 1

2 |B|− 1

4 +
1√
q

)

. (5.21)

6 Estimation of Trilinear Sums

Return to (3.12) with η1 = η(2s1 ). Estimate using Cauchy-Schwarz

∑

u∈F

z∈C

η1(u)ψ(uz) ≤
∑

u

η1(u)
∣

∣

∣

∑

z∈C

ψ(uz)
∣

∣

∣

≤ ‖η1‖2(
√
q|C| 12 ) (6.1)
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and hence by (5.21)

1

|C|
∣

∣

∣

∑

u∈F

z∈C

η1(u)ψ(uz)
∣

∣

∣
< q

δ1
10 (q

1

2 |A|− 1

2 |B|− 1

4 |C|− 1

2 + |C|− 1

2 ). (6.2)

From Lemma 5 and (3.12), (6.2), we obtain the following bound on (2.14).

(2.14) ≤ 8[q
δ1
9 (q

1

2‖α‖2 ‖β‖
1

2

2 ‖γ‖2 + ‖γ‖2)]
κ (6.3)

where by (5.20)

κ >
( 1

32

)
1

δ2

( δ1
100

)300

. (6.4)

Note that, since γ(0) = 0, certainly

|S| =
∣

∣

∣

∑

x,y,z

α(x)β(y)γ(z)ψ(xyz)
∣

∣

∣
≤ √

q‖α‖2 ‖β‖2

and hence, if ‖γ‖2 ≥ q−
1

2
δ1 , |S| < q−

1

2
δ1 by (4.2). Assuming ‖γ‖2 < q−

1

2
δ1 ,

(6.3) and (4.2) imply

(2.14) < q−
δ1
2

κ. (6.5)

Hence, we proved
(

recalling (2.23)
)

ζ(‖α‖2, ‖β‖2, ‖γ‖2) < q−
δ1
2

κ + 3ζ(a, b, c)
1

2 , (6.6)

where certainly
a ≤ ‖α‖2, b ≤ ‖β‖2, c ≤ ‖γ‖2

and

abc ≤ 1

K
‖α‖2‖β‖2‖γ‖2 = q−δ3‖α‖2‖β‖2‖γ‖2. (6.7)

Straightforward iteration of (6.6), (6.7), until reaching abc < 1
q

for which

ζ(a, b, c) <
√
q q−2/3 = q−

1

6 , gives by (5.16)

ζ(‖α‖2, ‖β‖2, ‖γ‖2) < q−κ′

(6.8)

where
κ′ > C

− 1

δ2 δC
1 (6.9)

(C some constant).

Hence, we obtain
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Theorem 1. Let α, β, γ : Fq → R+ and δ0, δ1, δ2 > 0 satisfying ‖α‖1, ‖β‖1, ‖γ‖1 ≤
1 and (4.1)-(4.3). Then

∣

∣

∣

∑

α(x)β(y)γ(z)ψ(xyz)
∣

∣

∣
< q−κ′

+ 3q−δ0 (6.10)

with
κ′ > C

− 1

δ2 δC
1 . (6.11)

7 Convolution of Product Densities

From Theorem 1, we deduce

Theorem 2. Let α, β : F → R+ satisfying

‖α‖1, ‖β‖1 ≤ 1 (7.1)

‖α‖2 < q−δ (7.2)

max
a,b∈F

G proper subfield

{

∑

x∈G

β(ax+ b)

}

< q−δ2 (7.3)

Let η be the image measure of α⊗ β under the product map (x, y) 7→ x.y.

There is k = k(δ, δ2) < δ−CC
1

δ2 such that

‖η(k)‖2 < qδ‖α‖2.‖β‖
1

2

2 + qδ− 1

2 (7.4)

where η(k) denotes k-fold (additive) convolution.

Proof. Write

‖η(k)‖2
2 = q−1

∑

|η̂(ξ)|2k < q−2 + q−1|Z| (7.5)

with
Z = {ξ ∈ F

∣

∣ |η̂(ξ)| > q−1/k}.
Defining γ : F → C by

γ(ξ) =

{

η̂(ξ)
|Z| |η̂(ξ)|

if ξ ∈ Z

0 otherwise
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we have ‖γ‖1 = 1, ‖γ‖2 = |Z|− 1

2 and

q−1/k ≤
∑

ξ

η̂(ξ)γ(ξ) =
∑

x,y,ξ

α(x)β(y)γ(ξ)ψ(xyξ). (7.6)

Apply Theorem 1 to (7.6) with δ0 = min
(

δ, δ2
2
, 2

k
, 2

k

)

and δ1 = δ. Then (4.1)
holds, unless

‖γ‖2 ≥ q−δ0 hence |Z| ≤ q
4

k (7.7)

and (4.2), unless
|Z| ≤ q1+2δ‖α‖2

2 ‖β‖2. (7.8)

Clearly for k > 1
κ′ , κ

′ = C
− 1

δ2 δC given by (6.11), (6.10) and (7.6) are contra-
dictory. Therefore, either (7.7) or (7.8) hold, i.e.

|Z| ≤ q
4

k + q1+2δ‖α‖2
2‖β‖2. (7.9)

Substitution in (7.5) gives (7.4).

8 The General Case

From Theorem 2, we obtain the multilinear extension of Theorem 1.

Theorem 3. Let r ≥ 2 and α1, . . . , αr : F → R+ satisfy

‖αi‖1 ≤ 1 (1 ≤ i ≤ r) (8.1)

‖αi‖2 < q−δ (1 ≤ i ≤ r) (8.2)

max
a,b∈F

G proper subfield

αi(aG+ b) < q−δ2 (3 ≤ i ≤ r) (8.3)

‖α1‖2.‖α2‖2

r
∏

i=3

‖αi‖
1

2

2 < q−
1

2
−δ. (8.4)

Then there is the exponential sum bound

∣

∣

∣

∑

x1,...,xr∈F

r
∏

i=1

αi(xi)ψ
(

r
∏

i=1

xi

)
∣

∣

∣
< q−δ′ with δ′ > C

− r
δ2

(δ

r

)Cr

. (8.5)
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Proof. By induction on r.
For r = 2, there is the obvious bound q

1

2‖α1‖2‖α2‖2 < q−δ.
The case r = 3 is given by Theorem 1.
For the inductive step, we will use Theorem 2. Let r ≥ 4. Denote S the

exponential sum on the left of (8.5) and let η be the image density of α1⊗α3

under the product map (x1, x3) 7→ x1x3. Thus

S =
∑

x,x2,x4,...,xr

η(x)
∏

i6=1,3

αi(xi)ψ
(

x
∏

i6=1,3

xi

)

(8.6)

and estimate using Hölder’s inequality

|S| ≤
{

∑

x2,x4,...,xr

∏

i6=1,3

αi(xi)
∣

∣

∣

∑

x∈F

η(x)ψ
(

x.
∏

i6=1,3

xi

)
∣

∣

∣

2k} 1

2k

=
{

∑

x,x2,x4,...,xr

η(2k)(x) ·
∏

i6=1,3

αi(xi) · ψ
(

x.
∏

i6=1,3

xi

)}
1

2k

. (8.7)

Theorem 2 is then applied to bound ‖η(2k)‖2. Replacing δ by δ
2r

in Theorem
2, it follows from (7.4)

‖η(2k)‖2 < q
δ
2r ‖α1‖2 ‖α3‖

1

2

2 + q
δ
2r

− 1

2 (8.8)

for

k ∼
(2r

δ

)C

C
1

δ2 . (8.9)

Hence
‖η(2k)‖2 < q−δ( 3

2
− 1

2r
) + q

δ
2r

− 1

2 < q−δ

and since r ≥ 4, from (8.8), (8.4)

‖η(2k)‖2‖α2‖2

∏

i=4

‖αi‖
1

2

2 < q
δ
2r

− 1

2
−δ + q

δ
2r

− 1

2
− r−1

2
δ ≤ 2q−

1

2
−(1− 1

2r
)δ. (8.10)

At this point, invoke the induction hypothesis with r replaced by r − 1 and
δ by (1 − 1

2r
)δ. Recalling (8.7), it follows that

|S| < q−δ′r (8.11)

where

δ′r = δ′r(δ) =
1

2k
δ′r−1

((

1 − 1

2r

)

δ
)

>
(8.9)

(δ

r

)C

C
− 1

δ2 δ′r−1

((

1 − 1

2r

)

δ
)

. (8.12)

It remains to iterate (8.12).
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Following the argument to derive Theorem 2 from Theorem 1, Theorem
3 implies also

Theorem 4. Let α1, . . . , αr : Fq → R+ satisfy

‖αi‖1 ≤ 1 (1 ≤ i ≤ r) (8.13)

‖αi‖2 < q−δ (1 ≤ i ≤ r) (8.14)

max
a,b∈F

G proper subfield

αi(aG+ b) < q−δ2 (3 ≤ i ≤ r). (8.15)

Denote η the image density of α1⊗· · ·⊗αr under the product map (x1, . . . , xr) 7→
x1 · · ·xr. Then

‖η(k)‖2 < qδ‖α1‖2.‖α2‖2

r
∏

i=3

‖αi‖
1

2

2 + qδ− 1

2 (8.16)

provided k > Cr/δ2

(

r
δ

)Cr

.
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