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0. Introduction. Let F be the class of complex-valued multiplicative
functions f satisfying |f | ≤ 1. For each f ∈ F and for any real numbers
x ≥ 3 and α we let F (x, α) denote the exponential sum

F (x, α) =
∑

n≤x
f(n)e(αn),

where e(t) stands for e2πit. New bounds for F (x, α) have been announced
by the author in [Ba1] and the purpose of this paper is to supply proofs for
these estimates.

The problem of obtaining bounds for F (x, α) uniform in f ∈ F has been
first considered by H. Daboussi. He showed [Da1] (see also [DD1] and [DD2])
that if |α− s/r| ≤ 1/r2 and 3 ≤ r ≤ (x/log x)1/2, for some coprime integers
s and r, then, uniformly for all f ∈ F , we have

(0.1) F (x, α)� x√
log2 r

,

where we write logk, k = 2, 3, for the kth iterate of the logarithmic function.
Although far from optimal (see below), this estimate immediately yields the
following very interesting corollary. For every irrational α we have

(0.2) lim
x→∞

1
x
F (x, α) = 0,

uniformly for all f ∈ F .
It was later observed by G. Tenenbaum [Te] that this result provides

some measure of independence of the additive and multiplicative structures
of the set of integers. More precisely, he formulated the following question.
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Writing
1
x
F (x, α) =

(
1
x

∑

n≤x
f(n)

)(
1
x

∑

n≤x
e(αn)

)
+ o(1),

we ask what can be said about the error term. In particular, we would like
to characterize those functions f such that for every irrational α we have

(0.3)
1
x
F (x, α) = o

(
1
x

∣∣∣
∑

n≤x
f(n)

∣∣∣
)
.

(Observe that (0.2) implies (0.3) only for those functions f for which∑
n≤x f(n) � x.) The question of when (0.3) holds was first raised in a

paper of Y. Dupain, R. R. Hall and G. Tenenbaum [DHT]. It was shown
there, among other things, that (0.3) holds for the special case of the func-
tion f given by n 7→ yΩ(n), where Ω(n) denotes the total number of prime
factors of n and 0 < y < 2 is fixed. Another interesting special case is when
f is a characteristic function of integers free of prime factors greater than
y ≥ 2. Sharp estimates for the corresponding exponential sum have been
obtained by E. Fouvry and G. Tenenbaum [FT] providing a quantitative
version of (0.3) for a wide range of parameters x and y.

The problem of characterizing functions f for which the asymptotic re-
lation (0.3), or even the relation

(0.3)′ F (x, α) = o
(∑

n≤x
|f(n)|

)

hold appears to be rather difficult, and the known results are rather restric-
tive. It was shown by Daboussi [Da2] that if 0 < y < 2 is fixed, and if f is a
completely multiplicative function with |f(p)| = y for all primes p, then for
every irrational α the relation (0.3)′ holds. This was improved by L. Goubin
[Go] who showed that the same conclusion holds for any multiplicative func-
tion f satisfying the three conditions: |f(p)| ≤ y,

∑
p(y − |f(p)|)/p < ∞,

and
∑
p

∑∞
ν=2 |f(pν)|p−ν(log pν)max(1−y,0) <∞.

On the other hand, a spectacular advance was achieved by H. L. Mont-
gomery and R. C. Vaughan [MV] who improved the original estimate of
Daboussi (0.1) as follows. Suppose that |α − s/r| ≤ 1/r2 and 2 ≤ R ≤ r ≤
x/R for some coprime integers s and r. Then we have

(0.4) F (x, α)� x

log x
+

x√
R

(logR)3/2,

uniformly for all f ∈ F . Furthermore, they showed that aside from the
logarithmic factor this bound is sharp. More precisely, they established the
following propositions:
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(i) For any real x ≥ 3 and any α there is an f ∈ F such that |F (x, α)| �
x/log x.

(ii) If r ≤ √x and (s, r) = 1, then there is an f ∈ F for which
|F (x, s/r)| � x/

√
r.

(iii) If x/(log x)3 ≤ T ≤ x, then there exist coprime integers s and r and
f ∈ F such that T − 3x/T ≤ r ≤ T and |F (x, s/r)| �

√
xT .

Motivated by (0.4) we can propose a quantitative form of (0.3)′ as follows.
Characterize those functions f for which the inequality

(0.5) F (x, α)� x

log x
+

1√
R

∑

n≤x
|f(n)|

holds, where x, α and R satisfy the hypotheses of (0.4). Let us immediately
note that (0.5) certainly does not hold for all f ∈ F . This follows readily
by fixing a natural number r and considering a completely multiplicative
function f whose values on primes is given by f(p) = 1, if p ≡ 1 (mod r),
and 0, otherwise. Thus

F

(
x,

1
r

)
= e

(
1
r

)∑

n≤x
f(n) = e

(
1
r

) ∑

n≤x
p|n⇒p≡1 (mod r)

1,

and hence (0.5) with R = r will hold only if the last summation over n is
� x/log x. But, for x sufficiently large, it is not difficult to see that the
relation ∑

n≤x
p|n⇒p≡1 (mod r)

1 � x

ϕ(r)
(log x)1/ϕ(r)−1

holds, where ϕ is Euler’s totient function.
In view of this example it is evident that a necessary condition for the

validity of (0.5) is that f is supported on a positive proportion of primes up
to x, viz.

(0.6)
∑

p≤x

|f(p)|
p
≥ λ log2 x,

for some fixed λ, 0 < λ ≤ 1. We believe that this condition may also be
sufficient and formulate the following conjecture. Let Fλ(x), for x ≥ 3 and
0 < λ ≤ 1, be the subclass of F consisting of functions f satisfying (0.6).

Conjecture. Let x ≥ 3, α and R ≥ 3 be real numbers and suppose that
|α− s/r| ≤ 1/r2 and R ≤ r ≤ x/R for some coprime integers s and r. Then

(0.7) F (x, α)�λ
x

log x
+

1√
R

∑

n≤x
|f(n)|,

uniformly for all f ∈ Fλ(x).
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1. Statement of results. Given f ∈ F set

S(x) =
∑

p≤x

|f(p)|
p

and Sq(x) =
∑

p≤x
(p,q)=1

|f(p)|
p

.

By an estimate of R. R. Hall [Ha] we have

(1.1)
∑

n≤x
|f(n)| � x

log x
eS(x) � x exp

(
−
∑

p≤x

1− |f(p)|
p

)
,

uniformly for all f ∈ F . Furthermore, this bound is sharp in the sense
that there are functions f for which (1.1) holds with � replaced by �.
Principal results of this paper (Corollaries 1 and 2) give a weaker form of
the conjecture with (0.7) modified by substituting (1.1). We begin, however,
with estimates valid for the entire class F .

Theorem 1. Let x ≥ 3, α and ε > 0 be real numbers and set Q =
x/(log x)3. Furthermore, let a and q be coprime integers satisfying 1 ≤ q ≤ Q
and |α− a/q| ≤ 1/(qQ). Then

F (x, α)�ε
x

log x
+

x√
q (log x)1−ε +

x√
q log x

eSq(x)
(

q

ϕ(q)

)3/2

,

uniformly for all f ∈ F .

Our second estimate has a wider range of applicability at the expense of
a somewhat weaker bound.

Theorem 2. Let x ≥ 3, α, R ≥ 3 and ε > 0 be real numbers and suppose
that |α− s/r| ≤ 1/r2 and R ≤ r ≤ x/R for some coprime integers s and r.
Then

F (x, α)�ε
x

log x
+

x√
R (log x)1−ε +

x√
R log x

eS(x)(logR)1/2(log2 R)3/2,

uniformly for all f ∈ F .

Before continuing our main line of results we take a small detour and
observe that if f is not supported on a positive proportion of primes up to
x, e.g., S(x) � log3 x, then a better estimate is given by the following:

Theorem 3. Let x ≥ 3, α and R ≥ 3 be real numbers and suppose that
|α− s/r| ≤ 1/r2 and R ≤ r ≤ x/R for some coprime integers s and r. Then

F (x, α)� x

log x
+

x√
R log x

eS(x)(logR)1/2(log2 R)(log2 x)1/2,

uniformly for all f ∈ F .
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Thus Theorem 3 gives a better estimate when S(x) is “small” and by
combining this theorem and Theorem 2 one obtains a bound superior in
general to each of them individually.

We now return to the main focus of this paper, the classes Fλ(x). For
f ∈ Fλ(x) Theorems 1 and 2 immediately yield the following corollaries,
respectively:

Corollary 1. Let x ≥ 3 and α be real numbers and set Q = x/(log x)3.
Furthermore, let a and q be coprime integers satisfying 1 ≤ q ≤ Q and
|α− a/q| ≤ 1/(qQ). Then

F (x, α)�λ
x

log x
+

x√
q log x

eSq(x)
(

q

ϕ(q)

)3/2

,

uniformly for all f ∈ Fλ(x).

Corollary 2. Let x ≥ 3, α and R ≥ 3 be real numbers and suppose
that |α− s/r| ≤ 1/r2 and R ≤ r ≤ x/R for some coprime integers s and r.
Then

F (x, α)�λ
x

log x
+

x√
R log x

eS(x)(logR)1/2(log2 R)3/2,

uniformly for all f ∈ Fλ(x).

Next we address the accuracy of these estimates. In view of the second
inequality in (1.1) it is evident that Corollary 2 provides a stronger bound
than (0.4) even in the case when S(x) is maximal. In particular, this shows
that our estimates are quite sharp, since we already noted that (0.4) was.
Furthermore, given a fixed real number λ, 0 < λ ≤ 1, the original examples
of Montgomery and Vaughan yielding propositions (i)–(iii) can be easily
modified to establish the following versions, respectively:

(i)′ For any real x ≥ 3 and any α there is an f ∈ F with S(x) =
λ log2 x+O(1) such that |F (x, α)| � x/log x.

(ii)′ If q ≤ exp((logx)λ/3) and (a, q) = 1, then there is an f ∈ F with
S(x) = λ log2 x+O(1) for which

|F (x, a/q)| �λ
1√
q

∑

n≤x
(n,q)=1

|f(n)| q

ϕ(q)
�λ

x√
q log x

eSq(x) q

ϕ(q)
.

(iii)′ If x/(log x)3 ≤ T ≤ x, then there exist coprime integers s and r and
f ∈ F with S(x) = λ log2 x+O(1), such that T − 3x/T ≤ r ≤ T and

|F (x, s/r)| �λ
1√
x/T

∑

n≤x
|f(n)| �λ

√
xT

log x
eS(x).
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We summarize these facts somewhat colloquially by saying that our esti-
mates are sharp “throughout” the class of functions supported on a positive
proportion of primes up to x in the sense that (0.4) is sharp only for the
subclass F1(x).

On the other hand, our results imply neither (0.7) nor (0.3)′. Of course,
we do get a weaker form of (0.7) for those functions f ∈ Fλ(x) for which

(1.2)
∑

n≤x
|f(n)| � x

log x
eS(x).

Thus, for example, one readily sees using standard methods that functions
f for which Daboussi and Goubin established (0.3)′ (with 0 < y ≤ 1) do
satisfy this condition. In general, however, no useful simple criterion which
implies (1.2) is known, and determining such is itself an interesting problem.
In particular, it is certainly not true that (1.2) holds for all f ∈ Fλ(x).

As we have already mentioned, Corollary 2 provides a slight improve-
ment on (0.4) even in the case when S(x) is maximal or, more generally,
when eS(x) � log x. For this important special case we can offer further
improvements as follows:

Theorem 4. Let x ≥ 3 and α be real numbers and set Q = x/(log x)3.
Furthermore, let a and q be coprime integers satisfying 1 ≤ q ≤ Q and
|α− a/q| ≤ 1/(qQ). Then

F (x, α)� x

log x
+

x√
ϕ(q)

,

uniformly for all f ∈ F .

Theorem 5. Let x ≥ 3, α and R ≥ 3 be real numbers and suppose that
|α− s/r| ≤ 1/r2 and R ≤ r ≤ x/R for some coprime integers s and r. Then

F (x, α)� x

log x
+

x√
R

(logR log2R)1/2,

uniformly for all f ∈ F .

2. Preliminaries. Lemmas 1–3 below are principal ingredients in the
proofs of Theorems 1–5. The first lemma gives a bound for the exponential
sum F (x, α) in terms of sums of non-negative multiplicative functions in
short intervals and arithmetic progressions. This estimate improves on an
earlier estimate of the author [Ba2, Lemma 1]. Our new argument is sim-
ply a strengthening of the argument given in [Ba2], and as such it relies
fundamentally on the original estimate of Montgomery and Vaughan (0.4).
This modification, however, is quite crucial and the new bound is essentially
sharp.
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We first introduce some definitions. We will find it convenient to write,
for x ≥ 3,

L = log x, L2 = log2 x, Q = x/L3.

Fix a sufficiently large real number x0 such that for all x ≥ x0 the inequality
Q ≥ 1 holds. Given real numbers x ≥ x0 and α, by Dirichlet’s theorem there
exist integers a and q such that

(2.1) (a, q) = 1, 1 ≤ q ≤ Q, |α− a/q| ≤ 1/(qQ).

Set

(2.2) β = α− a/q
so that |β| ≤ 1/(qQ), and define

(2.3) x = min(x, 1/|β|).
Finally, for a real number P we use the notation p (respectively l) ∼ P to
denote prime (respectively natural) numbers in the interval (P, 2P ].

Lemma 1. Let x ≥ x0 and α be real numbers and let a and q be integers
satisfying (2.1). Then

F (x, α)� x

L +
1
L

√
q

ϕ(q)

∑

i: 1≤2i<x/(qx/x)2

2i

×
( ∑

1≤j≤dx/xe

1
j

∑

n,m≤x/2i
(j−1)x/2i≤|n−m|<jx/2i

n≡m (mod q)

|f(n)| · |f(m)|
)1/2

,

uniformly for all f ∈ F .

Proof. If q ≥ L3, the conclusion of the lemma follows immediately from
(0.4), applied with s = a, r = q and R = L3. Thus it remains to consider
the case when q < L3.

As we have indicated earlier, much of the proof of this result has been
already carried out in [Ba2, Proof of Lemma 1]. In particular, it was shown
there [Ba2, (2.6), (2.7), (2.12)] that the estimate

(2.4) F (x, α) =
1
L

∑

i: x2≤2i<x3

∑

p∼2i

f(p) log pF (x/p, αp) +O(x/L)

holds, where x2 and x3 are given by

(2.5) x2 = exp{(qx/x)1/5}, x3 = x/(qx/x)2

(we use the same indices as in [Ba2] where x1 was another parameter, [Ba2,
(2.7)]). Applying Cauchy’s inequality to the inner sum in (2.4) we obtain,
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as before,

(2.6)
∣∣∣
∑

p∼2i

f(p) log pF (x/p, αp)
∣∣∣
2

≤
∑

p∼2i

|f(p)|2 log p
∑

p∼2i

log p |F (x/p, αp)|2

� 2i
∑

p∼2i

log p
∣∣∣
∑

n≤x/p
f(n)e(αpn)

∣∣∣
2
.

At this point in [Ba2] we proceeded to estimate the summation on the
right-hand side of (2.6) by squaring out the inner sum, swapping the order
of summations and then estimating the new inner sum by standard methods.
Our new idea is to introduce the weights w(l) defined by

(2.7) w(l) =

{ log l if l is prime,
q/ϕ(q) if l is not prime and (l, q) > 1,
0 otherwise,

and write

(2.8)
∑

p∼2i

log p
∣∣∣
∑

n≤x/p
f(n)e(αpn)

∣∣∣
2
≤
∑

l∼2i

w(l)
∣∣∣
∑

n≤x/l
f(n)e(αln)

∣∣∣
2

=
∑

n,m≤x/2i
f(n)f(m)

∑

l∼2i

l≤min(x/n,x/m)

w(l)e(α(n−m)l).

To estimate the last sum in (2.8) we first observe that if (b, q) = 1, then
(2.7) and the Siegel–Walfisz theorem yield

∑

l≤t
l≡b (mod q)

w(l) =
t

ϕ(q)
+O

(
t

(log t)10

)
,

while if (b, q) = d > 1, say b = db′, then (2.7) gives
∑

l≤t
l≡b (mod q)

w(l) =
∑

k≤t/d
k≡b′ (mod q/d)

w(dk) =
q

ϕ(q)

(
t/d

q/d
+O(1)

)
+O(log q)

=
t

ϕ(q)
+O(log q),

and hence in either case we have
∑

l≤t
l≡b (mod q)

w(l) =
t

ϕ(q)
+O

(
t

(log t)10

)
,
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for t ≥ (log q)2. Therefore, for t ≥ (log q)2, we have

∑

l≤t
w(l)e

(
ak

q
l

)
=

q∑

b=1

e

(
ak

q
b

)(
t

ϕ(q)
+O

(
t

(log t)10

))

= δq(k)
q

ϕ(q)
t+O

(
qt

(log t)10

)
,

with

(2.9) δq(k) =
{

0 if q - k,
1 if q | k,

from which it now readily follows by (2.2) and summation by parts (see, for
example, [Va, Proof of Lemma 3.1]) that for t > 2i we also have

(2.10)
∑

l∼2i

l≤t

w(l)e(αkl)

� δq(k)
q

ϕ(q)
min

(
2i,

1
|β| · |k|

)
+

q2i

(log 2i)10 + |β| · |k| q22i

(log 2i)10 .

The last estimate corresponds to our earlier estimate [Ba2, (2.5)].
An easy calculation shows that

(2.11)
q2i

(log 2i)10 + |β| · |k| q22i

(log 2i)10 �
q

ϕ(q)
min

(
2i,

1
|β| · |k|

)
,

for x2 ≤ 2i < x3 and |k| ≤ x/2i. We also observe that by the definition (2.3)
of x

(2.12) min
(

2i,
1

|β| · |k|

)
� min

(
2i,

x

|k|

)
,

for |k| ≤ x/2i. Hence, by (2.5) and (2.8)–(2.12), we have, for x2 ≤ 2i < x3,

(2.13)
∑

p∼2i

log p
∣∣∣
∑

n≤x/p
f(n)e(αpn)

∣∣∣
2
�
∑

1
+
∑

2
,

where
∑

1
=

∑

n,m≤x/2i
n≡m (mod q)

|f(n)| · |f(m)| q

ϕ(q)
min

(
2i,

x

|n−m|

)

and
∑

2
=

∑

n,m≤x/2i
|f(n)| · |f(m)|

(
q2i

(log 2i)10 + |β| · |n−m| q22i

(log 2i)10

)
.
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Estimating
∑

2 trivially we obtain

∑
2
�
(
x

2i

)2
q2i

(log 2i)10 + |β| q22i

(log 2i)10

(
x

2i

)3

(2.14)

= (1 + |β|x)
qx2

2i(log 2i)10 �
x

x
· qx2

2i(log 2i)10 ,

by (2.3). For
∑

1 we now write

(2.15)
∑

1
� q

ϕ(q)

∑

1≤j≤dx/xe

2i

j

∑

n,m≤x/2i
(j−1)x/2i≤|n−m|<jx/2i

n≡m (mod q)

|f(n)| · |f(m)|.

Finally, combining (2.4), (2.6) and (2.13)–(2.15) yields the estimate

F (x, α)� x

L +
1
L

∑

x2≤2i<x3

(
22i q

ϕ(q)

∑

1≤j≤dx/xe

1
j

×
∑

n,m≤x/2i
(j−1)x/2i≤|n−m|<jx/2i

n≡m (mod q)

|f(n)| · |f(m)|+ qx3

x(log 2i)10

)1/2

.

From this the statement of the lemma follows since

∑

x2≤2i<x3

√
qx3

x(log 2i)10 � x

√
qx/x

(log x2)4 � x,

by (2.5).

Theorems 4 and 5 follow readily from Lemma 1. For Theorem 3 we will
also require the following bound of P. Shiu [Sh], where G denotes the class
of multiplicative functions g satisfying 0 ≤ g ≤ 1.

Lemma 2. Let ε, 0 < ε ≤ 1/2, be fixed. Then the inequality
∑

x−y<n≤x
n≡a (mod q)

g(n)�ε
y

ϕ(q)L e
Sq(x)

holds uniformly for all g ∈ G, x ≥ 3, xε ≤ y ≤ x, 1 ≤ q ≤ y1−ε, and all
integers a (not necessarily coprime with q).

In addition to these lemmas, Theorems 1 and 2 will also require the
following estimate.

Lemma 3. Let an arbitrary natural number q and a pair of real numbers
τ ≥ 3 and ε > 0 be given. Then for any two sequences of real numbers xi
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and yi, 1 ≤ i ≤ κ, satisfying the conditions

y1 ≥ (qτ)2, yi+1 ≥ 2yi, and yi ≤ xi ≤ τyi,
and an arbitrary sequence of integers ai, we have

∑

1≤i≤κ

1
yi

∑

xi−yi<n≤xi
n≡ai (mod q)

g(n)�ε
1

ϕ(q)

(
eSq(x1)

(
log xκ
log x1

)ε
+ eSq(xκ)

)
,

uniformly for all g ∈ G.

Proof. See [Ba3, Theorem 0].

3. Proof of Theorems 4 and 5. Assume, as we may, that x ≥ x0.
Then Lemma 1 and the trivial estimate |f(n)| ≤ 1 immediately yield

F (x, α)� x

L +
1
L

√
q

ϕ(q)

∑

1≤2i<x/(qx/x)2

2i
(
xx

q22i log
(

2
x

x

))1/2

(3.1)

� x

L +
x√
ϕ(q)

√
log(2x/x)
x/x

,

and Theorem 4 follows.

To prove Theorem 5 let a and q be as in the statement of Theorem 4, so
that (3.1) holds. From this and the well known bound ϕ(q) � q/log2 q the
desired estimate follows immediately if q ≥ R/2. For q < R/2 we have

1
qr
≤
∣∣∣∣
a

q
− s

r

∣∣∣∣ =
∣∣∣∣
a

q
− α+ α− s

r

∣∣∣∣ ≤ |β|+
1

2qr
,

by the definition (2.2) of β and our hypotheses. This and the definition (2.3)
of x give

x

x
≥ |β|x ≥ x

2qr
.

This in turn yields the estimate

(3.2)
1

ϕ(q)
· log(2x/x)

x/x
� 1

q/log2 q
· log(x/r)
x/(qr)

� logR log2 R

R
.

Applying (3.2) to the right-hand side of (3.1) gives the desired bound for
q < R/2, and thus completes the proof of the theorem.

4. Proof of Theorem 3. This theorem improves on the bound estab-
lished by the author in [Ba2]. The improvement stems from the superior
version of Lemma 1 given in this paper, with the rest of the proof differing
from the argument in [Ba2] in straightforward details only. We, however,
complete the argument here for the convenience of the reader.
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Again we assume that x ≥ x0 and appeal to Lemma 1. We have

(4.1) F (x, α)� x

L +
1
L

√
q

ϕ(q)

∑

1≤2i<x3

2i

×
( ∑

1≤j≤dx/xe

1
j

∑

m≤x/2i
|f(m)|

∑

(j−1)x/2i≤n−m<jx/2i
n≡m (mod q)

|f(n)|
)1/2

,

with x3 given by (2.5). To estimate the innermost sum above we appeal to
Lemma 2. One easily verifies that for i in our range all of the hypotheses of
this lemma are satisfied and we obtain, for every m, the bound

∑

(j−1)x/2i≤n−m<jx/2i
n≡m (mod q)

|f(n)| � x/2i

ϕ(q) log(2x/2i)
eS(x),

since |f | ≤ 1. With this we estimate the summation over i in (4.1) by

(4.2) �
(
x log(2x/x)

ϕ(q)
eS(x)

)1/2 ∑

1≤2i<x3

(
2i

log(2x/2i)

∑

m≤x/2i
|f(m)|

)1/2

.

Applying Cauchy’s inequality we get (see [Ba2, (3.2)])

(4.3)
∑

1≤2i<x3

(
2i

log(2x/2i)

∑

m≤x/2i
|f(m)|

)1/2

� (xeS(x)L2)1/2.

Thus, by (4.1)–(4.3), we obtain

F (x, α)� x

L +
x√
qL e

S(x) q

ϕ(q)

(
log(2x/x)
x/x

L2

)1/2

.

The theorem now follows by the same argument that was used to derive
Theorem 5 from (3.1) in the previous section.

5. Proof of Theorems 1 and 2. Here we further refine arguments of
the last section this time by combining Lemma 1 with Lemma 3. To this
end we assume, as before, that x ≥ x0 and let the quantities q, x and x3

be defined by (2.1), (2.3) and (2.5), respectively. We will now show that the
estimate

(5.1) F (x, α)�ε
x

L +
x√
qL (Lε + eSq(x))

(
q

ϕ(q)

)3/2
√

log(2x/x)
x/x

holds. From this estimate Theorem 1 follows immediately, in view of the
inequality ϕ(q) � q/log2 q, while Theorem 2 is deduced by an argument
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analogous to the one we used to deduce Theorem 5 from (3.1) in Section 3.
Thus it only remains to prove (5.1).

Appealing to (0.4), as in the proof of Lemma 1, allows us to consider
only the case when q < L3, as we now assume. Now, for i in the range
1 ≤ 2i < x3, define integer sequences li and bi by

∑

(li−2)x/2i<n≤lix/2i
n≡bi (mod q)

|f(n)| = max
1≤l≤2dx/xe

1≤b≤q

∑

(l−2)x/2i<n≤lx/2i
n≡b (mod q)

|f(n)|.

With these definitions we write
∑

1≤j≤dx/xe

1
j

∑

n,m≤x/2i
(j−1)x/2i≤|n−m|<jx/2i

n≡m (mod q)

|f(n)| · |f(m)|

�
∑

1≤j,k≤dx/xe

1
j

∑

1≤b≤q

∑

(k−1)x/2i<m≤kx/2i
m≡b (mod q)

|f(m)|

×
∑

(k+j−2)x/2i<n≤(k+j)x/2i

n≡b (mod q)

|f(n)|

� q
x

x
log
(

2
x

x

)( ∑

(li−2)x/2i<n≤lix/2i
n≡bi (mod q)

|f(n)|
)2
,

for 1 ≤ 2i < x3. Thus, by Lemma 1, we have

F (x, α)� x

L +
x√
qL

√
log(2x/x)
x/x

· q3/2
√
ϕ(q)

(5.2)

×
∑

1≤2i<x3

1
x/2i

∑

(li−2)x/2i<n≤lix/2i
n≡bi (mod q)

|f(n)|.

To prepare for the application of Lemma 3 we set

(5.3) τ = 4
x

x
,

so that, by (2.5),

(5.4) x3 =
x

(qx/x)2 = 16
x

q2τ2 ,

and write



54 G. Bachman

(5.5)
( ∑

1≤2i≤x3/(4τ)

+
∑

x3/(4τ)<2i<x3

) 1
x/2i

∑

(li−2)x/2i<n≤lix/2i
n≡bi (mod q)

|f(n)|

=
∑

1
+
∑

2
,

say. We first dispose of
∑

2 whose inner sum we estimate by means of
Lemma 2. Recalling that the applicability of this lemma was already verified
in the proof of Theorem 3 we obtain, by (5.3) and (5.4),

(5.6)
∑

2
� 1

ϕ(q)
eSq(x)

∑

x3/(4τ)<2i<x3

1
log(2x/2i)

� 1
ϕ(q)

eSq(x).

Next we estimate
∑

1 by Lemma 3. The shortening of the range of the
original summation to 1 ≤ 2i ≤ x3/(4τ) was designed to guarantee that∑

1 satisfies all the hypotheses of that lemma with τ given by (5.3), as
one readily verifies. Furthermore, a simple calculation shows that, in the
language of Lemma 3, we have xκ ≤ 4x and x1 ≤ 2τ3q2. Noting that
Sq(4x) = Sq(x) + O(1) and that, by Mertens’s estimate, the hypothesis
q < L3, (5.3) and (2.1)–(2.3),

eSq(x1) � log x1 � log τ + log q � L2,

we thus obtain the bound

(5.7)
∑

1
�ε

1
ϕ(q)

(Lε + eSq(x)).

Finally, combining (5.2) and (5.5)–(5.7) yields (5.1) and hence completes
the proof of Theorems 1 and 2.

6. Examples. In this section we construct functions f ∈ F which verify
the validity of propositions (i)′ and (ii)′ of Section 1. As we have already men-
tioned, our examples are very simple modifications of examples constructed
by Montgomery and Vaughan to establish the corresponding propositions
(i) and (ii). Moreover, an argument used in [MV] to deduce (iii) from (ii)
can now be used, with obvious modifications, to deduce (iii)′ from (ii)′, and
thus will be omitted.

Recall that a real number λ, 0 < λ ≤ 1, is fixed. Given x ≥ 3 set

(6.1) y = eL
1−λ

.

Let 1y be the characteristic function of the natural numbers all of whose
prime factors are greater than y, i.e. 1y is completely multiplicative with

1y =
{

0 if p ≤ y,
1 if p > y.

We will need several facts about the function 1y which we now establish.
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In the first place we have, by Mertens’s estimate and (6.1),

(6.2)
∑

p≤x

1y(p)
p

= λL2 +O(1).

Furthermore, a “fundamental lemma” from sieve theory (see for example
[HR, Theorem 2.5]) gives
∑

n≤x
n≡b (mod q)

1y(n)

=
x

q
Wq(y)

{
1 +O

(
exp
(
− log(x/q)

log y

)
+ exp(−

√
log(x/q))

)}
,

for any coprime natural numbers b and q, where

(6.3) Wq(y) =
∏

p≤y
(p,q)=1

(
1− 1

p

)
.

Thus, for q ≤ √x, we obtain, by (6.1), the estimates

(6.4)
∑

n≤x
n≡b (mod q)

1y(n) =
x

q
Wq(y) (1 +O(e−L

λ/3
))

and

(6.5)
∑

n≤x
(n,q)=1

1y(n) = ϕ(q)
x

q
Wq(y)(1 +O(e−L

λ/3
)).

We now use these estimates to modify the examples of Montgomery and
Vaughan as follows.

(i)′ Consider the sum

(6.6)
∑

n≤x
1y(n)zΩ(n)e(αn) +

∑

x/2<p≤x
(1− ze(αp)),

where Ω(n) denotes the total number of prime factors of n. From the esti-
mate ∑

x/2<p≤x
1� x/L

and the maximum modulus principle it follows that for some z0, |z0| = 1,
the modulus of the expression in (6.6) is � x/L. From this and (6.2) we
deduce that the completely multiplicative function f given by

f(p) =
{

1y(p)z0 if p ≤ x/2,
e(−αp) if p > x/2
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satisfies
|F (x, α)| � x/L

and

S(x) =
∑

p≤x

|f(p)|
p

= λL2 +O(1).

(ii)′ Let χ be a character modulo q induced by the primitive character
χ∗ modulo k, so that k | q. Set f(n) = 1y(n)χ(n). Now write

F

(
x,
a

q

)
=
∑

1≤b≤q
χ(b)e

(
a

q
b

) ∑

n≤x
n≡b (mod q)

1y(n).

For (b, q) = 1 we estimate the last summation over n by (6.4) to obtain

F

(
x,
a

q

)
=
x

q
Wq(y)

( ∑

1≤b≤q
χ(b)e

(
a

q
b

)
+O(qe−L

λ/3
)
)

(6.7)

=
x

q
Wq(y)(χ(a)τ(χ) +O(qe−L

λ/3
)),

where τ(χ) denotes Gauss’ sum. Since there are no primitive characters
modulo q if and only if q ≡ 2 (mod 4) (see, for example, [Da, §4]) we choose
χ so that k = q/2 in this case and k = q otherwise. In either case (6.7)
together with the well known identities

τ(χ) = µ(q/k)χ∗(q/k)τ(χ∗) and |τ(χ∗)| =
√
k

(see, for example, [Da, §9]) now yield, for q ≤ eLλ/3
,

F

(
x,
a

q

)
� x√

q
Wq(y),

provided that x is sufficiently large in terms of λ. Combining this with (6.5)
and (6.3) we obtain, for x sufficiently large in terms of λ,

F

(
x,
a

q

)
� 1√

q

∑

n≤x
(n,q)=1

|f(n)| q

ϕ(q)

� x√
q
Wq(y)

=
x√
q

∏

p≤x

(
1− 1

p

) ∏

y<p≤x
(p,q)=1

(
1− 1

p

)−1∏

p|q

(
1− 1

p

)−1

� x√
qL e

Sq(x) q

ϕ(q)
,

as desired.
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