
On Extend-Only Directed Posets and Derived
Byzantine-Tolerant Replicated Data Types (Extended Version)

Florian Jacob

florian.jacob@kit.edu
Karlsruhe Institute of Technology

Karlsruhe, Germany

Hannes Hartenstein

hannes.hartenstein@kit.edu
Karlsruhe Institute of Technology

Karlsruhe, Germany

Abstract
We uncover the extend-only directed posets (EDP) structure

as a unification of recently discussed DAG-based Byzantine-

tolerant conflict-free replicated data types (CRDT). We also

show how a key-value map model can be derived from the

EDP formulation, and give an outlook on an EDP-based

systemic access control CRDT as a formalization of the CRDT

used in the Matrix messaging system.

CCS Concepts: • Security and privacy → Distributed
systems security; Access control; • Software and its en-
gineering→ Consistency.

Keywords: Conflict-Free ReplicatedData Types, Strong Even-
tual Consistency, Byzantine Fault Model, Matrix Event Graph

1 Introduction
Recently, we noticed [7] that the conflict-free replicated data

type (CRDT) of a system for decentralizedmessaging (Matrix,

[15]) retains its CRDT property also in environments with

Byzantine nodes, i.e., in environments with nodes that arbi-

trarily deviate from the expected protocol behavior. Klepp-

mann [8] was able to show that an arbitrary crash-fault tol-

erant CRDT can be transformed into a CRDT that tolerates

an arbitrary number of Byzantine nodes. These proposals

for the Byzantine case have in common that events are man-

aged in a graph-like shared object: events are independently

generated at the various replicas (available under partition),

but associated to previous events known to the replica.

The shared objects essentially show the following dynamic

behavior. All replicas start with the same genesis event as ini-

tial state. To append a new event, replicas attach this event to

all events currently known to them that “happened-before”

and have no “descendants”, i.e., the “most recent” events,

without coordinating with other replicas. Replicas then syn-

chronize, i.e., exchange updates, to reach a consistent state

again. When replicas append events that happened concur-

rently, branches occur, which leads to a tree-like structure.

When replicas learn of branches, they will join them again

on their next event, thereby eliminating branches. Events

consist of both payload as well as hashes of previous events,

which ensures integrity and strong eventual consistency in

the face of Byzantine equivocation [8, 5]. An example evolu-

tion over time of such an object is illustrated in Fig. 1.

DSN Research Group

KASTEL Institute
PaPoC 20233

𝑥⊥

𝑥2𝑥1

𝑥3 𝑥4
time replica 1 replica 2

𝑡4 {𝑥⊥, 𝑥1, 𝑥2, 𝑥3, 𝑥4}{𝑥⊥, 𝑥1, 𝑥2, 𝑥3, 𝑥4}

𝑡3 {𝑥⊥, 𝑥1, 𝑥3} {𝑥⊥, 𝑥1, 𝑥2, 𝑥4}

𝑡2 {𝑥⊥, 𝑥1, 𝑥3} {𝑥⊥, 𝑥1, 𝑥2}

𝑡1 {𝑥⊥, 𝑥1} {𝑥⊥, 𝑥2}

𝑡0 {𝑥⊥} {𝑥⊥}

𝑥𝑎 𝑥𝑏
event 𝑥𝑏 happened

after event 𝑥𝑎

DAG state 𝐺 at 𝑡4
on both replicas

Figure 1. Example graph state𝐺 at a point in time 𝑡4 as seen

by both replicas and containing events from both replicas

and the pre-shared genesis event 𝑥⊥. First, both replicas send

events 𝑥1 and 𝑥2 in concurrently. When replica 2 sends event

𝑥4, it has learned about 𝑥1 from replica 1 and therefore puts

both 𝑥1 and 𝑥2 as happened-after parents. Replica 1 has not

learned of 𝑥2 yet, and thereby appends 𝑥3 only to 𝑥1.

While in previous work, the corresponding objects have

been described as directed acyclic graphs (DAGs), in this

work-in-progress paper we propose a more fundamental,

unifying CRDT formalization via directed partially-ordered
sets (directed posets), called Extend-only Directed Posets

(EDPs), that shows the following advantages:

• The set-theoretic formalization captures the essence of

Byzantine-tolerant DAG CRDTs, revealing a) a state-
based EDP that does not require crypto elements, and

b) a hash-based operation-based construction as op-

timization for efficiency. In contrast to DAG-based

variants, the EDP formulation makes use of standard

mathematical notions and fits the theory of CRDTs that

is largely formulated in terms of set theory [12]. Due

to the close relation of set theory and especially lattice

theory to boolean algebra [11], we believe that EDPs

might facilitate formal verification in future work.

• Based on the generic EDP formalization, other types

can be derived and/or constructed by composition that

can then more easily be shown to have the CRDT

property in Byzantine environment. We give an exam-

ple for a derived map type, and an outlook towards a

composed CRDT for systemic access control, which

represents a formalization of the CRDT used in Matrix.

Related work made use of sets instead of DAGs in Byzan-

tine environments, however, did not treat and generalize

them as CRDTs [3]. In the following sections, we will define

EDPs as CRDTs and indicate why they represent a solid basis

for the class of Byzantine-tolerant CRDTs discussed above.

1

ar
X

iv
:2

30
4.

04
31

8v
1

 [
cs

.D
C

]
 9

 A
pr

 2
02

3

https://orcid.org/0000-0002-5739-8852
https://orcid.org/0000-0003-3441-3180

Florian Jacob and Hannes Hartenstein

2 Extend-only Directed Posets (EDPs)
2.1 Basics and Notations
The state space of the EDP replicated data type is based

on relational structures, for which we will now introduce

mathematical basics and notation.

A relational structure 𝑆 = (𝑋, 𝑅) is a tuple which con-

sists of a ground set 𝑋 and a relation 𝑅 ⊆ 𝑋 × 𝑋 . To facili-

tate notation, we sometimes write 𝑆.𝑋 and 𝑆.𝑅 to denote

the set 𝑋 and the relation 𝑅 of 𝑆 = (𝑋, 𝑅). A partially-

ordered set, also called a poset, is a relational structure

that is reflexive (∀𝑎 ∈ 𝑋 : (𝑎, 𝑎) ∈ 𝑅), transitive (∀𝑎, 𝑏, 𝑐 ∈
𝑋 : (𝑐, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑎) ∈ 𝑅 ⇒ (𝑐, 𝑎) ∈ 𝑅), and antisymmetric

(∀𝑎, 𝑏 ∈ 𝑋 : (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑎) ∈ 𝑅) ⇒ 𝑎 = 𝑏). While a ≤-like
𝑅 is usual in mathematics, we use a ≥-like 𝑅 in these defini-

tions for consistency with the rest of the paper. If 𝑆 is a poset,

then𝑅 is called a partial order relation, or partial ordering. If 𝑆

is also strongly connected (∀𝑎, 𝑏 ∈ 𝑋 : (𝑎, 𝑏) ∈ 𝑅∨(𝑏, 𝑎) ∈ 𝑅),
𝑆 is called a linearly-ordered set.

A reflexive and transitive relational structure 𝑆 is called a

downward-directed set if for any two elements, the set con-

tains a lower bound, i.e., ∀𝑎, 𝑏 ∈ 𝑋 : ∃𝑥𝑙𝑏 ∈ 𝑋 s.t. (𝑎, 𝑥𝑙𝑏) ∈
𝑅 ∧ (𝑏, 𝑥𝑙𝑏) ∈ 𝑅. A finite, downward-directed poset is di-

rected towards its unique least element 𝑥⊥, also denoted

as 𝑆⊥, i.e., 𝑥⊥ ∈ 𝑋 and ∀𝑥 ∈ 𝑋 : (𝑥, 𝑥⊥) ∈ 𝑅. Conversely,

a finite upward-directed poset is directed towards its top

element 𝑆⊤ = 𝑥⊤ ∈ 𝑋 , i.e., ∀𝑥 ∈ 𝑋 : (𝑥⊤, 𝑥) ∈ 𝑅. A both

downward- and upward-directed finite poset is said to be a

poset bounded by 𝑥⊥ and 𝑥⊤. The set of maximal elements of

𝑆 is max(𝑆) = {𝑚 ∈ 𝑋 |∀𝑥 ∈ 𝑋 : (𝑥,𝑚) ∈ 𝑅 ⇒ (𝑚, 𝑥) ∈ 𝑅}.
Conversely, the set of minimal elements of 𝑆 is min(𝑆) =
{𝑚 ∈ 𝑋 |∀𝑥 ∈ 𝑋 : (𝑚, 𝑥) ∈ 𝑅 ⇒ (𝑥,𝑚) ∈ 𝑅}.
A relational structure 𝑆 ′ = (𝑋 ′, 𝑅′) is called an extension

of another relational structure 𝑆 if 𝑋 ⊆ 𝑋 ′ and 𝑅 = 𝑅′ |𝑋 ,
where the restriction 𝑅 |𝐴 is defined as usual as 𝑅 |𝐴 = 𝑅 ∩
(𝐴 × 𝐴). We call 𝑆 ′ an upward extension of a downward-

directed poset 𝑆 if additionally 𝑆 ′⊥ = 𝑆⊥. The downward

closure 𝑦↓𝑆 of an element 𝑦 ∈ 𝑆.𝑋 is defined as 𝑦↓𝑆 = {𝑐 ∈
𝑋 | (𝑦, 𝑐) ∈ 𝑅}. The downward closure 𝑌 ↓𝑆 of a subset 𝑌 ⊆ 𝑋

is generalized from the single-element downward closure as

𝑌 ↓𝑆 =
⋃

𝑦∈𝑌 𝑦
↓𝑆
. The upward closure of elements and subsets

of 𝑋 is defined correspondingly, 𝑦↑𝑆 = {𝑐 ∈ 𝑋 | (𝑐,𝑦) ∈ 𝑅}.
The set of maximal lower bounds of an element 𝑦 ∈ 𝑋 is

the set of maximal elements of the downward closure of 𝑦

without 𝑦 itself, mlb(𝑦) = max(𝑦↓𝑆 \ {𝑦}).

2.2 Specification
To build an append-only CRDT (as sketched in the introduc-

tion) that tolerates an arbitrary number of Byzantine nodes,

the key idea is to replace an event 𝑥 with its downward clo-

sure, i.e., adding all the relations to previous events. Thereby,

a byzantine node cannot create inconsistent relations any-

more — it can only create spam additions. The EDP RDT

will be defined, therefore, as ‘higher-order’ directed posets,

DSN Research Group

KASTEL Institute

Homomorphism between EPM and BPM

PaPoC 20236

𝑥⊥ 𝑢⊥

𝑢1

𝑆 U
𝑢3 𝑢4

𝑢2𝑥2𝑥1

𝑥4𝑥3

𝑢⊥ 𝑢2𝑢1

𝑢3 𝑢4

𝑢⊥ = x⊥, 𝑥⊥
𝑢1 = 𝑢⊥ ∪ 𝑥1, 𝑥1 , 𝑥1, 𝑥⊥
𝑢2 = 𝑢⊥ ∪ 𝑥2, 𝑥2 , 𝑥2, 𝑥⊥
𝑢3 = 𝑢1 ∪ 𝑥3, 𝑥3 , 𝑥3, 𝑥1 , 𝑥3, 𝑥⊥
𝑢4 = 𝑢1 ∪ 𝑢2 ∪ { 𝑥4, 𝑥4 , 𝑥4, 𝑥2 , 𝑥4, 𝑥1 , 𝑥4, 𝑥⊥ }

left is maximal lower

bound of right

left is lower or

equal to right

Figure 2.ABDP state 𝑆 and equivalent EDP state𝑈 based on

Fig. 1. An upward extension 𝑢𝑖 ∈ 𝑈 is the set of its enclosed

relations in 𝑆 , to represent the formation history of 𝑥𝑖 ∈ 𝑆 .

i.e., will represent directed posets of directed posets. The

resulting EDP RDT can then easily be shown to represent

a state-based CRDT, for which an operation-based version

can be constructed by using cryptographic hash functions

as order-guaranteeing mechanisms. For clarity, we denote

as Basic Directed Posets (BDP) the directed posets that are

used as ‘base layer’ to construct the EDP RDT.

To fix a BDP, one selects a universe X of valid elements

and a universe R ⊆ P(X2) of valid relations. BDP states

are finite, downward-directed posets 𝑆 = (𝑋, 𝑅), 𝑋 ⊆ X,
𝑅 ∈ R, with a common bottom element 𝑆⊥ (to be interpreted

as the initial state of all correct replicas). As example, one

can think of the universe X as application-layer messages,

and the universe R ⊆ P(X2) as causal orders, and a specific

bootstrapping application-layer message as bottom element.

To define extend-only operations, we only want to allow

single-element upward extensions of a BDP state 𝑆 . We want

finality as required validity criterion for extensions: Adding a

new element to the BDP and adding the relations of the new

element needs to be a single, atomic upward extension, i.e.,

cannot be changed later. The required finality property can

be expressed as follows: when element 𝑥 is the single element

that has been added to gain state 𝑆 , for all upward extensions

𝑆 ′ of 𝑆 needs to hold
1
: 𝑥 ↓𝑆

′
= 𝑥 ↓𝑆 and 𝑅′ |𝑥↓𝑆′ = 𝑅 |𝑥↓𝑆 .

To provide this finality notion, the obvious (but ineffi-

cient) approach is to bind a single-element upward exten-

sion, which extends 𝑆 = (𝑋, 𝑅) with an element 𝑥 ∈ X, to
all single-element upward extensions for elements 𝑦 with

𝑥 ≥ 𝑦. This way, the history of extend-only operations is

fixed and serves as identity-forming information for the new

single-element upward extension. To express sets of ‘forma-

tion histories’ of BDP elements, one has to move to sets of

1
In contrast, the upward closure of an element and their relations might

be never final: 𝑥↑𝑆
′ ⊇ 𝑥↑𝑆 and 𝑅′ |

𝑥↑𝑆′ ⊇ 𝑅 |
𝑥↑𝑆 . A new upper element can

always be in transit or purported to have been in transit.

2

On Extend-Only Directed Posets and Derived Byzantine-Tolerant Replicated Data Types (Extended Version)

posets. Thus, for the EDP definition, we move ‘one level up’

and map those BDP posets to elements of the EDP as done in

the following two steps. An illustration of the BDP to EDP

state mapping based on the state in Fig. 1 is found in Fig. 2.

Step 1. Let the directed poset 𝑆 ′ = (𝑋 ′, 𝑅′) be the upward
extension with a single element 𝑥 ∈ X of a directed poset

𝑆 = (𝑋, 𝑅) of the BDP. The downward closure 𝑥 ↓𝑆
′
with 𝑅′

restricted to 𝑥 ↓𝑆
′
is a sub-poset (𝑥 ↓𝑆′, 𝑅′ |𝑥↓𝑆′) ⊆ 𝑆 ′ bounded

by 𝑥⊥ and x. Let 𝑢𝑥 := 𝑅′ |𝑥↓𝑆′ denote this relation of such a

BDP upward extension with 𝑥 , and 𝑋 (𝑢𝑥) := {𝑦 ∈ X| (𝑦,𝑦) ∈
𝑢𝑥 } = 𝑥 ↓𝑆

′
the set of reflexive pairs in 𝑢𝑥 . We can derive

from 𝑢𝑥 the upward extension 𝑆 ′ of 𝑆 with 𝑥 as 𝑆 ′ = (𝑋 ∪
𝑋 (𝑢𝑥), 𝑅 ∪ 𝑢𝑥). Thereby, as shorthand notation, we call 𝑢𝑥
an upward extension as well. An upward extension 𝑢𝑥 ∈ R
is valid if (𝑋 (𝑢𝑥), 𝑢𝑥) forms a BDP sub-poset of 𝑆 ′ bounded
by 𝑥⊥ and 𝑥 . While we focus on its relation, the bounded

sub-poset is an alternative upward extension shorthand.

Step 2.We now move ‘one level up’ and define the EDP by

using upward extensions 𝑢𝑥 as elements and subset relations

to form posets of those upward extensions. An EDP state

𝑈 ∈ P(R) is the set of single-element upward extensions

𝑈 = {𝑢⊥, 𝑢1, . . .}, i.e., the formation history of BDP state 𝑆 .

The initial EDP state is𝑈 = {𝑢⊥ = {(𝑥⊥, 𝑥⊥)}}, which is the

upward extension of the empty set with the bottom element.

An EDP state𝑈 ∈ P(R) is valid if (𝑈 , ⊇ |𝑈) is a 𝑢⊥-directed
poset and∀𝑢 ∈ 𝑈 : mlb(𝑢) ⊊ 𝑈∧|𝑋 (𝑢) | = |{𝑋 (⋃mlb(𝑢)) |+
1, i.e., every upward extension in 𝑈 also has its maximal

lower bounds in𝑈 , and extends the BDP state with exactly

one element that is not present in any of its maximal lower

bounds. Fig. 3 provides an illustration of applying an upward

extension, derived from the graph of Fig. 1. An EDP state

𝑈 can be transformed back to a directed poset 𝑆 (𝑈) on the

underlying BDP via 𝑆 (𝑈) = (𝑋 (⋃𝑈),⋃𝑈). The above EDP
definition leads to a state-based CRDT with state space P(R)
and set union𝑈1 ∪𝑈2 as join, as shown in Theorem 1.

Theorem 1. Assuming a connected component of all correct
replicas and eventual communication among the component,
the state-based EDP is a Conflict-free Replicated Data Type
even in face of an arbitrary number of Byzantine replicas.

Proof Sketch. For the state space P(R), set union 𝑈1 ∪𝑈2 is

the least upper bound of𝑈1,𝑈2 ∈ P(R), whereby P(R) and
set union form a join-semilattice. Via periodic state gossip-

ing, eventual delivery is fulfilled. Together with termination

from the purely mathematical state join, the state-based EDP

is a CRDT [14]. As updates only consist of a semilattice ele-

ment, there is no metadata to forge, and Byzantine replicas

are limited: Invalid Byzantine updates are rejected as not part

of the semilattice, and due to the full formation history pro-

tecting the integrity of valid updates, any Byzantine attempt

to alter history, equivocate, or otherwise harm consistency,

is equivalent to multiple valid updates which were just not

successfully sent to all replicas [5]. □

DSN Research Group

KASTEL Institute
PaPoC 20235

max(𝑈) = {𝑢3, 𝑢4}

𝑈⊥ = 𝑢⊥
𝑢⊥ 𝑢⊥

𝑢1

𝑢5

mlb 𝑢5
= {𝑢4}

𝑈 U′

upward extension

of 𝑈 to 𝑈′ via 𝑢5

𝑢𝑎 𝑢𝑏 𝑢𝑎 ∈ mlb(𝑢𝑏)

𝑢𝑎 𝑢𝑏 𝑢𝑏 , 𝑢𝑎 ∈ ⊇

𝑢3 𝑢4

𝑢2𝑢2𝑢1

𝑢4𝑢3

Figure 3. Example of a replica state𝑈 of an EDP, and state

𝑈 ′ that results from an upward extension of𝑈 with 𝑢5.

While the modeling as directed posets might introduce

some formalism, the above formulation of the EDP CRDT

uncovers the simple set-theoretic fundamentals, i.e., the state-

based structure, of Byzantine-tolerant DAG CRDTs. Based on

this set-theoretic view, Theorem 1 is easily shown without

needing crypto elements like hashes for Byzantine tolerance,

as the full relation among set elements is sufficient for in-

tegrity. However, from a practical point of view, a state-based

EDP is highly inefficient: replicas continuously gossip their

full state𝑈 , which will only increase in size. To reach the ef-

ficiency of DAGs with EDPs, we now work up our way from

the state-based formulation to an efficient operation-based

EDP CRDT formulation that makes use of cryptographic

hashes for integrity protection. The construction follows [7,

8], its purpose here is to clarify the relationship between

operation-based and state-based formalizations. We need

two optimizations for which we give an intuition now, and

a formalization next. Resilient operation broadcast follows

in Section 2.3, and a proof sketch for Byzantine Strong Even-

tual Consistency follows in Section 2.4. As first optimization,

an upward extension𝑢𝑦 represents a sub-poset of 𝑆
′
bounded

by 𝑥⊥ and𝑦, thus, sending only the relations of that sub-poset
instead of the state𝑈 ′ is sufficient. For the operation-based
formulation, we then compress the subset, reducing worst-

case update size from “depth” to “width” of 𝑈 ′: We define

an operation 𝑜 consisting of 𝑦 and the set of hashed maxi-

mal lower bounds of 𝑢𝑦 in 𝑈 ′. As mlb(𝑢𝑦) ⊆ 𝑈 , 𝑢𝑦 can be

reconstructed based on operation 𝑜 and existing state𝑈 .

To chain 𝑦 to its maximal lower bounds, a preimage and

collision resistant hash function ℎ(𝑎, 𝑏) is used that returns

the hash of its chained arguments. We recursively define

the set of hashes of a set of maximal lower bounds𝑈 ′
mlb

as

𝐻 (𝑈 ′
mlb
) := {ℎ(max(𝑋 (𝑢)), 𝐻 (mlb(𝑢))) |𝑢 ∈ 𝑈 ′

mlb
}. To de-

fine the hash of the set of hashes in the second argument

of ℎ, one can concatenate its linearization gained by lex-

icographical sorting. An operation 𝑜 := (𝑦, 𝐻mlb) is then
defined as compression of upward extension 𝑢 via 𝑜 (𝑢) :=
(max(𝑋 (𝑢)), 𝐻 (mlb(𝑢))). The hashedmaximal lower bound

3

Florian Jacob and Hannes Hartenstein

set recursively protects the integrity of the directed sub-

poset down to the bottom element 𝑢⊥ against Byzantine

nodes. To reconstruct upward extension 𝑢 from operation 𝑜

based on knowledge of current state 𝑈 , we need the set

of relations of all of 𝑜.𝑦’s predecessors 𝑃 := (⋃𝑈 ′
mlb
⊆

𝑈 |𝐻 (𝑈 ′
mlb
) = 𝑜.𝐻𝑚𝑙𝑏). Then, the upward extension is the

union of the reflexive relation of 𝑦, the relation of 𝑦 to its

predecessor elements𝑋 (𝑃), and its transitive relation, i.e., its
predecessor relations 𝑃 . We formalize this reconstruction as

𝑢 (𝑦, 𝑃) := {𝑦}2∪{𝑦}×𝑋 (𝑃)∪𝑃 . An operation 𝑜 can be locally
applied as soon as all maximal lower bounds are part of the

replica state, i.e., 𝑜.𝐻mlb ⊆ 𝐻 (𝑈). An operation 𝑜 is applied

to state 𝑈 by 𝑈 ′ = 𝑈 ∪ 𝑢 (𝑜.𝑦, 𝑃), inheriting commutativity

from set union, which makes for an operation-based CRDT

with state space P(R). Update size is now bound to the max-

imum size of a maximal lower bound set of any element in

the downward closure, instead of overall state size.

The operation-based EDP is given in Algorithm 1. En-

countering an unsatisfied assertion, the algorithm stops pro-

cessing the function and returns an error. Encountering an

unsatisfied await, the algorithm interrupts to await its poten-

tial future satisfaction, without blocking subsequent function

calls. The extend function is used to extend the current state

𝑈 with a new upward extension 𝑢 ∈ R. The side-effect-free
generate function generates update operation 𝑜 and broad-

cast it to all replicas, including itself. Received broadcasts are

processed by the effect function, which awaits all maximal

lower bounds to be part of the current state before applying

the operation. Byzantine tolerance is sketched in Section 2.4,

and requires a weak resilient broadcast outlined next.

2.3 Resilient Broadcast of Operation-Based Updates
The operation-based EDP formulation does not need the

strong guarantees of a crash-/Byzantine-fault reliable broad-

cast. As explained in [8], mere eventual delivery of updates

is sufficient for such Byzantine Sybil-resistant CRDTs, as

long as correct replicas form a connected component. Due to

the shared bottom element and relation directedness, broad-

casting the set of maximal elements is sufficient, as missing

elements can be iteratively queried from other replicas and

integrity-verified via the hash chain. An optimized broad-

casting approach in this spirit is found in [8].

When the set of maximal upward extensions𝑈 = max(𝑈)
of the replicas’ current state 𝑈 (or their space-efficient op-

eration equivalents) is gossiped regularly, the broadcast is

a state-based CRDT itself: The state space forms a join-

semilattice with join of𝑈1 and𝑈2 beingmax(𝑈1∪𝑈2). While

update size is close to EDP size in worst case, if all replicas are

correct, update size converges quickly to approximately the

number of involved replicas [7]. Byzantine replicas can send

a large set of made-up extensions, but as the resulting state-

based broadcast is a Byzantine Sybil-resistant CRDT [5], they

can only attack performance but not correctness.

Algorithm 1 Op-Based EDP CRDT for BDP (𝑋 ⊆ X, 𝑅 ∈ R)
Require: universe of valid BDP elements X
Require: universe of valid BDP relations R ⊆ P(X2)
state set of upward extensions𝑈 ∈ P(R)
initial𝑈 ← {𝑢⊥ = {(𝑥⊥, 𝑥⊥)}}
query bot () : 𝑢⊥ = 𝑈 ⊥ ∈ 𝑈
query max () :𝑈max = max(𝑈) ⊆ 𝑈

query mlb (𝑢 ∈ 𝑈) :𝑈mlb = mlb(𝑢) ⊊ 𝑈

query S () : directed poset 𝑆 = (𝑋 ⊆ X, 𝑅 ∈ R)
𝑆 ← (𝑋 (⋃𝑈 },⋃𝑈)

update extend (𝑢 ∈ R)
generate (𝑢 ∈ R)

assert ∅ ≠ 𝑢 ∉ 𝑈

assert ∅ ≠ mlb(𝑢) ⊊ 𝑈

𝑜 ← (max(𝑋 (𝑢)), 𝐻 (mlb(𝑢)))
effect (𝑜 = (𝑦 ∈ X, 𝐻mlb))

await 𝐻mlb ⊆ 𝐻 (𝑈) ⊲ await effect of updates ⊊ 𝑢

assert 𝐻mlb ≠ ∅
𝑃 ← ⋃(𝑈 ′

mlb
⊆ 𝑈 |𝐻 (𝑈 ′

mlb
) = 𝐻𝑚𝑙𝑏)

𝑈 ← 𝑈 ∪ ({𝑦}2 ∪ {𝑦} × 𝑋 (𝑃) ∪ 𝑃)

2.4 Op-based Byzantine Strong Eventual
Consistency

To show Byzantine strong eventual consistency of the op-

based EDP RDT, we use the strong eventual consistency

(SEC) notion as defined in [9] consisting of three properties:

a) Self-update, i.e., iff a correct replica generates an update,

it applies that update to its own state; b) Eventual update,
i.e., for any update applied by a correct replica, all correct

replicas will eventually apply that update; and c) Strong
Convergence, i.e., any two correct replicas that have applied
the same set of updates are in the same state.

Lemma 1. Let 𝑈 ∈ P(R) be a directed poset corresponding
to 𝑆 = (𝑋 ⊆ X, 𝑅 ∈ R), and 𝑈 ′ (𝑆 ′ resp.) the resulting state
after applying the update 𝑜 = (𝑦, 𝐻mlb) for upward extension
𝑢. Then𝑈 ′ (𝑆 ′ resp.) are a partially-ordered extensions of𝑈 (𝑆
resp.) directed towards the same element𝑈 ⊥ (𝑆⊥ resp.).

Proof Sketch. Invalid upward extensions are discarded via

assertions, and then𝑈 ′ = 𝑈 . Valid upward extensions only

add a single element 𝑦 to 𝑆 . Due to 𝑃 being the union of

𝑢⊥-directed sub-posets and {𝑦} × 𝑋 (𝑃) ⊊ 𝑢,𝑈 ′⊥ = 𝑈 ⊥ and
also 𝑆 ′⊥ = 𝑆⊥, i.e., ⊥-directedness is kept. Due to the same

argument, the partial-order properties also still hold for both

𝑈 ′ and 𝑆 ′. □

Theorem 2. Under the assumption of a connected component
of all correct replicas and eventual communication among the
component, the op-based EDP is a Conflict-free Replicated Data
Type even in face of an arbitrary number of Byzantine replicas.

4

On Extend-Only Directed Posets and Derived Byzantine-Tolerant Replicated Data Types (Extended Version)

Proof Sketch. Self-update: With a broadcast as described

in Section 2.3, the broadcasting replica receives the update

without waiting for any acknowledgment. The generate
function creates an update for which the await precondi-

tion in effect is immediately satisfied, which means that

the effect function directly updates the replica’s own state.

Byzantine nodes have no attack vector to interfere with this

process. Eventual update:Using a broadcast as described in
Section 2.3, as soon as one correct replica receives an update,

eventually every correct replica will receive the update. Due

to eventual communication among the connected component

of correct replicas, Byzantine nodes have no attack vector to

interfere with eventual delivery of correct updates among

correct replicas. Through the hash-chained maximal lower

bounds, replicas can verify the integrity and completeness of

the directed sub-poset of the downward closure up until the

bottom element on every new update, without a Byzantine

node being able to interfere. As soon as one correct replica

can satisfy the await precondition for applying an update,

i.e., has received the necessary downward closure for the el-

ement to add, it will eventually share the downward closure

with all correct replicas, for which the delivery precondi-

tion is then also fulfilled eventually so that they can proceed

with the effect function as well. Strong convergence: Due
to Lemma 1 and the commutativity of set union, all valid

updates commute. Due to the effect function’s assertions,
only valid updates are applied. Due to an operation consist-

ing of both its payload as well as the hashes of its maximal

lower bounds, the integrity of the directed poset of the down-

ward closure of an element is integrity-protected through

hash chaining. Thereby, a Byzantine node that tries to attack

consistency via equivocation with two operations (𝑦𝑎, 𝐻𝑎
mlb
)

and (𝑦𝑏, 𝐻𝑏
mlb
) where either 𝑦𝑎 = 𝑦𝑏 or 𝐻𝑎

mlb
= 𝐻𝑏

mlb
is not

successful, as all correct replicas will reject neither update as

already received, but treat them as separate updates. As the

validity checks are deterministic and the same on all replicas,

Byzantine replicas cannot get an update applied on only a

proper subset of correct replicas. □

Under the given assumption of eventual communication

among correct replicas, neither the operation-based nor the

state-based EDP require authenticity of updates on their

own terms, i.e., to provide SEC. As their update functions

do not depend on the identity of replicas that created an

update, a forged but valid update is just another valid update.
However, digital signatures are required as soon as the ap-

plication requires set elements to contain an identifier for

the sending replica, e.g., for access control, which we will

discuss in Section 3.2.

2.5 Causal Extend-Only Directed Poset (CEDPs)
We denote the subtype of Extend-only Directed Posets with

temporal events as set items together with their causal rela-

tion, in form of their happened-after-equal relation, as Causal

Extend-only Directed Posets (CEDPs). As an EDP subtype,

Theorem 2 also applies. Hash chaining can represent any

upward-extend-only partial ordering, but inherently proves

that the image happened-after the preimage, and thereby the

happened-after relation in a Byzantine-tolerant way.

CEDPs are the set-based version, i.e., the reflexive-transitive

closure, of causal Event DAG approaches like the Matrix

Event Graph (MEG) [15]. A specific proof that the MEG is

a Byzantine-tolerant CRDT is found in [7]. In [9], an Event

DAG approach is used as transport layer to make arbitrary

CRDTs Byzantine-tolerant. Their arguments for Byzantine

tolerance and broadcast requirements also apply to CEDPs.

While the causal set approach to discrete, logical time is

well-known in quantum physics [1], in distributed systems,

the happened-before relation as defined by Lamport [10] is

common. The happened-after-equal relation is the converse

of the reflexive closure of the happened-before relation, and

thereby the relations are interchangeable. The happened-

after-equal relation however represents the direction of hash

chaining and an ordering-based notion of equality. In Physics,

an event is defined as a point in space-time. An operation

𝑜 = (𝑥, 𝐻mlb) can be read as “event 𝑥 happened at discrete

logical time coordinate 𝐻mlb and discrete space coordinate

of the (implicit) replica identifier”. The happened-after order

is a superset of the causal order, i.e., the order in which

events causally depend on each other. Either the application

provides new events and their maximal lower bounds in

causal order, or we use the happened-after order viamax(𝑈)
as maximal lower bounds, which also covers the actual causal

order.

3 Replicated Data Types Derived from
EDPs

3.1 EDP-based Maps (EPMs)
3.1.1 EPM Specification. Based on the EDP replicated

data type, we derive a map replicated data type we call EPM.

Essentially, the universe X now represents key-value pairs,

and as before the relation R defines how update operations

are ordered. The EPM has a ‘largest-element-wins’ semantics

with respect to an ordering of update operations based on R.
Formally, we defineM ⊆ X as the set of valid key-value

pairs of the form (𝑘 ↦→ 𝑣), and a map 𝑀 ⊆ M as ‘injective’

subset of all valid key-value pairs, i.e., a given key only has

one unique associated value. We define the square bracket

operator to query keys for map 𝑀 as (𝑘 ↦→ 𝑣) ∈ 𝑀 ⇔
𝑀 [𝑘] = 𝑣 and a map update operator ⊎ for single-element

upward extensions 𝑢 that keeps injectiveness of𝑀 :

∀𝑢 ∈ R, 𝑥 = max(𝑋 (𝑢)) :

𝑀 ⊎ 𝑢 :=

{
𝑀 \ {𝑘 ↦→ _} ∪ {𝑘 ↦→ 𝑣} if 𝑥 = (𝑘 ↦→ 𝑣) ∈ M
𝑀 if 𝑥 ∈ X \M

5

Florian Jacob and Hannes Hartenstein

The functions of the EPM replicated data type are given

in Algorithm 2. The core of the algorithm is the linearize
function, which linearizes a set 𝑇 ⊆ 𝑈 partially-ordered by

⊆ to a sequence𝑇𝑛 . We define a relation 𝑅 ∥ of all pairs of up-
ward extensions (𝑢1, 𝑢2) ∈ 𝑇 2

that are ‘parallel’, i.e., cannot

be compared using ⊆, and are also minimal in the sense that

no elements smaller than 𝑢1 exist that cannot be compared

to 𝑢2, and vice-versa for 𝑢2. Using a preimage and collision

resistant cryptographic hash functionℎ, we define a strict lin-

ear order relation 𝑅ℎ = {(𝑢1, 𝑢2) ∈ R2 |ℎ(𝑢1) < ℎ(𝑢2)}. The
relation 𝑅 ∥ ∩ 𝑅ℎ then contains the necessary tie-breakings

for the partial ordering ⊆ to gain the linear ordering 𝑅𝑙 = (⊆
∪(𝑅 ∥∩𝑅ℎ))+. The hash function allows resolving ties without
Byzantine nodes being able to compromise the outcome.

Note that Matrix also provides maps based on the CEDP

similar to Section 3.1 to assign additional attributes to repli-

cas and replicated objects, and uses them to provide access

control, which we will discuss in Section 3.2.

3.1.2 Byzantine Eventual Consistency Verification.

Theorem 3. Under the assumption of a connected component
of all correct replicas and eventual communication among the
component, an EPM is an op-based Conflict-free Replicated
Data Type even in face of an arbitrary number of Byzantine
replicas.

Proof Sketch. By reduction to the Byzantine strong eventual

consistency of the underlying op-based EDP. In a correct

replica, the key-value pair is put in context through the set

of maximal elements max(𝑈) as maximal lower bounds of

(𝑘 ↦→ 𝑣), which satisfies the await-precondition and keeps

the Self-Update property. Nothing has changed in the

broadcasting and application of updates, and the linearize
function does not interact with other replicas but takes all

Algorithm 2 Operation-Based EPM Replicated Data Type

state set of upward extensions𝑈 ∈ P(R)
initial𝑈 ← {𝑢⊥ = {(𝑥⊥, 𝑥⊥)}}

update put ((𝑘 ↦→ 𝑣) ∈ M)

𝑦 ← (𝑘 ↦→ 𝑣)
extend (𝑢 (𝑦,⋃max(𝑈))) ⊲ function of Algorithm 1

function linearize (𝑇 ⊆ 𝑈) : 𝑇𝑛 ∈ R𝑛
𝑅 ∥ ← {(𝑢1, 𝑢2) ∈ 𝑇 2 |𝑢1 ⊈ 𝑢2 ∧ 𝑢2 ⊈ 𝑢1

∧ ∀𝑢 ⊊ 𝑢1 : 𝑢 ⊊ 𝑢2 ∧ ∀𝑢 ⊊ 𝑢2 : 𝑢 ⊊ 𝑢1}
𝑅𝑙 ← (⊆ ∪(𝑅 ∥ ∩ 𝑅ℎ))+ ⊲ order 𝑅 ∥ via 𝑅ℎ ,

⊲ + denotes the reflexive-transitive closure
𝑇𝑛 ← enumerate(𝑇, 𝑅𝑙) ⊲ set 𝑇 → sequence 𝑇𝑛

query get (𝑇 ⊆ 𝑈) :𝑀 ∈ M
𝑇𝑛 ← linearize(𝑇 ↓𝑈)
𝑀 ← 𝑇0 ⊎𝑇1 ⊎ . . . ⊎𝑇𝑛

updates applied in the EDP into account, which keeps Even-
tual Delivery. The get and linearize functions as well

as the map update operator ⊎ are deterministic and ignore

invalid updates, so given the same downward-directed poset

(𝑈 , ⊇), i.e. the same state of the EDP, they return the same

map𝑀 , maintaining Strong convergence. □

3.2 Outlook on Systemic Access Control
Access control is usually enforced by a centralized entity in a

strongly consistent way. In a distributed, weakly-consistent

setting, we have to embrace that time is only a partial order-

ing, events and administrative changes happen concurrently,

and there is no such thing as consensus on a total order of

events or on which policies are in in effect “now” [16].

Previous works on access control for CRDTs mainly focus

on filesystem-like cryptographically-enforceable access con-

trol in closed groups [13, 18], while our outlook is inspired by

the granular authorizations and administrative permissions

of Matrix [15] and similar systems [2].

The idea is to provide systemic access control, i.e., storing
attributes needed for policies as well as policies itself in the

types, thereby allowing integration of access decisions in

the CRDT functions and gaining a decentralized enforce-

ment. While the bare EDP formalizations from Section 2.2 do

not require authenticity of updates, decentralized enforce-

ment requires that a replica can prove to another replica that

a third replica was responsible for an update, and thereby

requires transferable authentication through digital signa-

tures. Such a systemic access control can be constructed by

a composition of a CEDP – to gain a concept of logical time

through the happened-after relation – and multiple EPMs.

The main challenge is to treat concurrent administra-

tive changes securely. To deal with concurrent, conflicting

changes, the key idea is that a concurrent update is never

rejected if it was authorized for its downward closure, it just

might be ignored on linearization if another change wins.

A prototype model of such a composed data type is defined

and discussed in Appendix A, together with a proof sketch

of the CRDT property.

4 Conclusion & Future Work
Based on our mathematical formalization around partially-

ordered sets, we presented Extend-onlyDirected Posets (EDPs)

as unifying generalization of ideas around DAG CRDTs in

Byzantine environments. The state-based formalization shows

the essence of these CRDTs, while the operation-based for-

malization makes the optimization for efficiency explicit.

Based on EDPs, we can derive modular building blocks and

compose complex Byzantine-tolerant CRDTswith ease, as ex-

emplified by the map data type and indicated by the use case

for systemic decentralized access control. In composition,

6

On Extend-Only Directed Posets and Derived Byzantine-Tolerant Replicated Data Types (Extended Version)

these building blocks may be the first capable of an access-

control-included formalization of the CRDT-based Matrix

messaging system that aspires among public sectors [4].

This work-in-progress provides a step towards formal

verification of strong eventual consistency in Byzantine en-

vironments of both EDP-based system designs as well as

corresponding implementations (like Matrix), including se-

curity properties of decentralized access control.

References
[1] Luca Bombelli, Joohan Lee, David Meyer, and Rafael D Sorkin. 1987.

Space-time as a causal set. Physical review letters, 59, 5, 521.
[2] Herb Caudill. 2023. Local first auth: decentralized authentication

and authorization for team collaboration, using a secure chain of

cryptological signatures. https://github.com/local-first-web/auth.
[3] Vicent Cholvi, Antonio Fernández Anta, Chryssis Georgiou, Nico-

las Nicolaou, Michel Raynal, and Antonio Russo. 2021. Byzantine-

tolerant distributed grow-only sets: specification and applications.

(2021). doi: 10.48550/ARXIV.2103.08936.
[4] Matthew Hodgson. 2022. The Matrix holiday update 2022. The Ma-

trix.org Foundation C.I.C. https://matrix.org/blog/2022/12/25/the-m
atrix-holiday-update-2022.

[5] Florian Jacob, Saskia Bayreuther, and Hannes Hartenstein. 2022. On

CRDTs in Byzantine environments : conflict freedom, equivocation

tolerance, and the Matrix replicated data type. In Sicherheit 2022.
Gesellschaft für Informatik. doi: 10.18420/sicherheit2022_07.

[6] Florian Jacob, Luca Becker, Jan Grashöfer, and Hannes Hartenstein.

2020. Matrix decomposition – analysis of an access control approach

on transaction-based DAGs without finality. In 25th ACM Sympo-

sium on Access Control Models and Technologies. SACMAT 2020.

doi: 10.1145/3381991.3395399.
[7] Florian Jacob, Carolin Beer, Norbert Henze, and Hannes Hartenstein.

2021. Analysis of the Matrix event graph replicated data type. IEEE
access, 9, 28317–28333. doi: 10.1109/ACCESS.2021.3058576.

[8] Martin Kleppmann. 2022. Making CRDTs Byzantine fault tolerant.

In Proceedings of the 9th Workshop on Principles and Practice of Con-
sistency for Distributed Data, 8–15.

[9] Martin Kleppmann and Heidi Howard. 2020. Byzantine eventual

consistency and the fundamental limits of peer-to-peer databases.

arXiv preprint arXiv:2012.00472.
[10] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a

distributed system. In Concurrency: the Works of Leslie Lamport.
[11] Ranganathan Padmanabhan and Sergiu Rudeanu. 2008. Axioms for

lattices and Boolean algebras. World Scientific.

[12] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. 2018. Conflict-

free replicated data types (crdts). arXiv preprint arXiv:1805.06358.
[13] Pierre-Antoine Rault, Claudia-Lavinia Ignat, and Olivier Perrin. 2022.

Distributed access control for collaborative applications using crdts.

In Proceedings of the 9th Workshop on Principles and Practice of Con-
sistency for Distributed Data, 33–38.

[14] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.

2011. Conflict-free replicated data types. In Symposium on Self-
Stabilizing Systems. Springer, 386–400.

[15] The Matrix.org Foundation C.I.C. 2022. Matrix specification v1.5.

Tech. rep. https://spec.matrix.org/v1.5/.
[16] Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2016.

Access control for weakly consistent replicated information sys-

tems. In International Workshop on Security and Trust Management.
Springer, 82–97.

[17] MatthewWeidner, Heather Miller, and Christopher Meiklejohn. 2020.

Composing and decomposing op-based CRDTs with semidirect prod-

ucts. Proc. ACM Program. Lang., 4, ICFP. doi: 10.1145/3408976.
[18] Elena Yanakieva, Michael Youssef, Ahmad Hussein Rezae, and An-

nette Bieniusa. 2021. Access control conflict resolution in distributed

file systems using crdts. In Proceedings of the 8th Workshop on Princi-
ples and Practice of Consistency for Distributed Data, 1–3.

7

https://github.com/local-first-web/auth
https://doi.org/10.48550/ARXIV.2103.08936
https://matrix.org/blog/2022/12/25/the-matrix-holiday-update-2022
https://matrix.org/blog/2022/12/25/the-matrix-holiday-update-2022
https://doi.org/10.18420/sicherheit2022_07
https://doi.org/10.1145/3381991.3395399
https://doi.org/10.1109/ACCESS.2021.3058576
https://spec.matrix.org/v1.5/
https://doi.org/10.1145/3408976

Florian Jacob and Hannes Hartenstein

A Integrating Systemic Access Control in a
CEDP/EPM Composition

In this appendix, we compose a CEDP and one or more EPMs

to provide access control for the corresponding replicated

data types. Attributes needed for policy evaluation as well

as the policies themselves are stored in the replicated data

types and serve as basis for access decision and enforcement.

Furthermore, also administrative access control tasks like

changing rights and policies are governed by the attributes

and policies within the replicated data types. Therefore, one

does not need to resort to an external system for admin-

istering access control. We refer to this approach as sys-
temic access control and call the composed data type Access-
Controlled Extend-only Directed Poset and Maps (ACEDPM).

The approach is inspired by the way the Matrix messaging

platform handles access control.

Access control is defined in terms of subjects that perform

different actions on objects. In our messaging example, a

user subject performs actions like reading and writing chat

messages, or querying and changing group membership, on

objects like other users or a chat group. An event is the act

of a subject performing an action on an object. We focus on

consistency, and as read actions cannot harm consistency,

we restrict ourselves to write actions in the following. We

store (write) events as set elements in the data type. To gain

a concept of logical time, we store the happened-after-equal

relation among stored events, i.e., a CEDP. One-off events

like chat messages are stored directly in the CEDP, while

change events of attributes like groupmembership are stored

via one or more EPMs on top of the CEDP.

Whoever initiates the CEDP and EPM replicated objects

also defines “the rules” of the composed ACEDPM object, i.e.,

the initial attributes and policies as foundation on which all

further regular and administrative events have to be autho-

rized. Classical access control thinking assumes a centralized,

strongly-consistent access control enforcement based on data

and policy changes ordered by linear, real-world time. The

challenge here is that CEDP and EPM only provide strong

eventual consistency (SEC) as trade-off for availability un-

der partition, and we want to integrate access control while

keeping that trade-off. In decentralized, weakly-consistent

access control, different replicas do not necessarily make the

same decision at one point of real-world time, as data is not

necessarily consistent and changes are ordered by partial,

logical time. However, if the composed ACEDPM is still a

Byzantine-tolerant CRDT, i.e., can still provide SEC, its state

and access control is still secure in the sense that Byzantine

replicas cannot force correct replicas to diverge in their state

and access decisions permanently. The challenge is to treat

concurrent administrative events securely. The ACEDPM

keeps all concurrent events and linearizes them. We explain

the approach in Appendix A.1, and show a proof sketch for

SEC in Appendix A.2.

A.1 ACEDPM Specification
An ACEDPM deals with concurrent events in a CRDT-usual

way: it accepts all valid events, and then breaks ties among

concurrent events, here using an access-control-based linear

ordering among participants. We assume a peer-to-peer sys-

tem architecture where one replica corresponds to a single

user with full control. An ACEDPM object stores events that

consist of an action act of subject sbj (the sending replica)

and the action’s content cnt. All events have the ACEDPM
replicated object as implicit object, and may have an explicit

object obj, e.g., another user. We represent events as tuples

𝑥 = (act, sbj, cnt), or as 𝑥 = (act, sbj, obj ↦→ cnt) if an explicit
object is present. A few examples: Alice writing a text mes-

sage is (chat, Alice, ”Hi!”). If Alice changes group member-

ship to include Bob, we get (membership, Alice, Bob ↦→ 𝐼𝑁).
We get (level, Alice, Alice ↦→ 2342) if Alice sets her own
access level to 2342. As replicas need to verify the correct-

ness of the subject identifier sbj and be able to prove its

correctness to others, events require digital signatures.

In the following, we use two EPMs on top of the CEDP

causal event set to integrate access control: one map𝑀 for

a group membership attribute and one map 𝐿 for an access

level attribute. The first map𝑀 is accessed via a getM variant

of get query function from Algorithm 2. Possible member-

ship values are for example {𝑂𝑈𝑇, 𝐼𝑁 , 𝐼𝑁𝑉 𝐼𝑇𝐸, 𝐵𝐴𝑁 }. For
authorization, we will require a subject to be 𝐼𝑁 , but e.g.

Matrix also constrains membership state transitions. The

second map 𝐿 is used for an access level attribute of subjects

and actions, accessed via getL. Levels are integers associated
with subjects and actions, and allow a subject to store events

for all actions with less or equal level. In addition, levels im-

pose an access-control-based linear ordering on subjects and

objects, as well as their respectively sent events. For more

details on a possible access control system, please cf. Level-

and Attribute-based Access Control as defined in [6].

For systemic access control, we change the EDP and EPM

models to use an authorization function authorized (𝑢,𝑇) for
update 𝑢 ∈ R and point in logical time 𝑇 ∈ P(R) before ap-
plying updates, and an access-control-based priority relation

𝑅𝑎 to break ties. We first explain why and where changes

have to be made in the models, and then show algorithms

for authorized (𝑢,𝑇) and 𝑅𝑎 . In the effect function of the EDP

(c.f. Algorithm 1), we have to assert authorized (𝑢,mlb(𝑢))
to ignore received updates that are not authorized by their

maximal lower bounds. In the get function of the EPM (c.f. Al-

gorithm 2), a linearized update𝑇𝑖 also must only be applied if

authorized (𝑇𝑖 ,
⋃𝑗<𝑖

𝑗=0
𝑇𝑗), to ignore stored updates that are not

authorized by updates preceding the linearization. Finally,

the priority relation 𝑅𝑎 has to be used instead of the hash-

based ordering 𝑅ℎ in the linearize function of the EPM, as 𝑅ℎ
orders updates deterministic but arbitrarily. The strict linear

ordering 𝑅𝑎 instead prioritizes revocations, and all actions

according to their subject’s level, before falling back to 𝑅ℎ .

8

On Extend-Only Directed Posets and Derived Byzantine-Tolerant Replicated Data Types (Extended Version)

Algorithm 3 Level- and Attribute-Based Authorization

function authorized (𝑢 ∈ R,𝑇 ∈ P(R)) : 𝑎 ∈ 0, 1
⊲ whether 𝑢 is authorized at point in logical time 𝑇

𝑥 ← max(𝑋 (𝑢)), 𝑀 ← getM (𝑇), 𝐿 ← getL(𝑇)
group𝑎 ← 𝑀 [𝑥 .sbj] = 𝐼𝑁

action𝑎 ← 𝐿[𝑥 .act] ≤ 𝐿[𝑥 .sbj]
object𝑎 ← 𝑥 .sbj = 𝑥 .obj ∨ 𝐿[𝑥 .obj] < 𝐿[𝑥 .sbj]
level_cap← 𝑥 .act = level⇒ 𝑥 .cnt ≤ 𝐿[𝑥 .sbj]
⊲ For "set level" actions, cap new level by subject level

𝑎 ← group𝑎 ∧ action𝑎 ∧ object𝑎 ∧ level_cap

The authorized function shown in Algorithm 3 decides

whether an upward extension 𝑢 is authorized by the at-

tributes at the logical point in time 𝑇 . Event 𝑥 is authorized

if the subject is a) member of the group, b) authorized for

the action, c) authorized for acting on the (optional) object,

and d) does not exceed their access level. The subject needs

a level strictly greater than the object to prevent conflicting

permission revocations to create inconsistencies: Same-level

subjects cannot revoke each others’ permissions.

The access-control-based priority relation 𝑅𝑎 shown in

Algorithm 4 is a strict linear ordering among all upward

extensions ∈ R. In first order, 𝑅𝑎 prioritizes revocation ac-

tions over other actions that cannot reduce permissions, to

ensure that revocations are applied before other concurrent

upward extensions. In second order, for actions that are ei-

ther both revocations or both other actions, it prioritizes

actions according to their subject’s level, to ensure that ac-

tions of subjects with higher level are applied before. In third

order, for actions that are from subjects of equal level, 𝑅𝑎
falls back to deterministic but arbitrary hash-based ordering.

By prioritizing revocations in the linearization of map

updates, revocations gain “concurrent+causal for-each” se-

mantics, a concept Weidner identified
2
based on [17]: a revo-

cation acts against causally succeeding as well as concurrent

map updates. When using the linearization of all elements

as query function, revocations gain these desired semantics

for all ACEDPM updates, i.e., for both CEDP and EPMs.

A.2 Byzantine Strong Eventual Consistency of
ACEDPM

One might wonder whether concurrent revocations against

each other could break eventual delivery or strong conver-

gence. However, SEC is ensured because a concurrent update

is never rejected if it was authorized by its downward closure,

it just might be ignored in the linearization phase in case the

other revocation wins. Therefore, all correct replica states

will eventually contain both revocations and their down-

ward closure, regardless of reception and application order.

Linearization is only based on the relation of revocations to

2https://mattweidner.com/2022/02/10/collaborative-data-design.html

Algorithm 4 Access-Control-Based Priority Relation 𝑅𝑎

𝑅𝑎 ← {(𝑢1, 𝑢2) ∈ R2 | prior𝑎 (𝑢1, 𝑢2)}
function prior𝑎 (𝑢1, 𝑢2 ∈ R) : 𝑏 ∈ {0, 1}

⊲ whether 𝑢1 is prior to 𝑢2 regarding access control

𝑥1 = max(𝑋 (𝑢1)), 𝑥2 = max(𝑋 (𝑢2))
𝐿1 ← getL(mlb(𝑢1)), 𝐿2 ← getL(mlb(𝑢2))
𝑏 ← rvc(𝑢1) ∧ ¬ rvc(𝑢2) ⊲ prioritize revocations

if rvc(𝑢1) = rvc(𝑢2) then
𝑏 ← 𝐿1 [𝑥1.sbj] < 𝐿2 [𝑥2 .sbj])

⊲ if both / neither is revocation, order by level

if 𝐿1 [𝑥1 .sbj] = 𝐿2 [𝑥2.sbj] then
𝑏 ← ℎ(𝑢1) < ℎ(𝑢2)

⊲ if equal subject level, order by hash

function rvc (𝑢 ∈ R) : 𝑏 ∈ 0, 1 ⊲ whether 𝑢 is revocation

𝑥 ← max(𝑋 (𝑢))
𝑀pre ← getM (mlb(𝑢)), 𝑀post ← 𝑀pre ⊎ 𝑢
𝐿pre ← getL(mlb(𝑢)), 𝐿post ← 𝑀pre ⊎ 𝑢
𝑏 ← (𝑀pre [𝑥 .obj] = 𝐼𝑁 ∧𝑀post [𝑥 .obj] ≠ 𝐼𝑁)

∨𝐿pre [𝑥 .obj] > 𝐿post [𝑥 .obj]

each other and their respective downward closure, whereby

all correct replicas will eventually reach the same decision.

Theorem 4. Under the assumption of a connected component
of all correct replicas and eventual communication among the
component, the ACEDPM is an op-based Conflict-free Repli-
cated Data Type even in face of an arbitrary number of Byzan-
tine replicas.

Proof Sketch. Based on SEC of the underlying CEDP/EPM.

Self-update: A correct replica only generates updates that

pass its local, current authorization checks. Thereby, autho-

rization does not hinder the replica from immediate self-

update. Eventual update: An update generated by a cor-

rect replica is authorized based on its maximal lower bounds.

Receiving correct replicas check whether an update is autho-

rized only based on its maximal lower bounds. Thereby, they

only filter out invalid updates that cannot have been sent

by a correct replica. But they apply all updates authorized

by their maximal lower bounds, even if a concurrent update

has already revoked the permissions in the EPM state based

on the receiving replica state’s maximal elements. Resolv-

ing conflicts is moved towards linearization, and not solved

through not applying updates eventually. Strong conver-
gence: For the CEDP, the authorization is checked before

applying an update, whereby authorization cannot make

two replicas differ that have applied the same updates. For

the EPMs, there is an authorization check inside the lin-

earization that ignores updates if they are not authorized

in linearization order. But, linearization is deterministic and

independent from the order in which updates were applied.

Therefore, replicas in the same CEDP state come to the same

linearization, and thereby also to the same EPM states. □
9

https://mattweidner.com/2022/02/10/collaborative-data-design.html

	Abstract
	1 Introduction
	2 Extend-only Directed Posets (EDPs)
	2.1 Basics and Notations
	2.2 Specification
	2.3 Resilient Broadcast of Operation-Based Updates
	2.4 Op-based Byzantine Strong Eventual Consistency
	2.5 Causal Extend-Only Directed Poset (CEDPs)

	3 Replicated Data Types Derived from EDPs
	3.1 EDP-based Maps (EPMs)
	3.2 Outlook on Systemic Access Control

	4 Conclusion & Future Work
	A Integrating Systemic Access Control in a CEDP/EPM Composition
	A.1 ACEDPM Specification
	A.2 Byzantine Strong Eventual Consistency of ACEDPM

