
On Expressing Networks with Flow
Transformations in Convolution-Form

Florin Ciucu
T-Labs / TU Berlin

florin@net.t-labs.tu-berlin.de

Jens Schmitt and Hao Wang
TU Kaiserslautern

{jschmitt,wang}@informatik.uni-kl.de

Abstract—Convolution-form networks have the property that
the end-to-end service of network flows can be expressed in
terms of a (min,+)-convolution of the per-node services. This
property is instrumental for deriving end-to-end queueing results
which fundamentally improve upon alternative results derived
by a node-by-node analysis. This paper extends the class of
convolution-form networks with stochastic settings to scenarios
with flow transformations, e.g., by loss, dynamic routing or
retransmissions. In these networks, it is shown that by using the
tools developed in this paper end-to-end delays grow as O(n)
in the number of nodes n; in contrast, by using the alternative
node-by-node analysis, end-to-end delays grow as O

(
n2

)
.

I. INTRODUCTION

Network calculus has been emerging as a promising alter-
native methodology—to the classical queueing theory [14]—
for the performance analysis of packet-switched networks [5],
[2], [12]. By its deterministic and stochastic formulations, the
calculus is able to model a large set of practical scenarios,
and yet to achieve concise results for end-to-end queueing
measures with reasonable accuracy [2], [6]. For instance, it
has been applied to several important network engineering
problems: traditionally in the Internet’s Quality of Service
proposals IntServ and DiffServ, and more recently in diverse
environments such as wireless sensor networks [15], [17],
switched Ethernets [19], Systems-on-Chip (SoC) [4], or even
to speed-up simulations [13].

The fundamental result of network calculus is the
convolution-form representation of networks, within an under-
lying (min,+) algebra, whereby the service given to a single
flow by the whole network can be expressed using a single
process. In this way, for broad classes of arrival processes
(e.g., light-tailed Markovian or even heavy-tailed and self-
similar [16]), end-to-end per-flow queueing measures can be
obtained using single-node results, i.e., as if the flow had tra-
versed a single node. The key benefit of using such a (min,+)
system theoretic approach is the exact scaling of queueing
measures. For instance, end-to-end delay bounds scale as
Θ(n) for both deterministic [2], as well as stochastic set-
tings under complete statistical independence assumptions [9];
in stochastic settings without any independence assumptions
the bounds scale as Θ(n log n) [7], [3]. In contrast, when
neglecting the overall system perspective and conducting a
straightforward node-by-node analysis, the resulting additive
end-to-end delays scale much more poorly: as O(n2) for the

deterministic case [2], and even as O(n3) for the general
stochastic case [7].

A major limitation of the scope of convolution-form net-
works is caused by an underlying assumption that flows are
transported unaltered, for instance lossless, over the network.
Concretely, it is still an open problem whether many networks,
in which data flows are being transformed on the way to their
destinations, can be expressed in convolution-form. Ordinary
examples are networks with lossy links, dynamic routing
or load balancing, and more sophisticated ones are wireless
sensor networks with their typical in-network processing, P2P
content distribution systems, media streaming applications
with some transcoding happening inside the network (e.g.,
to accommodate heterogeneous multicast receivers), or even
network coding scenarios and distributed real-time systems
with heterogeneous resources. Without the convolution-form
representation, such networks can be still in principle analyzed
with network calculus by conducting an additive node-by-node
analysis, but the resulting network queueing measures would
scale, as evidenced earlier, poorly.

An extension of network calculus to deal with flow trans-
formations, and yet achieve the desirable convolution-form
representations, has been proposed in purely deterministic set-
tings [10]. By introducing the so-called data scaling elements
to model actual transformation processes, and by controlling
the movement of these elements in the network, the authors
showed that the exact scaling properties from the deterministic
network calculus are preserved.

Although widening the scope of convolution-form networks,
for example to wireless sensor networks with in-network
processing [18], the approach from [10] still largely leaves
open the limitation in scope of convolution-form networks.
The reason lies in the deterministic modelling which can
very loosely capture the behavior of networks with stochastic
settings. For instance, modelling scaling elements with deter-
ministic bounds can be extremely impractical to capture loss
processes in wireless networks, since extreme situations must
be accounted for (e.g., all data is lost), which would further
lead to trivial results (e.g., zero end-to-end delays). Other
impractical situations include scenarios with random routing,
load-balancing, or network coding with bursty arrivals. It thus
becomes clear that in order to accurately capture the inherent
stochastic behavior of flow transformations in networks, one
must resort to stochastic modelling techniques.

Towards this goal, this paper contributes by introducing a
stochastic scaling element, in the framework of the stochastic
network calculus, to model flow transformations in great
generality. The new scaling element is carefully defined to
achieve (1) convolution-form network representations, and (2)
a flexible means of capturing actual transformation processes
inside a network. The former allows to preserve the exact
scaling properties in network calculus and the latter opens up
the modelling scope widely. More technically speaking, the
new stochastic scaling element has several useful algebraic
properties, of which the most important is that it can be
commuted with a service curve element for service modelling.
In this way, end-to-end performance bounds can be computed
by first reordering a series of service curve and scaling
elements, and then applying concatenation properties for each
type.

A. Related Work

In network calculus, Chang is the first to introduce an
element called router, which has a single data input, a control
input and an output [5]. The control input determines which
packets appear at the output. In fact, this is a special scal-
ing element introduced to specifically model traffic routing,
respectively splitting. He derives the effect a router has on
arrival constraints, but convolution-form expressions of end-
to-end service are not investigated.

Wandeler introduces so-called workload curves [21] into
the real-time calculus, a recent customization of network
calculus for hard real-time systems [20]. Workload curves are
a special scaling element that translates an event stream into
specific requirements for a certain resource, e.g., CPU time or
link bandwidth, thus bridging between different subsystems
with heterogeneous resources. While [21] focuses on how
to actually compute such workload curves (e.g., based on
finite-state machine representations of the actual processing
components) and it basically just applies a variant of Chang’s
router element, it is interesting to note that this application of
scaling opened up an active research avenue for distributed
real-time systems. Convolution-form expressions of end-to-
end service are not yet dealt with in that work.

In [10] a general scaling element with minimum and maxi-
mum scaling curves is introduced. It is shown how to perform
an end-to-end analysis in the presence of flow transformations
inside the network based on a convolution-form expression
of the end-to-end service. In that sense, it goes beyond [5],
[21] and also generalizes previous scaling elements to some
degree. The main message is that the scaling properties of
the network calculus are preserved. Yet, the work is purely
deterministic and a stochastic extension is not straightforward.
While our work could be seen as a stochastic extension of [10],
in that we also strive for convolution-form expressions, we
emphasize that we had to depart significantly from [10] by
defining the scaling at the level of the arrival processes, instead
of as stochastic scaling curves.

An interesting and complementary work is the calculus for
information-driven networks from [23]. Similar to our work,

this calculus also deals with processing inside the network and
has many applications such as network coding. The difference
lies in the queueing analysis of the data information, in the
sense of Shannon entropy, rather than of the data itself. The
calculus from [23] can be thus regarded as an important step
to bridging the gap between communication networks and
classical information theory.

The rest of this paper is structured as follows. In Section II
we introduce stochastic scaling elements with some of their
properties. Then we use these elements in Section III to derive
end-to-end delays in a network with flow transformations.
These results are numerically illustrated in Section IV. Brief
conclusions are presented in Section V.

II. STOCHASTIC SCALING ELEMENT

In this section we first define a (stochastic) scaling element,
state its basic properties, and give an example of a Markov-
modulated scaling process. Then we show the commutativity
property of scaling and service curve elements, which is in-
strumental for expressing networks with flow transformations
in convolution-form.

The time model is discrete. Arrival processes are modelled
with non-decreasing and non-negative random processes, tak-
ing integer values, and defined on some joint probability space.
For an arrival process A(t) we denote for convenience its
bivariate extension as A(s, t) := A(t) − A(s). Also, for two
r.v.’s X and Y , we denote equality in distribution by X =d Y .

Definition 1: (SCALING ELEMENT) A scaling element con-
sists of an arrival process A(t), a scaling random process
X = (Xi)i≥1 taking non-negative integer values, and a scaled
process AX(t) defined for all t ≥ 0 as

AX(t) =

A(t)∑
i=1

Xi . (1)

For an illustration see Figure 1.

AA(t) (t)
X

X

Fig. 1. A scaling element with arrival process A(t), scaling random process
X = (Xi)i≥1, and scaled process AX(t).

When Xi ∈ {0, 1} for all i ≥ 1 we say that the scaling
process X is a loss process, which is useful for modelling
losses at a link. In turn, if Xi > 1 for some i, then the scaling
process X is useful for modelling retransmissions of previous
losses or redundant transmissions. For notation convenience,
when the elements of X are i.i.d., we generically refer to Xi

by X . Also, two scaling processes X = (Xi)i≥1 and Y =
(Yi)i≥1 are i.i.d. if {Xi≥1, Yi≥1} are (mutually) i.i.d.

For an arrival process A(t) and a scaling process X =
(Xi)i≥1, it is helpful to define the corresponding scaled
process in bivariate form as:

AX(s, t) := AX(t)−AX(s) =

A(t)∑
i=A(s)+1

Xi . (2)

Note that in general AX(s, t) ̸= (A(s, t))
X, but they are equal

in distribution under appropriate stationarity assumption on X
and independence between A(t) and X.

We remark that the scaled process AX(t) from Eq. (1) is
defined by space scaling at the granularity of data units, i.e.,
packets. A coarser scaling may be defined by scaling at the
granularity of time units. Concretely, for a scaling random
process Y = (Ys)s≥1, the scaled process of A(t) is the process
AY(t) defined as

AY(t) =

t∑
s=1

a(s)Ys , (3)

for all t ≥ 1, where a(s) = A(s)−A(s−1) is the instantaneous
arrival process of A(t).

The space and time scaling models are tightly related in the
following way. On one hand, given the scaled process AX(t)
from Eq. (1), one can define for all s ≥ 1 the process Ys =∑A(s)

i=A(s−1)+1
Xi

a(s) such that AY(t) = AX(t). Conversely, given
the scaled process AY(t) from Eq. (3), one can define for all
i ≥ 1 the process Xi = Ymin{s:i≤A(s)} such that AX(t) =
AY(t).

The rest of the paper considers the space scaling model
only. The next lemma states some basic properties of scaling
elements which are useful in analyzing networks with flow
transformations.

Lemma 1: (PROPERTIES OF SCALING ELEMENTS) For an
arrival process A(t) and an independent and stationary scaling
process X = (Xi)i≥1 the following basic properties hold.

1) (Scaling Additivity) If Y = (Yi)i≥1 is a scaling process
then

AX+Y = AX +AY ,

as illustrated in Figure 2.

X+Y
X+Y A +AX

AX

AY

<==>

A

A

A A Y

X

Y

1

Fig. 2. Scaling with a sum. The identity scaling element 1 = (1, 1, . . .)
plays the role of a multiplexer.

2) (Arrival Additivity) If B(t) is an arrival process and Xi’s
are i.i.d. then

(A+B)X =d AX +BY ,

as illustrated in Figure 3, where Y = (Yi)i≥1 is a scaling
process such that X and Y are i.i.d..

3) (Stationarity) If both A(t) and X are stationary and
independent then the scaled process AX(t) is stationary,
i.e., for all s, t ≥ 0

AX(s, s+ t) =d AX(t) . (4)

However, if B(s) is an additional arrival process, not
necessarily independent of A(t), and X is independent

AX
AX

YB

+B

A

B

<==>
A

B

(A+B)
X

X

Y

1
YX

Fig. 3. Scaling of a sum; X and Y are i.i.d.

of (A(t), B(s)), then we have the following bound for
s, t ≥ 0 and x ≥ 0

Pr
(
AX(t)−BX(s) ≥ x

)
≤ Pr

(
(A(t)−B(s))

X ≥ x
)
.

(5)
4) (Concatenation and Commutativity) If X is a loss pro-

cess, Y = (Yi)i≥1 is a scaling process independent of
X, and Xi’s, Yi’s are i.i.d. then(

AX
)Y

=d AXY ,

where XY is the scalar product, as illustrated in Fig-
ure 4.

<==>
A A A

XYYX
X (A)X AXYY

Fig. 4. Concatenation; X is a loss process and X and Y are i.i.d.

If Y is also a loss process then we have the commuta-
tivity property (

AX
)Y

=d

(
AY
)X

.

5) (Absorbing Zero and Identity Elements) If 0 =
(0, 0, . . .) and 1 = (1, 1, . . .) then

A0 = 0, A1 = A.

We point out that the properties of concatenation and
commutativity require the strong condition that the processes
are i.i.d.; as it will be evident from the proof, this condition
cannot be relaxed to the stationarity of the processes.

PROOF. The two additivity properties and the absorbing
zero and identity elements’ properties follow directly from the
definition of the scaled process.

For the stationary bound from Eq. (5) we have for some
x > 0

Pr
(
AX(t)−BX(s) ≥ x

)
= Pr

 A(t)∑
i=B(s)+1

Xi ≥ x, A(t) > B(s)


= Pr

A(t)−B(s)∑
i=1

Xi ≥ x, A(t) > B(s)


= Pr

A(t)−B(s)∑
i=1

Xi ≥ x

 .

In the second line we used the formula of total probability.
In the third line we used the stationarity of X and its
independence of A(t) and B(s). The inequality in Eq. (5)
appears in the case of x = 0. Using the same argument, one
may prove a generalized statement that for x ≥ 0

Pr
((

AX(t)−BX(s)− C
)Y ≥ x

)
≤ Pr

((
(A(t)−B(s))

X − C
)Y

≥ x

)
, (6)

where C and Y are additional r.v./scaling process, stationary
and independent of the rest; critical for the proof is the
positivity of X and Y, as in the derivation of Eq. (5).

For the concatenation property we first condition on A(t)
and thus it is sufficient to prove that

X1+X2+···+Xn∑
j=1

Yj =d

n∑
i=1

XiYi

for all n ≥ 1. Further conditioning on (X1, X2, . . . , Xn),
and taking into account that X is a loss process, it becomes
sufficient to prove that

Y1 + Y2 + · · ·+ Ym =d Yi1 + Yi2 + · · ·+ Yim ,

for all m ≥ 1 and i1 ≤ i2 ≤ · · · ≤ im. This is true from
the i.i.d. property of Yi’s. The commutativity property follows
from applying the concatenation property. �
A. Example: Markov-Modulated Scaling Processes (MMSP)

Here we give an example of a scaling process X = (Xi)i≥1

as being modulated by a discrete and homogeneous Markov
process S(i) with states 1, 2, . . . ,M and transition probabil-
ities λi,j for all 1 ≤ i, j ≤ M , as in Figure 5. Let also the
i.i.d. random processes Li(n)n≥1 for all 1 ≤ i ≤ M . The
corresponding scaling process is defined as

Xi = LS(i)(i) ,

i.e., the scaling follows the distribution of LS(i)(1) while in
state S(i). In the special case when the Markov chain has a
single state, i.e., M = 1, or even two states with λ1,2+λ2,1 =
1, then the entire scaling process X = (Xi)i≥1 is i.i.d.

λj,i

... ...

(n)Li ML (n)(n)L1

i
λi,j

j

(n)Lj

1 M

Fig. 5. A Markov chain S(i) with M states and transition probabilities λi,j ,
modulating the scaling process X as Xi = LS(i)(i).

A loss process can be fitted from the classical two-state
Gilbert-Elliott loss model [11], [8] or the finite-state Markov
channel for modelling Rayleigh fading [22]. Further, by in-
versing these models and adding a time offset, one may
consequently determine a retransmission scaling process.

In order to carry out a queueing algebra with scaling
elements it is useful to compute the moment generating

functions (MGFs) of the scaled processes in terms of the
MGFs of the arrival processes. First we introduce the notation
MX(θ) := E

[
eθX

]
for some r.v. X and θ > 0.

Lemma 2: (MOMENT GENERATING FUNCTION OF A
SCALED PROCESS) Let an arrival process A(t) and an MMSP
X = (Xi)i≥1 defined as above. Then we have the MGFs for
some θ > 0:

1) (General case) If the matrix λ = (λi,j)i,j is irreducible
and aperiodic then

MAX(t)(θ) ≤ MA(t) (log sp (ϕ(θ)λ)) , (7)

where ϕ(θ) := diag
(
ML1(1)(θ), . . . ,MLM (1)(θ)

)
and

sp (ϕ(θ)λ) denotes the spectral radius of ϕ(θ)λ.
2) (I.i.d. case) If Xi’s are i.i.d. then

MAX(t)(θ) = MA(t) (logMX(θ)) . (8)

The proof follows using conditioning (e.g., see [5]).
The above lemma can be applied recursively to derive the

MGF of a scaled process through a series of scaling elements.
For instance, if X and Y are i.i.d. then

M(AX)Y(t)(θ) = MAX(t) (logMY (θ))

= MA(t) (logMX (logMY (θ))) .

If X is additionally a loss process then the last line is further
equal to MA(t) (logMXY (θ)), by applying the concatenation
property from Lemma 1.

B. Commuting with Service Curve Elements

Here we show how to commute a series of a service curve
element and a scaling element. As mentioned earlier, this
property is instrumental for expressing networks with flow
transformations in convolution-form. First we briefly introduce
service curve elements.

D(t)A(t)
S(s,t)

Fig. 6. A service curve element with arrival process A(t), service random
process S(s, t), and departure process D(t).

Service curves provide lower bounds on the service received
by an arrival flow A(t) at a network node (see Figure 6), and
are formally defined by a bivariate random process S(s, t)
such that the departure process D(t) satisfies [5]

D(t) ≥ A ∗ S(t) , (9)

for all t ≥ 0, where ‘∗’ denotes the (min,+)-convolution
defined as A ∗ S(t) = inf0≤s≤t {A(s) + S(s, t)}. If the
inequality above holds with equality then the service curve
is said to be exact.

Lemma 3: (COMMUTING SERVICE CURVE AND SCALING
ELEMENTS) Consider a system with an arrival process A(t)
which goes through a service curve S(s, t) and then a scaling
element X = (Xi)i≥1. In another system, A(t) goes first
through X and then through the exact service curve T (s, t) :=

<==>
A

S
D A A

T
EDX X

X X

Fig. 7. Commuting service curve and scaling elements

∑A(s)+S(s,t)
i=A(s)+1 Xi, as shown in Figure 7. If A(t), X, and S(s, t)

are independent, then for all t ≥ 0

E(t) ≤ DX(t) , (10)

where DX(t) and E(t) are the departure processes in the two
systems. Moreover, if A, S and X are independent, and X
is stationary, then MT (s,t)(−θ) = MS(s,t)(logMX(−θ)) for
any θ > 0.

PROOF. From the definition of scaling and service elements
we have immediately for some t ≥ 0

E(t) = inf
0≤s≤t

{
AX(s) + T (s, t)

}
= inf

0≤s≤t


A(s)∑
i=1

Xi +

A(s)+S(s,t)∑
i=A(s)+1

Xi


= inf

0≤s≤t

A(s)+S(s,t)∑
i=1

Xi ≤
D(t)∑
i=1

Xi = DX(t) .

The rest of proof follows by successive conditioning. �
The lemma ensures that backlog/delay processes in the

transformed system are bigger in distribution than in the
original system. For instance, for an arrival process A(t) and
departure process D(t), the delay process is defined by the
process W (t) = inf {d : A(t− d) ≤ D(t)}. We also point
out that although the expression of T (s, t) depends on A(s),
the expression of T (s, t)’s Laplace transform is sufficient to
elegantly carry out end-to-end computations. The next section
presents a detailed end-to-end delay analysis of a network with
flow transformations by means of Lemma 3.

III. SCALING OF END-TO-END DELAYS

In this section we compute end-to-end delays in a flow
transformation network consisting of a series of alternate
service and scaling elements. In particular we demonstrate
that by using Lemma 3, which allows the transformation of
this network in a convolution-form network by repeatedly
commuting scaling and service elements, the end-to-end delays
scale linearly in the number of service elements. In contrast,
we also show that by applying the alternative node-by-node
and additive analysis, end-to-end delays scale quadratically.

S2S1 Sn...A
1 n−1XX

Fig. 8. A flow transformation network consisting of sequence of alternating
service and scaling elements.

We consider the flow transformation network scenario from
Figure 8. A stationary arrival process A(t) crosses a series
of alternate service and scaling elements denoted by Si and

Xi, respectively. We assume that all the service and scaling
processes are stationary and (mutually) independent. This
network scenario can be seen as a flow’s view, or a part of it,
in a network with loss or random routing.

A. Transformation in Convolution-Form

The next theorem provides a bound on the end-to-end delay
and the corresponding order of growth in Figure 8.

Theorem 1: (END-TO-END DELAYS IN A FLOW TRANS-
FORMATION NETWORK) Consider the network scenario from
Figure 8 where a stationary arrival process A(t) crosses
a series of alternate stationary and (mutually) independent
service and scaling elements denoted by S1, S2, . . . , Sn

and i.i.d. X1,X2, . . . ,Xn−1, respectively. Assume the MGF
bounds MA(s,t)(θ) ≤ eθr(θ)(t−s) and MSk(t)(−θ) ≤ e−θCkt,
for k = 1, . . . , n, and some θ > 0. Under a stability condition,
to be explicitly given in the proof, we have the following end-
to-end steady-state delay bounds for all d ≥ 0

Pr
(
W > d

)
≤ Knbd , (11)

where the constants K and b are to be given in the proof as
well. Moreover, the ε-quantiles scale as O(n), for some ε > 0.

PROOF. Fix t, d ≥ 0 and denote for convenience for all
k, s ≥ 0

A(k)(s) :=

· · ·
(
AX1

)X. .
.

2

Xk

(s) (12)

the iterative scaling of A by X1, X2, . . . , Xk. Also, for
k ≥ 0 we introduce the scaled processes Uk(s, uk) defined as

U0(s, u0) = A(s) ,

for u0 = s, and then recursively

Uk(s, uk) =
(
Uk−1(s, uk−1) + Sk(uk−1, uk)

)Xk

(13)

for k ≥ 1 and uk−1 ≤ uk.
We are going to prove the claim from the theorem by

induction. For k ≥ 1 we let the following two statements
(S1) and (S2) for the induction process:

(S1) Pr
(
Wk(t) > d

)
≤

∑
0≤s≤t−d

∑
s≤u1≤···≤uk−1≤t

Pr
(
A(k−1)(t− d) > Uk−1 (s, uk−1) + Sk (uk−1, t)

)
,

and for fixed s and uk

(S2)
(
A(k−1)(s) + Tk−1 ∗ Sk(s, uk)

)Xk

= inf
s≤u1≤···≤uk

Uk (s, uk) ,

where Tk is defined recursively as T0(0) = 0, T0(s) = ∞ for
all s > 0, and

Tk(s, t) :=

A(k−1)(s)+Tk−1∗Sk(s,t)∑
i=A(k−1)(s)+1

Xk,i . (14)

For the initial step of the induction, i.e., k = 1, we have

Pr
(
W1(t) > d

)
= Pr (A(t− d) > D(t))

≤ Pr (A(t− d) > A ∗ S1(t))

≤
∑

0≤s≤t−d

Pr (A(t− d) > U0 (s, s) + S1(s, t)) , (15)

which verifies the first statement (S1). In the first line D(t) is
the output process from the service element S1 and we used
the equivalence W1(t) > 0 ⇔ A(t−d) > D(t), in the second
line we used the definition of the service curve, and in the
third line we expanded the (min,+) convolution and applied
the union bound.

In turn, for the second statement (S2), we have

(A(s) + T0 ∗ S1(s, u1))
X1 = (A(s) + S1 (s, u1))

X1

= inf
s≤u1

U1 (s, u1) ,

which verifies (S2). In the first line we used that T0(0) =
0, T0(s) = ∞ for s > 0, and then we used the definition of
Uk(s, uk) from Eq. (13).

For the inductive step we assume that (S1) and (S2) hold
for some k ≥ 1 and we will prove them for k + 1.

First, we observe that after iteratively commuting for k
times the service and service elements from Figure 8, we
obtain the system from Figure 9; note that, according to
Lemma 3, the output before the kth service element in the
transformed system is smaller than in the original system.

nSkT k+1*SA
1 k n−1XXX

Fig. 9. Transformation of the system from Figure 8 after iteratively applying
Lemma 3 for k times.

Using the argument from Eq. (15) we can write for the
end-to-end delay until the k + 1th scaling element

Pr (Wk+1(t) > d)

≤
∑

0≤s≤t−d

Pr
(
A(k)(t− d) > A(k)(s) + Tk ∗ Sk+1(s, t)

)
≤

∑
0≤s≤t−d

∑
s≤uk≤t

Pr
(
A(k)(t− d) >

A(k)(s) + Tk(s, uk) + Sk+1(uk, t)
)

≤
∑

0≤s≤t−d

∑
s≤uk≤t

Pr
(
A(k)(t− d) >

(
A(k−1)(s) + Tk−1 ∗ Sk(s, uk)

)Xk

+ Sk+1(uk, t)
)

≤
∑

0≤s≤t−d

∑
s≤u1≤···≤uk≤t

Pr

(
A(k)(t− d) >

Uk(s, uk) + Sk+1(uk, t)

)
,

which proves the statement (S1) for k + 1. In the third line
we expanded the convolution and applied the union bound,

and finally we used the induction hypothesis for (S2) together
with the union bound.

Lastly, for the induction argument, we need to prove the
statement (S2) for k + 1. We have(

A(k)(s) + Tk ∗ Sk+1(s, uk+1)
)Xk+1

= inf
s≤uk≤uk+1

(
A(k)(s) + Tk(s, uk) + Sk+1(uk, uk+1)

)Xk+1

= inf
s≤uk≤uk+1

((
A(k−1)(s) + Tk−1 ∗ Sk(s, uk)

)Xk

+Sk+1(uk, uk+1)

)Xk+1

= inf
s≤uk≤uk+1

(Uk(s, uk) + Sk+1(uk, uk+1))
Xk+1

= inf
s≤uk≤uk+1

Uk+1(s, uk+1) ,

which proves the claim. In the next to last line we used the
induction hypothesis and then the definition of Uk(s, uk) from
Eq. (13). The induction argument is thus complete.

Next we compute the end-to-end delay bound on Wn(t) by
using the statement (S1) for k = n. We have

Pr
(
Wn(t) > d

)
≤

∑
0≤s≤t−d

∑
s≤u1≤···≤un−1≤t

Pr

(
A(n−1)(t− d)

>

(
. . .
(
(A(s) + S1(s, u1))

X1 + S2(u1, u2)
)X2

+ · · ·+ Sn−1(un−2, un−1)

)Xn−1

+ Sn(un−1, t)

)
≤

∑
0≤s≤t−d

∑
s≤u1≤···≤un−1≤t

Pr

((
. . .
(
(A(t− d− s)− S1(s, u1))

X1 − S2(u1, u2)
)X2

− · · · − Sn−1(un−2, un−1)

)Xn−1

> Sn(un−1, t)

)
,

after repeatedly applying the stationary bounds in Eqs. (5)
and (6) from Lemma 1. Next, using the Chernoff bound for
some θ > 0, we obtain

Pr
(
Wn(t) > d

)
≤

∑
0≤s≤t−d

∑
s≤u1≤···≤un−1≤t

ean−1r(an−1)(t−d−s)e−an−1C1(u1−s)e−an−2C2(u2−u1)

. . . e−a0Cn(t−un−1) .

Here we recursively used Lemma 2 and obtained the bounds

E
[
eθA

(k)(t)
]
≤ eakr(ak)t , (16)

for k ≥ 0 (refer to Eq. (12) for the definition of A(k)(t)). Note
that a0 = θ and ak’s for k ≥ 1 do not depend on A(t) but
instead are formed recursively as

ak+1 = logE
[
eakX1,1

]
(17)

in the case when X1,i’s are i.i.d. More generally, when Xk’s
are MMSPs, the recursion is given by

ak+1 = log sp
(
ϕXk+1

(ak)λ
)

(18)

by Lemma 2, where the diagonal matrices ϕXk+1
(ak) are

defined as ϕ(θ) from Lemma 2, but now relative to each Xk+1

for k ≥ 0.
Denoting

b = sup
k=0,...,n−1

e−akCn−k (19)

and imposing the following stability condition

an−1r(an−1) + log b < 0 , (20)

we can bound the sums as

Pr
(
Wn(t) > d

)
≤

∑
0≤s≤t−d

∑
s≤u1≤···≤un−1≤t

ean−1r(an−1)(t−d−s)bt−s

=
∑

0≤s≤t−d

(
t− s+ n− 1

n− 1

)
ean−1r(an−1)(t−d−s)bt−s

≤ Knbd .

where
(
t−s+n−1

n−1

)
is the number of combinations with repeti-

tion and K =
(1+ d

n)
1+ d

n

(d
n)

d
n

. Here we used that ean−1r(an−1)b <

1 (note the stability condition from Eq. (20)), and then applied
the summation results from Theorem 3 in [9]. Taking t → ∞
proves the result from Eq. (11). Finally, the order of growth
of the ε-quantiles for some 0 < ε < 1 follow directly from
Eq. (11) by observing that K is bounded in n. The proof is
now complete. �
B. Alternative Node-by-Node Analysis

Here we show that end-to-end delays obtained by a straight-
forward node-by-node analysis fundamentally differ from
those obtained in Theorem 1 in that the order of growth is
quadratic in number of nodes, as opposed to linear.

S2S1 Sn
A2 An

X1
Xn−1An−11A ...A

1
1A

n−1X X

Fig. 10. A flow transformation network consisting of a sequence of
alternating service and scaling elements.

Consider the same network setting as in the previous
subsection, and with the notations from Figure 10, where
Ak represents the output from the kth service element, for
k = 1, . . . , n. Also, denote by convention A0 = A and let
X0 = 1.

Assume as in Theorem 1 that MA(s,t)(θ) ≤ eθr(θ)(t−s) and
MSk(t)(−θ) ≤ e−θCkt, for k = 1, . . . , n, and some θ > 0.
Assume also the stability condition ak−i+1Ci > akr(ak) for
all 1 ≤ i ≤ k, where ak’s are defined as in Eq. (17) or (18).

We will first prove by induction the statement

(S) E
[
eθA

Xk
k (t)

]
≤ Mke

akr(ak)t , (21)

where M0 = 1 and for k ≥ 1

Mk =
k∏

i=1

1

ak−i+1Ci − akr(ak)
. (22)

The statement is immediately true for k = 0 from the initial
assumptions. Let us now assume that the statement (S) holds
for k and prove it for k+1. We can write for the MGF of the
output Ak+1(s, t) from the (k+1)th service element (see [9])

E
[
eθAk+1(s,t)

]
≤ E

[
e
θ
(
A

Xk
k (t)−Ak+1(s)

)]
≤ E

[
e
θ
(
A

Xk
k (t)−A

Xk
k ∗Sk+1(s)

)]
≤

∑
0≤u<s

Mke
akr(ak)(t−u)e−θCk+1(s−u)

≤ Mk

θCk+1 − akr(ak)
eakr(ak)(t−s) . (23)

In the first line we used that the output at time t is dominated
by the corresponding input. In the second line we used the
definition of the service curve. In the third line we used the
union bound and the induction hypothesis, and finally we
estimated the sum by an integral.

Next, for the MGF of AXk+1

k+1 (s, t), Lemma 2 yields

E

[
eθA

Xk+1
k+1 (s,t)

]
= E

[
ea1Ak+1(s,t)

]
Since the bound on the MGF of Ak+1(s, t) from Eq. (23)
is derived for θ, we need to replace all the occurrences of θ
by a1 (note that all the ak’s depend on θ, according to their
definitions from either Eq. (17) or (18)). Consequently, ak is
to be replaced by ak+1 for all k ≥ 0, which yields the MGF
bound

E

[
eθA

Xk+1
k+1 (s,t)

]
≤ 1

ak+1C1 − ak+1r(ak+1)

. . .
1

a2Ck − ak+1r(ak+1)

eak+1r(ak+1)(t−s)

a1Ck+1 − ak+1r(ak+1)

= Mk+1e
ak+1r(ak+1)(t−s) ,

which proves that the statement (S) holds for k+1, and thus
the induction proof is complete.

In the following, having the MGF bounds for the arrivals at
the kth service element, and the service curves Sk(s, t), we
can derive the corresponding per-node delay bounds Wk(t).
Using the same arguments as in Eq. (15) we obtain for all
k ≥ 1 and d ≥ 0

Pr
(
Wk > d

)
≤ Lke

−θCkd , (24)

where the prefactors Lk’s are defined as

Lk =
k∏

i=1

1

ak−iCi − ak−1r(ak−1)
,

Note that replacing all the occurrences of θ from Lk with a1
yields the Mk’s defined earlier in Eq. (22).

Let us next make the convenient choices

bk = inf
i=1...k

ak−iCi

such that Lk ≤
(

1
bk−ak−1r(ak−1)

)k
, and

b = sup
k=1,...,n

1

bk − ak−1r(ak−1)
.

We can thus bound the bound on Wk by

Pr
(
Wk > d

)
≤ bke−θCkd ,

for all k ≥ 1.
Finally, a bound on the end-to-end delay W =

∑
k Wk can

be formulated as the optimization problem

Pr
(
W > d

)
≤ inf

d1+···+dn=d

{
be−θC1d1 + · · ·+ bne−θCndn

}
.

Letting C = supk=1,...,n Ck we find the infimum (see [7])

Pr
(
W > d

)
≤ nb

n+1
2 e−

θ
nCd . (25)

From here one may easily determine that the quantiles of the
end-to-end delay grow as O

(
n2
)
, which proves the claim from

the beginning of this section.

IV. NUMERICAL RESULTS

In this section we numerically compare the end-to-end delay
bounds from Theorem 1 with those obtained by the alternative
node-by-node analysis presented in Subsection III-B, and
illustrate the corresponding order of growths. Then we draw
some insights on how the burstiness in arrival vs. scaling
processes affect the results from Theorem 1.

For Theorem 1 we directly use the delay bound from
Eq. (11). In turn, for the node-by-node analysis, we use the
end-to-end delay bound

P
(
W > d

)
≤ inf∑

k dk=d

{∑
k

Lke
−θCkdk

}
(26)

for which the infimum can be computed exactly using a convex
optimization result from [7] (see also Eq. (24) for the values
of Lk). We point out that we do not use the expression from
Eq. (25) which was subject to several convenient bounding
choices; these were made in order to derive a result which
can concisely express the O(n2) growth.

We consider the flow transformation network scenario from
Figure 8 with two examples of arrival processes A(t): Poisson
with rate λ and Markov-Modulated On-Off (MMOO). The
MMOO process is represented in Figure 11.(a) in terms of the
transition probabilities λ1 and λ2, and also the peak-rate P ,
i.e., the process transmits at rate P while in state ‘on’ and
is idle while in state ‘off’. When λ1 + λ2 = 1 then A(t) has
independent increments and is thus a sum of Bernoulli random
variables B(λ1). We consider the scaling (loss) processes from
Figure 8 as MMOO processes as represented in Figure 11.(b)
(note that for the loss process the rate while in the ‘on’ state
is 1).

1−λ2

1−λ1

offonλ λ21

P

(a) Arrival process A(t)

1−µ2

1−µ1

on off

1

µ µ1 2

(b) Scaling processes Xi’s

Fig. 11. Representation of Markov-Modulated On-Off (MMOO) processes.

For the MMOO process A(t) from Figure 11.(a) we have
the following bound on its MGF [5]

E
[
eθA(t)

]
≤ eθr(θ)t ,

where r(θ) = 1
θ log

λ1e
θP+λ2+

√
(λ1eθP+λ2)

2−4(λ1+λ2−1)eθP

2 .
Similar bounds apply for the MGF’s of the cumulative pro-
cesses of the Xi’s, with different parameters.

We next use the following numerical settings. The average
rates of the arrivals are normalized to one packet per one time
unit. The utilization at the first node is .75, i.e., C1 = 1.33.
The capacities at the rest of the nodes are set as Ck = an−1

an−k
C1,

such that there is no loss in accuracy in the end-to-end delay
from Theorem 1, as a result of the bounding from Eq. (19).

Figures 12.(a,b) illustrate the order of growths of the end-to-
end delay bounds obtained with Theorem 1 and the node-by-
node analysis for n = 1, . . . , 10 service elements in Figure 8,
by plotting the corresponding ε-quantiles (in time units) with
ε = 10−3. We consider Bernoulli scaling processes (with
µ1 = 1 − µ2 = .75 in Figure 11.(b)) and different arrival
processes (Poisson in (a) and two MMOO’s with different
levels of burstiness in (b); the parameters are displayed in
the caption). For all the arrival processes the figure clearly
illustrates the O(n) vs. O(n2) order of growths of the end-to-
end delays. Moreover, as illustrated by (b), the O(n) results are
much less sensitive to the arrivals’ burstiness than the O(n2)
results, indicating large pre-constants in the latter.

Figure 13 illustrates the impact of burstiness in the scaling
processes over the burstiness in the arrival processes for
n = 1, . . . , 10 service elements in Figure 8. We consider
four arrival processes (one Poisson and three MMOO’s, each
with three levels of burstiness, by adjusting the transition
probability λ1 from Figure 11.(a)). For each arrival process
we consider three scaling processes as MMOO’s, each with
three levels of burstiness, by adjusting µ1 from Figure 11.(b),
while keeping the same average rate of .75 (for the values of
all the parameters see the caption).

Interestingly, the figure indicates that the burstiness in the
arrivals completely dominates the burstiness in the scaling
processes (the plots with different scalings’ burstiness are
visually indistinguishable, for all four arrival cases). This
phenomenon can be justified by the independence assumption
between arrival and scaling processes, i.e., unless some forms
of correlations exist between the two (e.g., always drop when
bursty traffic occurs), the scalings’ burstiness has only a
negligible impact on the arrivals’ burstiness. The figure also
illustrates that when there is almost no burstiness in the arrivals

2 4 6 8 10
0

1000

2000

Number of nodes

D
e
la

y

Node−by−Node
Theorem 1

(a) Poisson

2 4 6 8 10
0

1000

2000

Number of nodes

D
e
la

y

Node−by−Node (more bursty)
Node−by−Node (less bursty)
Theorem 1 (more bursty)
Theorem 1 (less bursty)

(b) MMOO

Fig. 12. Scaling of end-to-end delay bounds with Theorem 1 and the method of node-by-node analysis
(arrival process with rate 1 (Poisson in (a) and two MMOO’s in (b) with P = 2 (less bursty) and P = 3
(more bursty) and λ1 = 1

P
), Bernoulli (0.75) scaling processes, violation probability ε = 10−3).

2 4 6 8 10
0

50

100

Number of nodes

D
e
la

y

MMOO (almost
no bursty)

MMOO
(less bursty)

Poisson

MMOO
(more bursty)

Fig. 13. Arrivals’ burstiness dominates scal-
ings’ burstiness (three MMOO scalings (µ1 =
.67, .75, .99, average=.75) for each arrivals with
average 1 (three MMOO’s with λ1 = .7, .4, .01,
P = 2), ε = 10−3).

(i.e., λ1 → 0 which means that the arrival process looks
roughly like a periodic source of 2 (the peak rate P) packets
every two time units) the delays converge to roughly zero time
units. As this would actually be the case for such periodic
arrivals, the figure provides evidence that the delay bounds
from Theorem 1 are reasonably accurate.

V. CONCLUSIONS

Since flow transformations are manifold and frequent, we
believe that this paper opens up the modelling scope of the
stochastic network calculus widely. To that end, we have
introduced a versatile stochastic scaling element and have
shown how networks with flow transformations could still be
expressed in convolution-form. Consequently, as demonstrated
analytically as well as by numerical examples, the fundamental
scaling properties of the network calculus are retained. This
paper lays the theoretical foundation for a rich set of new
applications of network calculus, ranging from lossy networks
over dynamic routing or network coding scenarios.

For instance, in a network coding scenario [1] with multiple
bursty flows, one may model the coding element with scaling
elements as correlated loss processes, for each of the flows,
which essentially remove all but the last packet in a tuple
of packets to be coded. It becomes of interest to compare
this approach with an alternative and recent approach of the
stochastic network calculus for computing queueing measures
in acyclic networks with network coding [24]. Another par-
ticularly interesting research problem is to embed the scaling
element proposed in this paper within the data information
network calculus from [23]. While some of the applications
of scaling elements to various network scenarios may require
further thought, especially when dealing with cycles, many
opportunities lie ahead.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information
flow. IEEE Transactions on Information Theory, 46(4):1204–1216, July
2000.

[2] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag,
Lecture Notes in Computer Science, LNCS 2050, 2001.

[3] A. Burchard, J. Liebeherr, and F. Ciucu. On Θ(H logH) scaling of
network delays. In Proceedings of IEEE Infocom, May 2007.

[4] S. Chakraborty, S. Kuenzli, L. Thiele, A. Herkersdorf, and P. Sagmeister.
Performance evaluation of network processor architectures: Combining
simulation with analytical estimation. Computer Networks, 41(5):641–
665, Apr. 2003.

[5] C.-S. Chang. Performance Guarantees in Communication Networks.
Springer Verlag, 2000.

[6] F. Ciucu. Network calculus delay bounds in queueing networks with
exact solutions. In International Teletraffic Congress (ITC), pages 495–
506, 2007.

[7] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling properties of statistical
end-to-end bounds in the network calculus. IEEE Transactions on
Information Theory, 52(6):2300–2312, June 2006.

[8] E. O. Elliott. Estimates of error rates for codes on bursty-noise channels.
Bell System Technical Journal, 42(9):1977–1997, Sept. 1963.

[9] M. Fidler. An end-to-end probabilistic network calculus with moment
generating functions. In IEEE International Workshop on Quality of
Service (IWQoS), pages 261–270, 2006.

[10] M. Fidler and J. Schmitt. On the way to a distributed systems
calculus: an end-to-end network calculus with data scaling. In ACM
Sigmetrics/Performance, pages 287–298, 2006.

[11] E. N. Gilbert. Capacity of a bursty-noise channel. Bell System Technical
Journal, 39(5):1253–1265, Sept. 1960.

[12] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer, 2008.
[13] H. Kim and J. Hou. Network calculus based simulation: theorems,

implementation, and evaluation. In IEEE Infocom, Mar. 2004.
[14] L. Kleinrock. Queueing Systems, volume 1. John Wiley and Sons, 1975.
[15] A. Koubaa, M. Alves, and E. Tovar. Modeling and worst-case dimen-

sioning of cluster-tree wireless sensor networks. In Real-Time Systems
Symposium, pages 412–421, 2006.

[16] J. Liebeherr, A. Burchard, and F. Ciucu. Non-asymptotic delay bounds
for networks with heavy-tailed traffic. In IEEE Infocom, 2010.

[17] J. Schmitt and U. Roedig. Sensor network calculus - a framework for
worst case analysis. In IEEE International Conference on Distributed
Computing in Sensor Systems, pages 141–154, 2005.

[18] J. B. Schmitt, F. A. Zdarsky, and L. Thiele. A comprehensive worst-
case calculus for wireless sensor networks with in-network processing.
In IEEE Real-Time Systems Symposium (RTSS), 2007.

[19] T. Skeie, S. Johannessen, and O. Holmeide. Timeliness of real-time
IP communication in switched industrial ethernet networks. IEEE
Transactions on Industrial Informatics, 2(1):25–39, Feb. 2006.

[20] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In IEEE International Symposium
on Circuits and Systems, volume 4, pages 101–104, 2000.

[21] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative Characteri-
zation of Event Streams in Analysis of Hard Real-Time Applications.
Real-Time Systems, 29(2):205–225, March 2005.

[22] H. S. Wang and N. Moayeri. Finite-state Markov channel – a useful
model for radio communication channels. IEEE Transactions on
Vehicular Technology, 44(1):163–171, Feb. 1995.

[23] K. Wu, Y. Jiang, and G. Hu. A calculus for information-driven networks.
In IEEE International Workshop on Quality of Service (IWQoS), 2009.

[24] Y. Yuan, K. Wu, W. Jia, and Y. Jiang. Performance of acyclic stochastic
networks with network coding. IEEE Transactions on Parallel and
Distributed Systems, 99(PP), 2010.

