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Abstract. In this paper we present a general methodology to extend Defeasible
Logic with modal operators. We motivate the reasons for this type of extension
and we argue that the extension will allow for a robust knowledge framework in
different application areas. The paper presents an extension of RuleML to capture
Modal Defeasible Logic.

1 Introduction

Relations among organizations are guided by sets of rules or policies. A policy can de-
fine the privacy requirements of an user, access permissions for a resource, rights of an
individual and so on. Many languages have been proposed to write policies. A few ex-
amples of these languages are P3P, XACML, SAML. These languages are XML based
and use different tags to represent different information to be used in the description of
a policy. The growth of the number of these languages and important, and the similar-
ity of concepts these are trying to capture has recently led the W3C to create a special
interest group on policy language [22] with the aim of providing a unifying approach to
the representation of policies on the web.

A policy can be understood as a set of rules, and the purpose of policy languages
(and rule languages in general) is to provide a medium to allow different stakeholders
to achieve interoperability by exchanging their (relevant) policies. While the ability to
exchange rules is very important, the real key issue is the ability to use and reason with
rules in the same way. It might be possible that for some reasons the parties involved
in an exchange or rules do not want to adopt the reasoning mechanism of their counter-
parts. However, they have to realise and understand how the counterparts are going to
use the rules, and to consider this in their decision processes.

Rules and proofs are now part of the grand design of the Semantic Web. It has been
recognised that the logic part —mainly understood as the OWL family and (fragment) of
first order logic— has to be supplemented by rules. Thus the first problem we have to face
is to combine logics for reasoning with rules and logics for reasoning with ontologies
[23U817U14]. The second problem is that while there is only one classical first-order logic
but there are many logics for reasoning with rules, and often these logics reflect different
and sometimes incompatible facets of reasoning with rules. In addition, we are going to
add modal operators and as we will argue in Section [2] even for the same interpretation
of a modal operator different logical properties have been proposed. Thus we believe
that if one wants to be able to share rules with others, it is of paramount importance
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to be able to specify how to give meaning to the rules and the (modal) operators used
in the rules, to enable users to process the information present in the rules in the same
way.

The contribution of the paper is manifold. First we will argue that extending rule
languages with modal operators offers a very powerful and rich environment to deal
with situations where multiple parties are involved and intensional notions are required
(Section [2). Deploying any reasoning mechanism for the Web faces an additional chal-
lenge: it has to have good computational properties. We defend and motivate our choices
against this requirement in Sections [3] and ] In Section [6.2] we will argue that a rule
language should describe the elements of the language but in situations where there
are many logics sharing the language, the rule language should provide facilities to de-
scribe the logic to be used to process the rules. Here we show how to extend RuleML to
capture the descriptions charactersing the extensions with modal operators indentified
in Sections[5.1]and[5.2] In Section[7] we outline the implementation of the framework.

2 Modal Logics vs Modalities

Modal logic has been heavily used as a conceptual tool for establishing the foundations
of the analysis of epistemic and doxastic notions (i.e., knowledge and belief) in terms of
modal operators, paving thus the way to the field of agents and multi-agent systems. In
this fields modal operators proved to be very powerful conceptual tools to describe the
internal (mental) states of agents as well as interactions among agents. Deontic Logic
is the modal logic where the modal operators are interpreted as is nowadays one of the
most promising instruments for the formalisation of institutionalised organisation and
the mutual relationships (normative position) among the actors in such models. Deontic
Logic plays an important role in the formalisation of contracts [[18l9].

What we want to stress out here is that modal logic is appropriate to provide a
conceptual model for describing agents as well as many other intensional notions, in
particular normative notions such as obligations, permissions, rights and so on which
are important for policies, e-commerce and e-contract. Given this, the aim of this paper
is to provide a computationally oriented non-monotonic rule based account of modal
logic for the use and exchange of rules on the Web.

A modal operator qualifies the truth of the expressions it operates on, and many
interpretations are possible for modal operator. Given the multiplicity of interpretations
and the many facets of modalities, it is not possible to have a one size fits all (or most)
situation. In general, there is no single modal logic even for a particular interpretation,
and thus the designer of a particular application has to choose case by case which propri-
eties/principles are satisfied by the modal operators. The designer has to identify which
notions are better modelled by modal operators and which are suitable to be captured
by predicates.

Given the issues above, a supporter of modalities (particular ad hoc predicates
whose interpretation is that of modal operators) might argue that modalities offer a
more convenient approach since there is no need to create a new logic every time we
have a new notion. Everything can be represented in first-order logic. After all, it is
hard to distinguish between notions to be modelled by ordinary predicates and notions



to be modelled by modal operators. In addition, from a computational point of view
first-order logic is semi-decidable while often modal logics are decidable, and there
are examples where properties can be encoded easily in modal logic but they require
high-order logic representations.

A first answer to this objection is that rather than adding ad hoc predicates to the
language, improvements must be made by adding modal operators so as to achieve a
richer language that can represent the behaviour of modal notions in a more natural and
applicable manner. The advantage of this approach is to incorporate general and flexible
reasoning mechanisms within the inferential engine.

A formal representation language should offer concepts close to the notions the lan-
guage is designed to capture. For example, contracts typically contain provisions about
deontic concepts such as obligations, permissions, entitlements, violations and other
(mutual) normative positions that the signatories of a contract agree to comply with.
Accordingly, a contract language should cater for those notions. In addition, the lan-
guage should be supplemented by either a formal semantics or facilities to reason with
and about the symbols of the language to give meaning to them. As usual, the sym-
bols of the language can be partitioned in two classes: logical symbols and extra logical
symbols. The logical symbols are meant to represent general concepts and structures
common to every contract while extra logical symbols encode the specific subject mat-
ter of given contracts. In this perspective the notions of obligation and permission will
be represented by deontic modalities while concepts such as price, service and so on
are better captured by predicates since their meaning varies from contract to contract.

In general, we believe that the approach with modal operators is superior to the use
of ad hoc predicates at least for the following aspect

— Ease of expression and comprehension. In the modal approach the relationships
among modal notions are encoded in the logic and reasoning mechanism while for
ad hoc predicates knowledge bases are cluttered with rules describing the logical
relationships among different modes/representations of one and the same concept.
For example, in a set of rules meant to describe a contract, given the predicate
pay(X), we have to create predicates such as obligatory_pay(X), permitted_pay(X),
...and rules such as obligatory_pay(X) — permitted_pay(X) and so on. Thus ad
hoc predicates do not allow users to focus only and exclusively on aspects related
to the content of a contract, without having to deal with any aspects related to its
implementation.

— Clear and intuitive semantics. It is possible to give a precise, unambiguous, intuitive
and general semantics to the notions involved while each ad hoc predicate requires
its own individual interpretation, and in some cases complex constructions (for
example reification) are needed to interpret some ad hoc predicates.

— Modularity. A current line of research proposes that the combination of deontic
operators with operators for speech acts and actions faithfully represent complex
normative positions such as delegation, empowerment as well as many others that

!'In addition to the aspects we discuss here, we would like to point out that it has been argued
[[13U15]) that deontic logic is better than a predicate based representation of obligations and per-
missions when the possibility of norm violation is kept open. A logic of violation is essential
for the representation of contracts where rules about violations are frequent [9].



may appear in contracts [[16]. In the modal approach those aspects can be added or
decomposed modularly without forcing the user to rewrite the predicates and rules
to accommodate the new facilities, or to reason at different granularity.

3 Defeasible Logic

Defeasible Logic (DL) [2041] is a simple, efficient but flexible non-monotonic formal-
ism that can deal with many different intuitions of non-monotonic reasoning [2], and
efficient and powerful implementations have been proposed [19/4]. In the last few years
the logic and its variants have been applied in many fields.

Knowledge in DL can be represented in two ways: facts and rules.

Facts are indisputable statements, represented either in form of states of affairs (lit-
eral and modal literal) and actions that have been performed. Facts are represented by
predicates. For example, “the price of the spam filter is $50” is represented by

Price(SpamfFilter,50).

A rule, on the other hand, describes the relationship between a set of literals (premises)
and a literal (conclusion), and we can specify how strong the relationship is and the
mode the rule connects the antecedent and the conclusion. As usual, rules allow us to
derive new conclusions given a set of premises. Since rules have a mode, the conclu-
sions will be modal literals. As far as the strength of rules is concerned we distinguish
between strict rules, defeasible rules and defeaters; for the mode we have one set of
rules (base rules) describing the inference principles of the basic logic plus one mode
for each modal operator of the language (modal rules). As we will see, the idea of modal
rules is to introduce modalised conclusions. Accordingly, if we have a modal rule for p
for a modal operator OJ;, this means that the rule allows for the derivation of O;p.

Strict rules, defeasible rules and defeaters are represented, respectively, by expres-
sions of the form Ay,...,A, — B, Ay,...,A, = BandAy,...,A,~ B, where Ay,...,A,
is a possibly empty set of prerequisites and B is the conclusion of the rule. We only
consider rules that are essentially propositional. Rules containing free variables are in-
terpreted as the set of their ground instances.

Strict rules are rules in the classical sense: whenever the premises are indisputable
then so is the conclusion. Thus, they can be used for definitional clauses. An example of
a strict rule is “A ‘Premium Customer’ is a customer who has spent $10000 on goods™:

TotalExpense(X,10000) — PremiumCustomer(X).

Defeasible rules are rules that can be defeated by contrary evidence. An example of
such a rule is “Premium Customer are entitled to a 5% discount”:

PremiumCustomer(X ) = Discount(X).

The idea is that if we know that someone is a Premium Customer then we may conclude
that she is entitled to a discount unless there is other evidence suggesting that she may
not be (for example if she buys a good in promotion).



Defeaters are a special kind of rules. They are used to prevent conclusions not to
support them. For example:

SpecialOrder(X), PremiumCustomer(X ) ~» =Surcharge(X).

This rule states that premium customers placing special orders might be exempt from
the special order surcharge. This rule can prevent the derivation of a “surcharge” con-
clusion. However, it cannot be used to support a “not surcharge” conclusion.

DL is a “skeptical” non-monotonic logic, meaning that it does not support contra-
dictory conclusionsE] Instead, DL seeks to resolve conflicts. In cases where there is
some support for concluding A but also support for concluding —A, DL does not con-
clude neither of them (thus the name “skeptical”). If the support for A has priority over
the support for —A then A is concluded.

As we have alluded to above, no conclusion can be drawn from conflicting rules in
DL unless these rules are prioritised. The superiority relation is used to define priorities
among rules, that is, where one rule may override the conclusion of another rule. For
example, given the defeasible rules

r: PremiumCustomer(X ) = Discount(X)
v’ : SpecialOrder(X) = —Discount(X )

which contradict one another, no conclusive decision can be made about whether a
Premium Customer, who has placed a special order, is entitled to the 5% discount. But
if we introduce a superiority relation > with r' > r, we can indeed conclude that special
orders are not subject to discount.

We now give a short informal presentation of how conclusions are drawn in DL.
Let D be a theory in DL (i.e., a collection of facts, rules and a superiority relation). A
conclusion of D is a tagged literal and can have one of the following four forms:

+Ag meaning that g is definitely provable in D (i.e., using only facts and strict rules).
—Ag meaning that we have proved that g is not definitely provable in D.

+dq meaning that ¢ is defeasibly provable in D.

—dq meaning that we have proved that ¢ is not defeasibly provable in D.

Strict derivations are obtained by forward chaining of strict rules while a defeasible
conclusion p can be derived if there is a rule whose conclusion is p, whose prerequisites
(antecedent) have either already been proved or given in the case at hand (i.e. facts),
and any stronger rule whose conclusion is —p has prerequisites that fail to be derived.
In other words, a conclusion p is derivable when:

— pisafact; or
— there is an applicable strict or defeasible rule for p, and either
e all the rules for —p are discarded (i.e., are proved to be not applicable) or
e every applicable rule for —p is weaker than an applicable stricﬂ or defeasible
rule for p.

The formal definitions of derivations in DL are in the next section.

2 To be precise contradictions can be obtained from the monotonic part of a defeasible theory,
i.e., from facts and strict rules.
3 Notice that a strict rule can be defeated only when its antecedent is defeasibly provable.



4 Modal Defeasible Logic

As we have seen in Section [T] modal logics have been put forward to capture many
different notions somehow related to the intensional nature of agency as well as many
other notions. Usually modal logics are extensions of classical propositional logic with
some intensional operators. Thus, any modal logic should account for two components:
(1) the underlying logical structure of the propositional base and (2) the logic behaviour
of the modal operators. Alas, as is well-known, classical propositional logic is not well
suited to deal with real life scenarios. The main reason is that the descriptions of real-life
cases are, very often, partial and somewhat unreliable. In such circumstances, classical
propositional logic might produce counterintuitive results insofar as it requires com-
plete, consistent and reliable information. Hence any modal logic based on classical
propositional logic is doomed to suffer from the same problems.

On the other hand, the logic should specify how modalities can be introduced and
manipulated. Some common rules for modalities are, e.g., Necessitation (from - ¢ infer
F O¢) and RM (from - ¢ — y infer - O¢ — Ow). Both dictates conditions to intro-
duce modalities purely based on the derivability and structure of the antecedent. These
rules are related to the well-known problem of logical omniscience and put unrealistic
assumptions on the capability of an agent. However, if we take a constructive interpreta-
tion, we have that if an agent can build a derivation of ¢ then she can build a derivation
of O¢. We want to maintain this intuition here, but we want to replace derivability in
classical logic with a practical and feasible notion like derivability in DL. Thus, the
intuition behind this work is that we are allowed to derive O;p if we can prove p with
the mode O; in DL.

To extend DL with modal operators we have two options: 1) to use the same in-
ferential mechanism as basic DL and to represent explicitly the modal operators in the
conclusion of rules [21]; 2) introduce new types of rules for the modal operators to
differentiate between modal and factual rules.

For example, the “deontic” statement “The Purchaser shall follow the Supplier price
lists” can be represented as

AdvertisedPrice(X) = OpurchaserPay(X)
if we follow the first option and
AdvertisedPrice(X) = Opurchaser FAY (X)

according to the second option, where =¢,, ..., denotes a new type of defeasible rule
relative to the modal operator Opyrchaser- Here, Opurchaser i the deontic “obligation”
operator parametrised to an actor/role/agent, in this case the purchaser.

The differences between the two approaches, besides the fact that in the first ap-
proach there is only one type of rules while the second accounts for factual and modal
rules, is that the first approach has to introduce the definition of p-incompatible literals
(i.e., a set of literals that cannot be hold when p holds) for every literal p. For example,
we can have a modal logic where Op and —p cannot be both true at the same time.
Moreover, the first approach is less flexible than the second: in particular in some cases

it must account for rules to derive < p from Op; similarly conversions (see Section[5.2)



require additional operational rules in a theory, thus the second approach seems to offer
a more conceptual tool than the first one. The second approach can use different proof
conditions based on the modal rules to offer a more fine grained control over the modal
operators and it allows for interaction between modal operators.

As usual with non-monotonic reasoning, we have to specify 1) how to represent
a knowledge base and 2) the inference mechanism used to reason with the knowledge
base. The language of Modal Defeasible Logic consists of a finite set of modal operators
Mod = {0Oy,...,0,} and a (numerable) set of atomic propositions Prop = {p,q, ... }E]

We supplement the usual definition of literal (an atomic proposition or the negation
of it), with the following clauses

— if [ is a literal then O;/, and —0,/, are literals if / is different from O;m, and —~0O;m,
for some literal m.

The above condition prevents us from having sequences of modalities where we have
successive occurrences of one and the same modality; however, iterations like 0;0; and
0;0,0; are legal in the language.

Given a literal [ with ~[ we denote the complement of /, that is, if / is a positive
literal p then ~1 = —p, and if [ = —p then ~[ = p.

According to the previous discussion a Modal Defeasible Theory D is a structure
(F,R, ) where F is a set of facts (literals or modal literals), R = REU|J, -;~, R™/, where
R is the set of base (un-modalised) rules, and each R™ is the set of rules for O; and
>=C R X R is the superiority relation. A rule r is an expression A(r) <—x C(r) such that
(—€ {—,=,~1}, X is B, for a base rule, and a modal operator otherwise), A(r) the
antecedent or body of r is a (possible empty) set of literals and modal literals, and C(r),
the consequent or head of r is a literal if r is a base rule and either a literal or a modal
literal Y where Y is a modal operator different from X. Given a set of rules R we use
Ry, to denote the set of strict and defeasible rules in R, and R|g] for the set of rules in R
whose head is g.

The derivation tags are now indexed with modal operators. Let X range over Mod.
A conclusion can now have the following forms:

+Axq: q is definitely provable with mode X in D (i.e., using only facts and strict rules
of mode X).

—Axq: we have proved that g is not definitely provable with mode X in D.

+0dxq: q is defeasibly provable with mode X in D.

—dxq: we have proved that ¢ is not defeasibly provable with mode X in D.

Then if we can prove +dg g, then we can assert 0;q.

Formally provability is based on the concept of a derivation (or proof) in D. A
derivation is a finite sequence P = (P(1),...,P(n)) of tagged literals satisfying the proof
conditions (which correspond to inference rules for each of the kinds of conclusion).
P(1..n) denotes the initial part of the sequence P of length n.

4 The language can be extended to deal with other notions. For example to model agents, we
have to include a (finite) set of agents, and then the modal operators can be parameterised with
the agents. For a logic of action or planning, it might be appropriate to add a set of atomic
actions/plans, and so on depending on the intended applications.



Before introducing the proof conditions for the proof tags relevant to this paper we
provide some auxiliary notions.

Let # be either A or d. Given a proof P = (P(1),...,P(n)) in D and a literal ¢ we
will say that g is A-provable in P, or simply A-provable, if there is a line P(m) of the
derivation such that either:

1. if g =1 then

- P(m)=+#lor

— Ol is #-provable in P(1..m — 1) and O; is reﬂexiveE]
2. if g = 0;l then

— P(m) =+#l or

- 0;0;l is #-provable in P(1..m — 1), for some j # i such that O; is reflexive.
3. if ¢ = —-0;l then

— P(m) = —#l or

— O;-0;l is #-provable in P(1..m — 1), for some j # i such that O} is reflexive.

In a similar way we can define a literal to be A- and d-rejected by taking, respectively,
the definition of A-provable and d-provable and changing all positive proof tags into
negative proof tags, adding a negation in front of the literal when the literal is prefixed
by a modal operator O0;, and replacing all the ors by ands. Thus, for example, we can
say that a literal O,/ is d-rejected if, in a derivation, we have a line —0d;/, and the literal
=0, is d-rejected if we have +0;—/ and so on.

Let X be a modal operator and # is either A or d. A literal [ is #y-provable if the
modal literal X/ is #-provable; [ is #x-rejected if the literal X/ is #-rejected.

Based on the above definition of provable and rejected literals we can give the con-
ditions to determine whether a rule is applicable or the rule cannot be used to derive a
conclusion (i.e., the rule is discarded).

The proof conditions for +A correspond to monotonic forward chaining of deriva-
tions and, for space limitations are not given here (see [1410] for the definitions).

Let X be a modal operator or B. Given a rule r we will say that the rule is dy-
applicable iff

1. r € RX and Va; € A(r), a; is d-provable; or
2. if X#Bandre€ RB.i.e., ris abase rule, then Vay, ay is dx-provable.

Given a rule r we will say that the rule is dx-discarded iff

1. r € RX and Ja; € A(r), a; is d-rejected; or
2. if X#Bandre€ RB.i.e., ris abase rule, then 3ay, ay is dx-rejected.

We give now the proof condition for defeasible conclusions (i.e., conclusions whose
tag is +0). Defeasible derivations have an argumentation like structure divided in three
phases. In the first phase, we put forward a supported reason (rule) for the conclusion
we want to prove. Then in the second phase, we consider all possible (actual and not)
reasons against the desired conclusion. Finally, in the last phase, we have to rebut all

5 A modal operator O; is reflexive iff the truth of O;¢ implies the truth of ¢. In other words O;
is reflexive when we have the modal axiom O;¢ — ¢.



the counterarguments. This can be done in two ways: we can show that some of the
premises of a counterargument do not obtain, or we can show that the argument is
weaker than an argument in favour of the conclusion. This is formalised by the follow-
ing (constructive) proof conditions.

+0x: If P(n+1) = +dxq then
1) +Axqg € P(1..n), or
2) —Ax ~q € P(1..n) and
2.1) 3r € Ryylq]: r is dx-applicable and
2.2) Vs € R[~¢] either s is dx-discarded or
Iw € R[g]: w is dx-applicable and w > s.

The above condition is, essentially, the usual condition for defeasible derivations in DL,
we refer the reader to [2041/10] for more thorough treatments. The only point we want
to highlight here is that base rules can play the role of modal rules when all the literals
in the body are dp;-derivable. Thus, from a base rule a,b = ¢ we can derive +dg,c if
both +dg,a and +dg, b are derivable while this is not possible using the rule a, 0;b =g ¢

(see Section[5.2).

5 Modal Defeasible Logic with Interactions

Notice that the proof condition for 4+ given in Section [3|and then those for the other
proof tags are the same as those of basic DL as given in [1]. What we have done is
essentially to consider n 4+ 1 non-monotonic consequence relation defined in DL and
compute them in parallel. In the previous sections, we have argued that one of the ad-
vantages of modal logic is the ability to deal with complex notions composed by several
modalities, or by interactions of modal operators. Thus, we have to provide facilities to
represent such interactions. In Modal DL it is possible to distinguish two types of inter-
actions: conflicts and conversions. In the next two sections, we will motivate them and
we show how to capture them in our framework.

5.1 Conflicts

Let us take a simple inclusion axiom of multi-modal logic relating two modal operators
0O; and Oy: O;¢ — O,¢. The meaning of this axiom is that every time we are able
to prove O; ¢, then we are able to prove 0,¢. Thus, given the intended reading of the
modal operators in our approach —a modal operator characterises a derivation using a
particular mode, it enables us to transform a derivation of 0} ¢ into a derivation of Oy ¢.
If the logic is consistent, we also have that O¢ — O¢ implies that it is not possible
to prove Or—¢ given O, ¢, i.e., O;¢ — —0O,—¢@. However, this idea is better illustrated
by the classically equivalent formula O;¢ A O,—¢ — L. When the latter is expressed
in form of the inference rule
Di9,007¢

T ey

it suggests that it is not possible to obtain 0 ¢ and O,—¢ together. This does not mean
that O; ¢ implies O, ¢@, but that the modal operators Oy and O, are in conflict with each



other. Modal DL is able to differentiate between the two formulations: For the inclusion
version (i.e., d;¢ — Oy¢) what we have to do is just to add the following clause to the
proof conditions for +dg, (and the other proof tags accordingly) with the condition

+dg,q € P(1..n)

For the second case (i.e., O;¢ A —0¢ — L), we have to give a preliminary definition.

Given a modal operator 0;, % (0;) is the set of modal operators in conflict with
0;. If the only conflict axiom we have is 0;¢ AOy¢ — L then % (0;) = {d,}. With
R7 () we denote the union of rules in all R” where O j € Z(0;). At this point to
implement the proof condition for the conflict all we have to do is to replace clause 2.2
of the definition of +dg,q with the clause

2.2)¥s € R7 (B[~ ¢] either s is dy-discarded or
Iw € R[q]: w is dx-applicable and w > s.

The notion of conflict has been proved useful in the area of cognitive agents, i.e., agent
whose rational behaviour is described in terms of mental and motivational attitudes
including beliefs, intentions, desires and obligations. Classically, agent types are char-
acterised by stating conflict resolution methods in terms of orders of overruling between
rules [6/10]. For example, an agent is realistic when rules for beliefs override all other
components; she is social when obligations are stronger than the other components with
the exception of beliefs. Agent types can be characterised by stating that, for any types
of rules X and Y, for every r and 7/, r € RX[g] and ¥ € R [~¢g], we have that r > 7.

5.2 Conversions

Another interesting feature that could be explained using our formalism is that of rule
conversion. Indeed, this feature allows us to model the interactions between different
modal operators. In general, notice that in many formalisms it is possible to convert
from one type of conclusion into a different one. For example, the right weakening rule
of non-monotonic consequence relations (see [17])

BHC ANB
ARC

allows the combination of non-monotonic and classical consequences.

Suppose that a rule of a specific type is given and all the literals in the antecedent
of the rule are provable in one and the same modality. If so, is it possible to argue that
the conclusion of the rule inherits the modality of the antecedent? To give an example,
suppose we have that p, g =p, r and that we obtain +3|:j p and +(9qu. Can we conclude
0,r? In many cases this is a reasonable conclusion to obtain.

For this feature we have to declare which modal operators can be converted and
the target of the conversion. Given a modal operator 0;, with ¥'(0;) we denote the set
of modal operators O; that can be converted to O;. In addition, we assume that base
rules can be converted to all other types of rules. The condition to have a successful
conversion of a rule for O; into a rule for OJ; is that all literals in the antecedent of the
rules are provable modalised with O;. Formally we have thus to add (disjunctively) in
the support phase (clause 2.1) of the proof condition for d, the following clause



2.1b) 3r € R”(®i)[g] such that r is dp,-applicable

The notion of conversion enables us to define new interesting agent types [10]].

We conclude this section with a formalisation of the Yale Shooting Problem that
illustrates the notion of conversion. Let INT be the modal operator for intention. The
Yale Shooting Problem can be described as followﬁ

liveAmmo, load ,shoot = p kill

This rule encodes the knowledge of an agent that knows that loading the gun with live
ammunitions, and then shooting will kill her friend. This example clearly shows that
the qualification of the conclusions depends on the modalities relative to the individual
acts “load” and “shoot”. In particular, if the agent intends to load and shoot the gun
(INT(load), INT(shoot)), then, since she knows that the consequence of these actions
is the death of her friend, she intends to kill him (++dinTkill). However, in the case she
has the intention to load the gun (+dintload) and for some reason shoot it (shoor), then
the friend is still alive (—dkill).

6 RuleML

Starting with the RuleML 0.91 XML Schema for Datalog with classical negation, we
extended the syntax to support defeasible rules and modal operators.

6.1 Defeasible Rule Markup

RuleML already supports strict rules via the Implies element and allows them to be
named using the oid element. We need to extend the syntax to express defeasible rules,
defeaters, and superiority relations.

To add defeasible rules and defeaters as described in we borrow syntax from
the DR-DEVICE rule language [4]. We add a @ruletype attribute to the Implies
element, allowing it to take one of three values: strictrule, defeasiblerule or
defeater. Because strictrule is implied when @ruletype is absent, when non-
defeasible RuleML rulesets are imported their rules are correctly considered strict.

DR-DEVICE expresses the superiority relation by using the @superior attribute
on the superior rule as a link to the @ruleID label of the inferior rule. We found this
unsuitable because we may need to mark a rule as superior to more than one other rule,
and an XML element can only bear a single @superior attribute. Using the scheme
from [9} §5] instead, we explicitly represent the superiority relation using the distin-
guished predicate Override.

6.2 Modal Operator Markup

In §2| we argued against modality predicates such as those proposed in [3, §4]. Further-
more, in §4{ we proposed two alternatives, modal operators and modal rules.

6 Here we will ignore all temporal aspects and we will assume that the sequence of actions is
done in the correct order.



To support the first alternative, we introduce a Mode element. The @modetype at-
tribute is a URI-valued identifier for the intended semantics of the modal operator, e.g.
necessity, belief, obligation. The Mode may optionally contain a single parameters el-
ement whose zero or more children are used to further distinguish modes, e.g. between
the beliefs of various agents, or between time instants in the case of a temporal operator.
Two modes are identical if their @modetype and all their parameters are equal. For
example, r1 : AdvertisedPrice(X) = O purchaserPay(X) is represented as

<Implies ruletype="defeasiblerule">
<0id><Ind>r1</Ind></o0id>
<head>
<Mode modetype="http://www.example.org/obligation">
<parameters>
<Ind>purchaser</Ind>
</parameters>
<Atom><Rel>Pay</Rel><Var>X</Var></Atom>
</Mode>
</head>
<body>
<Atom><Rel>AdvertisedPrice</Rel><Var>X</Var></Atom>
</body>
</Implies>

To support the second alternative, modal rules, we introduce a mode element which
may appear as a child of the Implies element. It requires the same @modetype attribute
as the Mode element. Its zero or more children distinguish the mode in the same way as
the children of a Mode’s parameters. For example, r2 : AdvertisedPrice(X) =0

Pay(X) is represented as

purchaser

<Implies ruletype="defeasiblerule">
<0id><Ind>r2</Ind></0id>
<mode modetype="http://www.example.org/obligation">
<Ind>purchaser</Ind>
</mode>
<head>
<Atom><Rel>Pay</Rel><Var>X</Var></Atom>
</head>
<body>
<Atom><Rel>AdvertisedPrice</Rel><Var>X</Var></Atom>
</body>
</Implies>

6.3 Modal Interactions

The conflict and conversion interactions introduced in §5]are not represented in RuleML.
Instead, we express them in a separate document with its own custom XML Schema.
This is an additional input file used to configure the reasoner. It lists the supported
modes, identifying them globally using the same URIs referenced by the @modetype
attributes in the rules, and locally to the document with short XML IDs. These IDs are
then used to succinctly list any conflict sets and conversion pairs. The following shows



an example configuration file for a ‘social’ agent [10], that is an agent whose obligations
prevail over her intentions and beliefs can be used to derive non primitive intentions and
obligations.

<?xml version="1.0" encoding="UTF-8"7>
<ModeSet xmlns="http://wuw.example.org/modeset-ns"
xmlns:ruleml="http://www.ruleml.org/0.91/xsd"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.org/xsd/ruleset.xsd">
<Mode id="BEL1" href="http://www.example.org/mode/belief">
<ruleml:Ind>agenti1</ruleml:Ind>
</Mode>
<Mode id="0BL" href="http://www.example.org/mode/obligation"/>
<Mode id="INT1" href="http://www.example.org/mode/intention">
<ruleml:Ind>agent1</ruleml:Ind>
</Mode>
<Conflict between="0OBL INT1"/>
<Conversion from="BEL1" to="INT1"/>
<Conversion from="BEL1" to="OBL"/>
</ModeSet>

7 Implementation

The reasoning process of Modal DL has three phases. In the pre-processing phase, the
theory in the RuleML format are loaded into the mechanism and is transformed into an
equivalent theory without superiority relation and defeaters. In the next phase, the rule
loader, which parses the theory obtained in the first phase, generates the data structure
for the inferential phase. Finally, the inference engine applies modifications to the data
structure, where at every step it reduces the complexity of the data structure.

Theory transformation: The transformation operates in three steps. The first two steps
remove the defeaters rules and the superiority relation among rules by applying the
transformations similar to those of [10]. Essentially, the hierarchy of the modal oper-
ators is generated from the conflicting relationship among these operators. The modal
operator on the top of the hierarchy plays the role of the BEL operator as in [10]. This
amounts to take the rules for the modal operator at the top of the hierarchy as the set of
base rules. The third step performs conversions of every modal rule into a rule with a
new modal operator as specified by the theory.

Rule loader: The rule loader creates a data structure as follows: for every (modal) literal
in the theory, we create an entry whose structure includes:

— a list of (pointers to) rules having the literal in the head. In order to simplify the
data structure, a modal literal from the head of a rule is built from the head atom
and the modal operator of the corresponding rule.

— alist of (pointers to) rules having the literal in the body



— alist of (pointers to) entries of complements of the literal. Notice that the comple-
ments of a literal should take into account of the occurrence the modal operator.
For example, the complements of the literal 0;/ are —0;/ and O; ~; if the operator
is reflexive we have to include also / as a complement of 0J;/.

— alist of entries of literals which conflict with the literal. The conflict relationship is
derived from the conflicting modal operators dictated by the theory. In addition, a
modal literal O;/ always conflicts with ~ [ when OJ; is reflexive.

In order to improve the computational performance, every list in the data structure is
implemented as a hash table.

Inferential engine: The Engine is based on an extension of the Delores algorithm pro-
posed in [19] as a computational model of Basic Defeasible Logic. In turn, the engine

— Assert each fact (as a literal) as a conclusion and removes the literal from the rules,
where the literal positively occurs in the body, and “deactivate” the rules where
either its complements or its conflicting literals occur in the body.

— Scan the list of active rules for rules with the empty body. Take the (modal) literal
from the head, remove the rule, and put the literal into the pending facts. The literal
is removed from the pending facts and adds to the list of facts if either there is no
such rule (of the appropriate type) whose head contains the complements of the
literal or literals with conflicting modes, or it is impossible to prove these literals.

— It repeats the first step.

— The algorithm terminates when one of the two steps fails[] On termination, the
algorithm outputs the set of conclusions from the list of facts in the RuleML format.

8 Conclusion

To sum up the contribution of the paper is manyfold. We have argued that rule languages
for the Semantic Web can benefit from modal extensions. However, given the multi-
plicity of interpretations of modal operators (as well as the different intuition behind
execution model of rule systems) present a further challenge. An interchange language
should be able to provide not only the syntax to represent rule, but it should provide
facilities to describe how the rules should be processed (i.e., what the is the logic to be
used to interpret the rules). On this respect we have identified the basic mechanisms to
relate modal operators in a rule language (conflict and conversion).

The framework we have outlined in the previous sections has proven robust enough
to represent and reason with different scenarios and applications, from business con-
tracts [9] to normative reasoning [[12f], policy based cognitive agents [10] and workflow
systems [11]]. The main reason of the success, we believe, is due to the fact that Modal
DL conceptually strengthen the expressive power of DL with modal operators, but at
the same time it maintains the constructive and computational flavour of DL. Indeed,
we have proved that the complexity of Modal DL as outlined here is linear [[10]. This
makes the logic very attractive from the knowledge representation point of view.

7 This algorithm outputs +d; —d can be computed by an algorithm similar to this with the “dual
actions”. For +A we have just to consider similar constructions where we examine only the
first parts of step 1 and 2. —A follows from +A by taking the dual actions.
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