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Abstract. We give a complete description of a basis of the extension spaces between inde-
composable string and quasi-simple band modules in the module category of a gentle algebra.

Introduction

The representation theory of finite-dimensional algebras plays an important role in many
different areas of mathematics, such as in Lie theory, in number theory in connection with
the Langlands program and automorphic forms, in geometry ranging from invariant theory to
non-commutative resolutions of singularities and as far afield as harmonic analysis where the
representation theory of S1 appears in the guise of Fourier analysis.

Most finite-dimensional algebras are of wild representation type, that is their represen-
tation theory is at least as complicated as that of the free associative algebra in two
generators. An algebra that is not wild is of tame representation type. One partic-
ular class of tame algebras, the so-called gentle algebras appear in a surprising num-
ber of different contexts. For example, in the context of Fukaya categories related to
Kontsevich’s homological mirror symmetry program [14, 21, 23], of dimer models [6], of
the enveloping algebras of Lie algebras [16], and in the context of cluster theory as
(m-)cluster tilted and m-Calabi Yau tilted algebras and also as Jacobian algebras associated to
unpunctured surfaces [2, 4, 13, 20]. Furthermore, the class of derived-discrete algebras consists
of gentle algebras [27].

But there are many other reasons why gentle algebras have been studied extensively. One
of the main reasons being that they are string algebras and that their indecomposable repre-
sentations are classified by string and band modules [28], see also [8]. The associated string
combinatorics governs the representation theory of gentle algebras, examples of this are the
classification of morphisms between string and band modules [12, 19] and a characterisation
of almost split sequences in terms of string combinatorics [8]. Over last few years, interest in
gentle algebras has intensified with many new results appearing, an example of this is the recent
work [24], where string combinatorics is used to classify support τ -tilting modules.

Another reason for the extensive investigation of gentle algebras is the fact that they are
derived tame and the indecomposable objects in the derived category of a gentle algebra have
been classified. They are given by the so-called homotopy strings and bands [5]. In [1] the
morphisms between string and band complexes in the derived category of a gentle algebra were
characterised in terms of homotopy string combinatorics and in [9, 10] a graphical mapping
cone calculus based on the morphisms described in [1] was developed.

Extensions between modules are one of the fundamental cohomological tools. Not only do
they play an essential role in the definition of, for example, the Yoneda algebra or Hochschild
cohomology, they are also essential in many of the newer developments in representation theory
such as in cluster tilting in cluster theory.

The projective resolutions of indecomposable modules over gentle algebras are well under-
stood, see, for example, [18]. So it is surprising that up to now, in general, no complete com-
binatorial description of the extensions between indecomposable modules over a gentle algebra
is known. A description of certain combinatorially defined extensions between string modules
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was given in [25], we will refer to these extensions as arrow and overlap extensions. In [29] it
was shown that the existence of such extensions is a necessary and sufficient condition for the
non-vanishing of the Ext1-space.

However, it has remained an open problem for almost twenty years whether these extensions
form a basis of the Ext1-space between string modules and what the extensions involving band
modules are. In fact, it has become apparent that string combinatorics in the module category
of a gentle algebra might not be enough to answer this question. This has further been confirmed
by the recent results in [11] where based on arguments using the associated cluster category,
it was shown that in the context of gentle Jacobian algebras of quivers with potential, the
extensions between string modules described in [25] do indeed give a basis.

In this paper, we answer this open question by giving, for any gentle algebra, a basis of the
extension space between indecomposable modules. More precisely, we explicitly determine the
cohomology of the indecomposable objects in the bounded derived category of a gentle algebra
given in terms of homotopy strings and bands. Building on this we give a complete description
of the extension space between string and quasi-simple band modules by giving a combinatorial
description of a basis. We do this by working not in the module category of a gentle algebra,
but we transfer the problem into the derived category, where we are able to use the graphical
mapping cone calculus developed in [9, 10]. We now state our main results; for the relevant
definitions and details on notation, see Section 1 and Definition 3.1. Throughout the following,
k will be an algebraically closed field and Λ = kQ/I will be a gentle algebra.

Theorem A. Let Λ be a gentle algebra and v and w strings with M(v) and M(w) the cor-
responding string modules over Λ. The collection of arrow and overlap extensions of M(v) by
M(w) form a basis of Ext1Λ(M(v),M(w)).

In the following we give a graphical presentation of the strings in an arrow and overlap
extension.
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Figure 1. Presentation in terms of strings of an overlap extension (top picture)
and an arrow extension (bottom picture) where for an arrow a ∈ Q1 we denote
its formal inverse by ā.

We note that in concurrent work [7], which builds on [22], a basis for extensions between
string modules over a gentle algebra is also given using different techniques.

When a band is involved there are no arrow extensions, only overlap extensions. An exten-
sion involving both a string module and a band module has only one indecomposable module
as its middle term. An extensions involving two band modules can have as its middle term
the direct sum of many indecomposable band modules. The following theorems describe the
situation involving band modules more precisely. Given a band b and a scalar µ ∈ k∗, we de-
note the associated quasi-simple band module by B(b, µ). A useful comparison for the following
statements is the corresponding statements for mapping cones of quasi-graph maps involving a
band complex given in [10]. In the following, for a band b, denote by ∞b∞ (resp. ∞b, resp. b∞)
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the string obtained from b by repeatedly concatenating b with itself both on the left and on the
right (resp. on the left, resp. on the right).

Theorem B. Let Λ be a gentle algebra, v be a string and (b, µ) be a band with µ ∈ k∗. Suppose
that v and ∞b∞ admit decompositions

v = vLB̄mAvR and ∞b∞ = ∞bbLDmC̄bRb
∞,

where A,B,C,D ∈ Q1 with C 6= ∅ 6= D and vL, vR, m, bL and bR are (possibly trivial) strings
satisfying the conditions of Definition 3.1(2).

(a) If, after suitable rotation of b, m is a proper subword of b, then there is a non-split
overlap extension

0→ B(b, µ)→M(u)→M(v)→ 0,

where u = vLB̄mC̄bRbLDmAvR is a string.
(b) If b is a subword of m, then after suitable rotation of b there is a decomposition b = b2b1

such that m = bkb2 for some k ≥ 1 and there is a non-split overlap extension

0→ B(b, µ)→M(u)→M(v)→ 0,

where u = vLB̄b
k+1b2AvR is a string.

Moreover, the collection of such extensions forms a basis of Ext1Λ(M(v), B(b, µ)).

Theorem C. Let Λ be a gentle algebra, (c, λ) be a band with λ ∈ k∗ and w be a string. Suppose
that ∞c∞ and w admit decompositions

∞c∞ = ∞ccLB̄mAcRc
∞ and w = wLDmC̄wR,

where A,B,C,D ∈ Q1 with A 6= ∅ 6= B and cL, cR, m, wL and wR are (possibly trivial) strings
satisfying the conditions of Definition 3.1(2).

(a) If, after suitable rotation of c, m is a proper subword of c, then there is a non-split
overlap extension

0→M(w)→M(u)→ B(c, λ)→ 0,

where u = wLDmAcRcLB̄mC̄wR is a string.
(b) If c is a subword of m, then after suitable rotation of c there is a decomposition c = c2c1

such that m = cℓc2 for some ℓ ≥ 1 and there is a non-split overlap extension

0→M(w)→M(u)→ B(c, λ)→ 0,

where u = wLDc
ℓ+1c2C̄wR is a string.

Moreover, the collection of such extensions forms a basis of Ext1Λ(B(c, λ),M(w)).

Theorem D. Let Λ be a gentle algebra and (b, µ) 6= (c, λ) be bands with λ, µ ∈ k∗. Suppose
that ∞c∞ and ∞b∞ admit decompositions

∞c∞ = ∞ccLB̄mAcRc
∞ and ∞b∞ = ∞bbLDmC̄bRb

∞,

where A,B,C,D ∈ Q1 are each nonempty and cL, cR, m, bL and bR are (possibly trivial) strings
satisfying the conditions of Definition 3.1(2). Then, either

(a) m is a proper subword of b, i.e. after suitable rotation of b there is a decomposition
b = mv; or,

(b) b is a subword of m, i.e. after suitable rotation there is a decomposition b = b2b1 such
that m = bkb2,

and, either,

(c) m is a proper subword of c, i.e. after suitable rotation of c there is a decomposition
c = mw; or,

(d) c is a subword of m, i.e. after suitable rotation there is a decomposition c = c2c1 such
that m = cℓc2.
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Then, there is a band d and an integer t ≥ 1 such that

dt =





mvmw if (a) & (c);

mvc2c1 if (a) & (d);

b2b1mw if (b) & (c);

b2b1c2c1 if (b) & (d),

and a non-split overlap extension

0→ B(b, µ)→
t⊕

i=1

B(d, ωi t
√
±λµ−1)→ B(c, λ)→ 0,

where ω is a primitive tth root of unity. Moreover, the collection of such extensions forms a
basis of Ext1Λ(B(c, λ), B(b, µ)).

Theorem E. Let Λ be a gentle algebra and (b, µ) be a band with µ ∈ k∗. The collection of
extensions in Theorem D in which m 6= b together with the Auslander–Reiten sequence,

0→ B(b, µ)→ B(b, µ,k2)→ B(b, µ)→ 0,

where B(b, µ,k2) denotes the 2-dimensional band module with Jordan block whose eigenvalue is
µ, form a basis of Ext1Λ(B(b, µ), B(b, µ)).

Remark. In Theorem D, each of the words defining dt is, after suitable rotation of b and c
just the concatenation of the two bands, bc. However, different possibilities for d arise from the
precise decompositions of b and c: for different m, concatenations bc with respect to different
decompositions need not be equivalent up to inverting the word or cyclic permutation.

We now briefly outline the content of the paper, including the general strategy of the proofs of
Theorems A, B, C, D and E. Let Λ be a gentle algebra. We begin by recalling the basic notions
of string and homotopy string combinatorics for gentle algebras in Section 1. In Section 2 we
determine the homotopy string or band of the minimal projective resolution of a string or band
module over Λ and the cohomology of a string or band complex in K

b,−(proj(Λ)).
In order to describe the content of Sections 3 and 4 more precisely, fix the following notation.

Let v and w be strings or bands and M(v) and M(w) the corresponding string or quasi-simple
band modules. We denote the homotopy strings or bands of their projective resolutions by π(v)
and π(w) and the corresponding string or band complexes by Q•

π(v) and Q
•

π(w). The standard ba-

sis of homomorphisms between string and/or band complexes is recalled from [1] in Section 1.4,
enabling us to give an explicit description of a basis of HomKb,−(proj(Λ))(Q

•

π(v),ΣQ
•

π(w)).

In the first step in the proof, we show in Section 3 that the image of every element of the
standard basis under the canonical isomorphism

(1) Φ : HomKb,−(proj(Λ))(Q
•

π(v),ΣQ
•

π(w))
∼
→ Ext1Λ(M(v),M(w))

is either an overlap or an arrow extension. In particular, this shows that the set of overlap and
arrow extensions form a generating set for Ext1Λ(M(v),M(w)).

The second step of the proof, comprising Section 4, shows that the set of overlap and arrow
extensions forms a basis of Ext1Λ(M(v),M(w)). To see this, we show that Φ restricts to a
surjection from the standard basis of HomKb,−(proj(Λ))(Q

•

π(v),ΣQ
•

π(w)) to the set of arrow and

overlap extensions in Ext1Λ(M(v),M(w)).
We emphasise that, with the exception of the case highlighted in the remark above, the

methods apply equally to (homotopy or classical) strings and bands. Furthermore, for ease of
the already somewhat heavy notation, in the proofs in Section 3 and 4, whenever we have a
map between two band complexes or an extension between two band modules, implicitly and
without loss of generality we assume that the parameters of the corresponding band complexes
or band modules are equal to one, see [9, §2.3] for more details on the placement of parameters
with respect to mapping cones.

4



Acknowledgments. The second author would like to thank Raquel Coelho Simões and
Rosanna Laking for useful comments and corrections. The authors would also like to thank an
anonymous referee for a thorough reading of the article and many useful comments that have
significantly improved the exposition. This work has been supported by the EPSRC through
the grants EP/K026364/1, EP/K022490/1 and EP/N005457/1. The third author is supported
by the EPSRC through an Early Career Fellowship EP/P016294/1.

1. Background

In this section we briefly recall the definition of gentle algebras, background on string and
band modules, string and band complexes and the standard basis of the morphism spaces
between string and band complexes that will be needed in the article.

1.1. Gentle algebras. Throughout, k will be an algebraically closed field. We recall the
following definition from [3].

Definition 1.1. A finite-dimensional k-algebra Λ is gentle if it is Morita equivalent to a bound
path algebra kQ/I, where Q is a quiver and I an admissible ideal in kQ such that

(1) for each vertex i ∈ Q0 there are at most two arrows starting at i and at most two arrows
ending at i;

(2) for each arrow a ∈ Q1 there is at most one arrow b with e(a) = s(b) and such that ba /∈ I
and at most one arrow c with e(c) = s(a) and such that ac /∈ I;

(3) for each arrow a ∈ Q1 there is at most one arrow b with e(a) = s(b) and such that ba ∈ I
and at most one arrow c with e(c) = s(a) and such that ac ∈ I;

(4) the ideal I is generated by length-two monomial relations.

From now on Λ = kQ/I will be a gentle algebra.

1.2. String and band modules. We now describe strings and bands, which parametrise the
indecomposable Λ-modules. The reference for this material is [8, 28]. Note that, in this paper
all modules will be finitely generated left modules, and therefore paths in the quiver will be
read from right to left.

For each arrow a ∈ Q1 we introduce a formal inverse arrow a = a−1 with s(a) = e(a) and
e(a) = s(a). We write Q1 for the set of formal inverse arrows. Similarly for a path p = an · · · a1
the inverse path is p = a1 · · · an. Sometimes we shall assert the nonexistence of an arrow or
inverse arrow a, and in this case we write a = ∅.

Definitions 1.2. We recall the following notions.

(1) A walk of length l > 0 in (Q, I) is a sequence w = wl · · ·w1 satisfying s(wi+1) = e(wi),
where each wi is either an arrow or an inverse arrow, and where the sequence does not
contain any subsequence of the form aa or aa for an arrow a ∈ Q1. We will call each
arrow or inverse arrow wi in w a letter of w.

(2) A string is a walk that does not contain subwalks v such that v ∈ I or v ∈ I. In addition,
there are trivial strings 1x for each vertex x ∈ Q0.

(3) A band is a string b = bn · · · b1 such that e(bn) = s(b1), b1 6= bn, b1bn is defined as a
string, and b 6= vm for some substring v and m > 1.

Modulo the equivalence relation w ∼ w the strings form an indexing set for the so-called
string modules. Given a string w, we write M(w) for the corresponding string module. Note
that if w = 1x is a trivial string M(w) = S(x) is the simple module at x. We refer to [8, 28] for
more details on how to construct string modules from strings.

Modulo the equivalence relation given by inversion and cyclic permutation (rotation), the
bands together with scalars µ ∈ k∗ form an indexing set for the so-called band modules, B(b, µ),
where by convention we place µ on a direct arrow. By abuse of notation, we will usually drop
the scalar and write simply B(b) for the corresponding band module. Again we refer to [8] for
the actual construction of the band modules.
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In order to deal with the word combinatorics involving bands effectively, we will need to
consider infinite periodic words corresponding to bands. Let b a band, we write

∞b∞ = · · · bn · · · b1︸ ︷︷ ︸
b

bn · · · b1︸ ︷︷ ︸
b

bn · · · b1︸ ︷︷ ︸
b

· · · ,

∞b = · · · bn · · · b1︸ ︷︷ ︸
b

bn · · · b1︸ ︷︷ ︸
b

, and,

b∞ = bn · · · b1︸ ︷︷ ︸
b

bn · · · b1︸ ︷︷ ︸
b

· · · .

In particular, let (b, µ) and (c, λ) be bands, then (b, µ) = (c, λ) if and only if ∞b∞ = ∞c∞ or
∞b∞ = ∞(c−1)∞ and λ = µ with both λ and µ placed on a direct arrow in the infinite words
that are equal.

By [28, Prop. 2.3], the string and band modules form a complete set of isomorphism classes
of indecomposable Λ-modules.

The band modules given by representations in which each vertex is replaced by a 1-
dimensional vector space all lie at the mouth of homogeneous tubes and are referred to as
quasi-simple (band) modules. They can be characterised as those band modules B such that
there exists an almost split sequence of the form 0 → B → E → τ−1B → 0 where E is inde-
composable, see for example [26]. In the following by abuse of notation, whenever we will use
the term band module we will be referring to a quasi-simple band module.

1.3. String and band complexes. We now describe homotopy strings and bands, which
parametrise the indecomposable complexes in the derived category D

b(Λ). We will use the
notation and terminology employed in [1, 9] and the references therein. However, for the sake
of brevity we drop some of the formality of [1, 9] regarding the degrees.

Definitions 1.3. The original reference for the following definitions is [5].

(1) A (finite) homotopy string is a walk of finite length in (Q, I). In addition, there are
trivial homotopy strings for each vertex x ∈ Q0.

(2) A subwalk p = wj · · ·wi of a homotopy string σ = wl · · ·w1 is a homotopy letter if
(a) p or p is a path of length at least one in (Q, I); and,
(b) wi ∈ Q1 and wi−1 ∈ Q1 or vice versa, or wiwi−1 ∈ I, or wi−1wi ∈ I; and,
(c) wj ∈ Q1 and wj+1 ∈ Q1 or vice versa, or wj+1wj ∈ I, or wjwj+1 ∈ I.
We say that p is a direct homotopy letter if it is a path in (Q, I) and an inverse homotopy
letter if p is a path in (Q, I). In this way we partition a homotopy string σ into homotopy
letters and write σ = σn · · ·σ1 for this decomposition. A homotopy subletter of p is a
subwalk of p of length at least one.

(3) A homotopy letter p = wl · · ·w1, with wi ∈ Q1 for i = 1, . . . , l or w̄i ∈ Q1 for i = 1, . . . , l,
is said to have length l and we write length(p) = l. The length can be zero, in which
case p = 1x for some x ∈ Q0 and p is called a trivial homotopy letter. Sometimes we
shall assert the nonexistence of homotopy letters, and in this case we write p = ∅.

(4) Let σ = σn · · ·σ1 be a homotopy string decomposed into its homotopy letters. A subwalk
τ = σj · · ·σi with 1 ≤ i ≤ j ≤ n is called a homotopy substring of σ.

(5) A homotopy band is a homotopy string σ = σn · · ·σ1 with s(σ) = e(σ), σ1 6= σ̄n, σ 6= τm

for some homotopy substring τ and m > 1, and σ has equal numbers of direct and
inverse homotopy letters.

Remark 1.4. Throughout the article, whenever we write a walk using Greek letters, such as
σ = σn · · ·σ1, we will always mean its decomposition into homotopy letters whereas, in general,
we reserve Roman letters for (classical) strings and bands.

Modulo the equivalence relation σ ∼ σ the homotopy strings form an indexing set for the
so-called string complexes. Given a homotopy string σ, we write P •

σ for the corresponding string
complex. Note that if σ = 1x is a trivial homotopy string P •

σ = P (x) is the stalk complex of the
6



projective module at x. We refer to [1, 5] for more details on how to construct string complexes
from homotopy strings; for a sketch of the constructions, see Example 1.5 below.

Modulo the equivalence relation given by inversion and cyclic permutation, the homotopy
bands together with scalars λ ∈ k∗ form an indexing set for the so-called band complexes B•

σ,λ.

Again we refer to [1, 5] for the actual construction of the band complexes.
By [5, Thm. 3], the string and band complexes form a complete set of indecomposable perfect

complexes in D
b(Λ). For the remaining objects of Db(Λ) we need some further terminology.

Example 1.5 ([1, Running Example]). Let Λ = kQ/I be given by the following bound quiver:

0

1

2

3

4

a

b

c d

e

f

Consider the following indecomposable complex in D
b(Λ), where we assume the left-most

nonzero term is in cohomological degree zero.

0 // P (0)
[ c f ]

// P (2)⊕ P (3)

[

b 0
0 e

]

// P (1)⊕ P (4)

[

af
0

]

// P (3) // 0.

This complex can be ‘unfolded’ to give the following diagram,

P (4) P (3)
ēoo P (0)

f̄
oo c // P (2)

b // P (1)
af

// P (3).

The indecomposable projective modules appearing are uniquely determined by the endpoints
of the maps, so all information in this complex is contained in the diagram

(2) • •
ēoo •

f̄
oo c // •

b // •
af

// • .

Here the homotopy string σ = ēf̄ cbaf , and we refer to (2) as the ‘unfolded diagram’ of σ. For
more details we refer the reader to [1, §2].

Definitions 1.6. In the following, walks may now be infinite (on both sides).

(1) A walk w is called a direct antipath if it is direct and in its decomposition into homotopy
letters, each homotopy letter has length 1; it is called an inverse antipath if it is inverse
and in its decomposition into homotopy letters, each homotopy letter has length 1.

(2) A left infinite walk w = · · ·wn · · ·w2w1 is a left infinite homotopy string if there exists
m ≥ 1 such that v = · · ·wn · · ·wm+1wm is a direct antipath.

(3) A right infinite walk w = w−1w−2 · · ·w−n · · · is a right infinite homotopy string if there
exists m ≥ 1 such that v = w−mw−m−1 · · ·w−n · · · is an inverse antipath.

(4) A two sided infinite walk w = · · ·w2w1w0w−1 · · · is called a two-sided infinite homo-
topy string if there exist integers n > m such that · · · vn+1vn is a direct antipath and
vmvm−1 · · · is an inverse antipath.

(5) By a one-sided infinite homotopy string we mean either a left infinite homotopy string
or a right infinite homotopy string.

By [5, Thm. 3] the indecomposable non-perfect complexes in D
b(Λ) are parametrised by the

one-sided and two-sided infinite homotopy strings; they are again called string complexes. In
the following, we write

Q•

σ =

{
P •
σ if σ is a (possibly infinite) homotopy string;
B•

σ,λ if σ is a homotopy band.

From now on, by abuse of terminology, we say homotopy string for a (possibly infinite) homotopy
string.
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1.4. The standard basis. A basis for the morphism space between indecomposable complexes
in D

b(Λ) was determined in [1]. Here we briefly recall this basis, which we shall refer to as the
standard basis. As observed in Example 1.5, homotopy strings and bands correspond to an
unfolding of the corresponding string and band complexes. Throughout the paper, we shall
freely make use of the unfolded diagram notation for string and band complexes from [1, 9].

Theorem 1.7 ([1, Theorem 3.15]). Let σ and τ be homotopy strings or bands. Then there is a
canonical basis of HomDb(Λ)(Q

•
σ, Q

•
τ ) given by:

• graph maps f• : Q•
σ → Q•

τ ;
• singleton single maps f• : Q•

σ → Q•
τ ;

• singleton double maps f• : Q•
σ → Q•

τ ;
• quasi-graph maps ϕ : Q•

σ  Σ−1Q•
τ .

We note that a quasi-graph map is not a map, but in fact determines classes of homotopy
equivalent single and double maps, which is why we denote it by  and not →.

Throughout the following description of the maps listed above, σ and τ will be homotopy
strings or bands.

1.4.1. Graph maps. Suppose σ and τ are, up to inversion, of the form,

(1) σ = βσLρσRα and τ = δτLρτRγ; or
(2) σ = ρσRα and τ = ρτRγ,

where α, β, γ and δ are homotopy substrings, σL, σR, τL and τR are (possibly trivial) homotopy
letters, and ρ is a (possibly trivial) maximal common homotopy substring, and in the second case
an infinite homotopy substring of σ and τ . We assume that ρ occurs in the same cohomological
degrees in both homotopy strings. Then the corresponding graph maps can be represented by
the following unfolded diagrams:

(1) Q•
σ :

β
•

σL

fL
��

(∗)

•
ρk
•

ρk−1

· · ·
ρ2
•

ρ1
•

σR

(∗∗)

•
α

fR
��

Q•
τ : δ

•
τL
•

ρk
•

ρk−1
· · ·

ρ2
•

ρ1
•

τR
•

γ

(2) P •
σ : •

ρ3
•

ρ2
•

ρ1
•

σR

(∗∗)

•
α

fR
��

P •
τ : •

ρ3
•

ρ2
•

ρ1
•

τR
•

γ

where we require the squares marked (∗) and (∗∗) to commute; these are explicitly written
down in [1, §3.2]. The maximality of ρ as a common homotopy substring of σ and τ necessarily
means that σL 6= τL and σR 6= τR. Note that in the case of 1.4.1(2), ρ is an antipath and we
say that the graph map f• is incident with ρ.

1.4.2. Single maps. The unfolded diagram of a single map f• : Q•
σ → Q•

τ is given by

(3) Q•
σ :

f• ��

β
•

σL
•

σR

f
��

•
α

Q•
τ :

δ
•

τL
•

τR
•

γ

where f is a nontrivial path in (Q, I), and satisfying the following conditions:

(L1) if σL 6= ∅ then σL is either inverse or is direct and σLf has a subpath in I.
(L2) if τL 6= ∅ then τL is either direct or is inverse and f τ̄L has a subpath in I.
(R1) if σR 6= ∅ then σR is either direct or is inverse and σ̄Rf has a subpath in I.
(R2) if τR 6= ∅ then τR is either inverse or is direct and fτR has a subpath in I.
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A single map f• : Q•
σ → Q•

τ is called a singleton single map if its unfolded diagram, up to
inversion of one of the homotopy strings/bands, is

(4) Q•
σ :

f• ��

β
•

σL
•

f
��

σR=ffR// •
α

Q•
τ :

δ
•

τL
• •
τR=ffL

oo
γ

where σL and τL never contain f as a subletter, and whenever σL is inverse or τL is direct, f
does not contain σL or τL as a subletter, and any of σL, σR, τL and τR are permitted to be the
empty homotopy letter ∅.

1.4.3. Double maps. The unfolded diagram of a double map f• : Q•
σ → Q•

τ is

(5) Q•
σ :

β
•

σL
•

σC //

fL
��

•
σR

fR
��

•
α

Q•
τ :

δ
•

τL
•

τC
// •

τR
•

γ

where fL and fR are nontrivial paths in (Q, I) such that fLτC = σCfR has no subpath in I,
conditions (L1) and (L2) hold for fL and (R1) and (R2) hold for fR.

A double map, as above, is called singleton if there is a nontrivial path f ′ in (Q, I) such that
σC = fLf

′ and τC = f ′fR.

1.4.4. Quasi-graph maps. If, in the situation of Section 1.4.1, the squares marked (∗) and (∗∗)
of diagrams (1) and (2) do not commute, then such diagrams determine a quasi-graph map
ϕ : Q•

σ  Q•
τ . The non-commuting endpoint conditions are explicitly spelled out in [9, §1.4.4].

Note that, while a quasi-graph map Q•
σ  Q•

τ does not define a map, a quasi-graph map
ϕ : Q•

σ  Σ−1Q•
τ determines a family of homotopy equivalent single and/or double maps. In-

deed, all single and double maps that are not singleton arise in this way.
The following observation will be useful in the proofs in Section 4.

Remark 1.8. Suppose, in the unfolded diagram (1) above, ρ1 is not the start of both σ and
τ and ρk is not the end of both σ and τ . In this case, the diagram defines a graph map
f• : Q•

σ → Q•
τ if and only if the same diagram, when read upside down, i.e. from bottom to

top, defines a quasi-graph map ϕ : Q•
τ  Q•

σ. Note that we do not read fL and fR upside down:
they occur as homotopy subletters of σL or τL (resp. σR or τR). For example, consider the
following case:

•
σR // •

fR
��

α

•
τR=σRfR

// •
γ

, versus the same situation ‘upside down’, •
τR=σRfR// •

γ

•
σR

// •
α

.

Here the fact that τR = σRfR is the obstacle to the commuting of the right endpoint when
the ‘graph map’ is read upside down, giving a (non-null-homotopic) quasi-graph map endpoint
condition; see [9, §1.4.4].

1.5. Morphisms vs. extensions. For background on derived and homotopy categories we
refer to [15]. One of the powerful features of the derived category is that it reformulates
extensions in the module category in terms of morphisms. In particular, for any algebra Λ, and
any Λ-modules M and N we have

HomK(P
•

M ,ΣP
•

N ) ≃ Ext1
K
(P •

M , P
•

N ) ≃ Ext1Λ(M,N),

P •

M

f•

−→ ΣP •

N 7→ P •

N −→ C•

f• −→ P •

M

f•

−→ ΣP •

N 7→ 0→ N → H0(C•

f•)→M → 0

where K = K
b,−(proj(Λ)), P •

M and P •

N are projective resolutions of M and N , respectively,
and C•

f• is the (negative shift of the) mapping cone of f•. In particular, computation of a
9



basis of the Ext-space Ext1Λ(M,N) reduces to the computation of a basis of the Hom-space
HomKb,−(proj(Λ))(P

•

M ,ΣP
•

N ).

2. Cohomology of string and band complexes

Throughout σ will be a (possibly infinite) homotopy string or band, unless one is specified
explicitly. When we wish to specify that σ is finite on the right we will write σ = · · ·σ2σ1, finite
on the left: σ = σnσn−1 · · · , and finite on both sides: σ = σn · · ·σ1.

Given a homotopy string or band σ we will describe how to compute the cohomology of the
string or band complex Q•

σ. The strategy is to divide σ up into various homotopy substrings
each corresponding to appropriately chosen two-term complexes. We start with an important
technical definition.

Definition 2.1. Let σ be a homotopy string or band. A homotopy substring τ = σj · · ·σi with
i < j is a maximal alternating homotopy substring if

(i) for each i ≤ k < j, if σk is direct (resp., inverse) then σk+1 is inverse (resp., direct);
(ii) if σi is direct (resp., inverse) then σi−1 is direct (resp., inverse) and σiσi−1 ∈ I (resp.,

σi−1σi ∈ I) or is ∅; and,
(iii) if σj is direct (resp., inverse) then σj+1 is direct (resp., inverse) and σjσj+1 ∈ I (resp.,

σj+1σj ∈ I or is ∅.

If only condition (i) holds, then τ is called an alternating homotopy substring.

Remark 2.2. Let σ be a homotopy string or band and τ = σj · · ·σi with i < j be a maximal
alternating homotopy substring of σ.

(1) The homotopy string τ has at least two homotopy letters.
(2) The string complex P •

τ is concentrated in precisely two cohomological degrees, namely
degP (s(σi)) and degP (e(σi)), i.e. it is a ‘two-term complex’.

(3) A maximal alternating homotopy substring of a homotopy string or band cannot be
infinite: all infinite homotopy strings have antipaths to the left and/or to the right.

(4) Since no two consecutive homotopy letters of τ ‘pass through a relation’, the underlying
walk of τ also determines a string. In the case that σ = σn · · ·σ1 is a homotopy band
and τ = σ, then the underlying walk of τ also determines a band.

Lemma 2.3 (Maximal alternating homotopy substring rule). Let σ be a homotopy string or
band. Suppose τ = σj · · ·σi is a maximal alternating homotopy substring. Decompose the
homotopy letters σj = bl · · · b1 and σi = ak · · · a1 into paths or inverse paths in (Q, I) and set

w :=

{
bl−1 · · · b1σj−1 · · ·σi+1ak · · · a2

if τ 6= σ or τ = σ and σ is a homotopy string with σ1
inverse and σn direct;

σ if τ = σ and σ is a homotopy band.

Then the string module M(w) (resp., band module B(w)) is an indecomposable summand of the
cohomology module Hd(Q•

σ), where d = max{degP (s(σi)), degP (e(σi))}.

Proof. Suppose σ is a homotopy string and (Q•
σ, ∂

•) is the corresponding string complex. We
treat the case that the maximal alternating homotopy substring τ has unfolded diagram of the
form below; the other cases, and the case that σ is a homotopy band, are similar.

•
σj+1

// •
σj

// • •
σj−1
oo • •

σi+1oo
σi // •

σi−1 // •
10



Note that, in this case d = degP (s(σi)) and the homotopy letters σi, . . . , σj are components of

the differential ∂d−1. In particular, we can wrap τ back up into a complex:

P (e(σj+1))
σj+1

// P (e(σj))
σj

//

⊕

P (e(σj−1))

⊕

P (e(σj−2))

σj−1
55

σj−2
//

⊕

P (e(σj−3))

⊕

P (e(σj−4))

σj−3
55

σj−4
//

⊕

...

⊕

...
σi+2 //

⊕

P (e(σi+1))

⊕

P (e(σi))
σi //

σi+1
55

P (s(σi))
σi−2 // P (s(σi−1))

The other components of the differentials ∂d−2, ∂d−1 and ∂d are disconnected from the compo-
nents of ∂d−1 indicated above. The components above therefore contribute a summand, M say,
of the cohomology module Hd(Q•

σ); the other summands of Hd(Q•
σ) are contributed by other

parts of σ. We claim that M ∼=M(w), where w is the string defined in the statement.
The projective modules P (e(σi+1)), P (e(σi+3)), . . . , P (e(σj−1)) ⊂ ker(∂d). Consider the fol-

lowing components of the differential ∂d−1,

P (e(σm+1))

⊕

P (e(σm))

σm+1 55

σm
// P (s(σm))

which map diagonally into submodules of P (e(σm+1)) and P (s(σm)) with simple top S(e(σm)).
Thus, in the quotient ker(∂d)/ im(∂d−1) the action of σm on the basis vector at s(σm+1) is the
same as the action of σm−1 on the basis vector at s(σm−1), as indicated in Figure 2. At the
left-hand endpoint of τ , i.e. at the homotopy letter σj , in the quotient ker(∂d)/ im(∂d−1) the
arrow bl acts on the basis vector supported at s(bl) by sending it to 0 (because the basis vector
at e(bl) is an element of im(∂d−1). Hence, the arrow bl is removed from the string describing
this indecomposable summand of Hd(P •

σ ). Similarly, at the right-hand endpoint of τ , i.e. at σi,
the basis vector supported at s(a1) = xi−1 is not an element of ker(∂d). Hence, the arrow a1
is removed from the string describing the indecomposable summand of Hd(P •

σ ). It follows that
the summand M of ker(∂d)/ im(∂d−1) has the following form.

t(bl−1)

xj−1

xj−2

xj−3

xj−4

. . .

xi+3

xi+1

xi

s(a2)

bl−1

b1

ak

a2

σj−1

σj−2 σj−3 σi+2 σi+1

that is, corresponds to the string w = bl−1 · · · b1σj−1 · · ·σi+1ak · · · a2. �

The following lemmas are computations analogous to that in Lemma 2.3 above. Thus we
provide only their statements and leave the proofs to the reader.

Lemma 2.4 (Cokernel rule). Let σ = · · ·σ2σ1 be a homotopy string in which σ1 = ak · · · a1 and
σ2 are direct homotopy letters. If there exists c with c ∈ Q1 such that σ1c is defined as a string,

11



xj
αj βj

xj−2
αj−2 βj−2

xj−1

xj

xj−2

b1

bl−1

bl

αj

σj−1

βj−2

xj−3

xj−2 xj−4

σj−2

αj−2

σj−3

βj−4

σj = bl . . . b1

σj−1

σj−2

⊕

xm
αm βm

xm+1

xm

αm+1
σm+1

βm

xm−1

xm

σm

αm

βm−1

σm+1

σm

⊕

xi
αi βi

xi+1

xi+2 xi

σi+2

βi+2

σi+1

βi

xi−1

xi

a1

a2

ak

αi

βi−1
xi−2

xi−1

αi−2
σi−1

βi−1

σi+1

σi = ak . . . a1

σi−1

Figure 2. Schematic showing the computation of the cohomology: ker ∂ is
shown in light grey, im ∂ in mid-grey, and basis vectors identified by quotienting
by the image of the diagonal map shown in dark grey and joined by a dark grey
line. Here xm = e(σm), i.e. is the end of the homotopy letter σm. Top left:
illustration of the situation at the left end of the maximal alternating homotopy
string τ . Top right: a generic situation midway in τ . Bottom: the situation at
the right hand end of τ .

then take u = cm · · · c1 to be the maximal inverse string ending with cm = c. Set

w :=

{
ak−1 · · · a1u if there is such a c;
ak−1 · · · a1 otherwise.

Then the string moduleM(w) is an indecomposable summand of the cohomology module Hd(P •
σ ),

where d = degP (s(σ1)).

For a homotopy string σ = · · ·σ2σ1 with σ1 direct, it is possible that σ2 is not direct, in
which case σ1 is part of a maximal alternating homotopy substring τ = σj · · ·σ1. In this case,
we combine the cokernel rule with the maximal alternating homotopy substring rule.

Lemma 2.5 (Combined rule). Let σ = · · ·σ2σ1 be a homotopy string in which σ1 = ak · · · a1
is a direct homotopy letter and τ = σj · · ·σ1 is a maximal alternating homotopy substring.
Decompose the homotopy letter σj = bl · · · b1 into a path or inverse path in (Q, I) and set

w :=

{
bl−1 · · · b1σj−1 · · ·σ1u if there exist c and u as in Lemma 2.4;
bl−1 · · · b1σj−1 · · ·σ2ak · · · a1 otherwise.

Then the string moduleM(w) is an indecomposable summand of the cohomology module Hd(P •
σ ),

where d = degP (s(σ1)).
12



There are obvious dual statements if σ = σnσn−1 · · · with σn inverse. If τ = σ with σn inverse
and σ1 direct then we must combine Lemma 2.5 with its dual.

Lemma 2.6 (Kernel rule). Let σ = σnσn−1 · · · be a homotopy string in which σn = bl · · · b1 is
a direct homotopy letter. If there exists c ∈ Q1 and cbl = 0 then take cm · · · c1 to be the maximal
direct string starting with c1 = c. Set

v :=

{
cm · · · c2 if there exists such a c;
∅ otherwise.

Then the string moduleM(v) is an indecomposable summand of the cohomology module Hd(P •
σ ),

where d = degP (e(σn)). If m = 1 then v = 1e(c) is the trivial string corresponding to the simple
module S(e(c)).

Note that if σ = σnσn−1 · · · is a homotopy string and τ = σn · · ·σi is a maximal alternating
homotopy substring with σn direct, then Lemmas 2.3 and 2.6 do not need to be combined. In
particular, the string module M(v) is an indecomposable summand of Hd(P •

σ ) and the string
moduleM(w) is an indecomposable summand of Hd+1(P •

σ ), where v is defined as in Lemma 2.6,
w is defined as in Lemma 2.3, and d = degP (e(σn)).

Lemma 2.7 (Nontrivial homotopy letter rule). Let σ be a homotopy string or band in which
σi is a direct homotopy letter and σi+1σiσi−1 is a non-alternating homotopy substring with σi+1

possibly empty. Let d = degP (s(σi)).

(1) If σi = ak · · · a1 with aj ∈ Q1 and k > 1 then set w = ak−1 · · · a2. The string module

M(w) is an indecomposable summand of the cohomology module Hd(Q•
σ). If k = 2 then

w = 1e(a1) = 1s(a2) and M(w) = S(e(a1)) = S(s(a2)).
(2) If σi = a for some a ∈ Q1 then the map σi : P (e(σi)) → P (s(σi)) contributes the zero

submodule to the cohomology module of Hd(Q•
σ).

Lemmas 2.4, 2.5, 2.6 and 2.7 admit obvious dual statements. When referring to these lemmas
we shall freely include those dual statements. We summarise this section with the following
theorem and illustrate with an example.

Theorem 2.8. Let σ be a homotopy string or band. Lemmas 2.3, 2.4, 2.5, 2.6 and 2.7 and
their duals provide a complete description of the cohomology complex H•(Q•

σ).

Remark 2.9. Note that in computing the cohomology Lemmas 2.3, 2.4, 2.5, 2.6, 2.7 and their
duals can be applied independently and therefore in any order. The only exception is that
the combined rule Lemma 2.5 should always be applied instead of Lemma 2.3 whenever the
homotopy string has the appropriate form.

Example 2.10. We consider the gentle algebra with the following quiver where the (length 2)
relations are indicated by dotted lines.

14 13 12 11
487

9

10

32

1

5

6
g

b

f

c

dl
i

m
n

j

h
a

k
opqr

e
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Consider the following homotopy strings where the top line indicates the cohomological degree
of the corresponding projective indecomposable:

0 1 0 −1 −2 −3 −2 −1

σ : 7
i // 8 2

k̄c̄b̄oo 6oo 3
ḡ

oo 7
b̄h̄oo il // 5

d // 4

and

−1 0 1 2

τ : 14
r // 13

qpo
// 9

m // 7.

Examining the homotopy string σ, we see that there are four indecomposable summands of
H•(P •

σ ). We list them below in order of ascending cohomological degree.

• We have H−2(P •
σ ) = M(w1), where w1 = h̄i coming from the maximal alternating

homotopy substring rule (Lemma 2.3) applied to 3
b̄h̄
←− 7

il
−→ 5.

• We have H−1(P •
σ ) = M(w2), where w2 = c̄b̄h̄m̄n̄ coming from the cokernel rule

(Lemma 2.4) applied to 5
d
−→ 4.

• We have H0(P •
σ ) = M(w3), where w3 = n coming from the kernel rule (Lemma 2.6)

applied to 7
i
−→ 8.

• We have H1(P •
σ ) = M(w4), where w4 = k̄c̄ coming from the maximal alternating

homotopy substring rule (Lemma 2.3) applied to 7
i
−→ 8

k̄c̄b̄
←− 2.

• By Lemma 2.7, all remaining parts of the homotopy string σ contribute zero to the
cohomology H•(P •

σ ).

Examining the homotopy string τ , in a similar fashion we obtain the following for H•(P •
τ ).

• We have H1(Pτ ) = M(w1) where w1 = p coming from the nontrivial homotopy letter

rule (Lemma 2.7) applied to 13
qpo
−→ 9

m
−→ 7.

• We have H2(Pτ ) = M(w2) where w2 = j coming from the cokernel rule (Lemma 2.4)

applied to 9
m
−→ 7.

• There is no non-zero contribution to the cohomology coming from the nontrivial ho-

motopy letter rule (Lemma 2.7) applied to 14
r
−→ 13

qpo
−→ 9 or from the kernel rule

(Lemma 2.6) applied to 14
r
−→ 13.

We end this section by giving the homotopy string or band of the minimal projective resolution
of a string or quasi-simple band module, which will be heavily used in the next sections. We
note that gentle algebras are string algebras and that there is a large body of work on string
algebras. In particular, projective resolutions and syzygies, have been considered before, see
for example [17, 18]. In [28], minimal projective presentations of string and band modules were
given in terms of string combinatorics, which in the case of gentle algebras can be formulated in
terms of homotopy string combinatorics. These projective presentations correspond to maximal
alternating homotopy substrings sitting between degrees −1 and 0. Before stating the result,
we set up some notation.

Definition 2.11. Let a and b be such that ā, b ∈ Q1. Define

• inv(a) := σ−1σ−2 · · · to be maximal inverse antipath ending with σ−1 = a;
• dir(b) := · · ·σ2σ1 to be the maximal direct antipath starting with σ1 = b.

Corollary 2.12. Let w = wn · · ·w1 be a string. Define a homotopy string π(w) as follows:

(1) π(w) = dir(b)w′ inv(a) if there are a and b such that ā, b ∈ Q1 and bwa is defined as a
string and where w′ = w.

14



(2) π(w) = w′ inv(a) if there is an a with ā ∈ Q1 such that wa is defined as a string but
no b ∈ Q1 with bw defined as a string, where w′ = wj · · ·w1 after removing a maximal
direct substring wn · · ·wj+1 of w.

(3) π(w) = dir(b)w′ if there is b ∈ Q1 with bw defined as a string but no a with ā ∈ Q1 such
that wa is defined as a string, where w′ = wn · · ·wi after removing a maximal inverse
substring wi−1 · · ·w1 of w.

(4) π(w) = w′ if there are no a and b such that ā, b ∈ Q1 and bwa is defined as a string, where
w′ = wj · · ·wi after removing a maximal direct substring wn · · ·wj+1 and a maximal
inverse substring wi−1 · · ·w1.

(5) π(w) = w if w is a band.

Then P •

π(w) (resp., B
•

π(w) when w is a band) is a projective resolution of M(w) (resp., B(w)).

Proof. The computation of the cohomology of P •

π(w) (resp., B
•

π(w)) in Theorem 2.8 gives M(w)

(resp., B(w)) in cohomological degree zero and zero in all other degrees. �

Corollary 2.13. Let A be a gentle algebra. Then any quasi-simple band module has projective
dimension one.

The maximal direct substring wn · · ·wj+1 removed from w in Corollary 2.12(2) will be called
a maximal direct suffix. Likewise, the maximal inverse substring wi−1 · · ·w1 removed from w in
Corollary 2.12(3) will be called a maximal inverse prefix.

Definition 2.14. For the homotopy string σ = π(w) defined in Corollary 2.12 above we call
the homotopy substrings inv(a) and dir(b) the antipath part of π(w). By abuse of notation we
write inv(w) = inv(a) and dir(w) = dir(b). In the notation of Corollary 2.12, we will call w′ the
module part of π(w).

An inverse homotopy letter σi = ā1 · · · āk of σ is incident with inv(a) if āk = ā. Likewise, a
direct homotopy letter σj = bl · · · b1 of σ is incident with dir(b) if b1 = b.

In the following, as usual, we write Q•

π(w) when we do not wish to specify whether w is a

string or a band.

Remark 2.15. We make the following straightforward observations regarding the forms of the
homotopy strings occurring in Corollary 2.12.

(1) If there is no a such that wa is defined as a string then the homotopy string π(w) starts
with a direct homotopy letter whose target lies in degree 0.

(2) If there is no b such that bw is defined as a string then the homotopy string π(w) ends
with an inverse homotopy letter whose target lies in degree 0.

(3) If σi+1σi are consecutive homotopy letters with the same orientation then at least one
of them lies in the antipath part and the other either lies in the antipath part or else is
incident with dir(w) or inv(w).

(4) Owing to being a projective resolution of a module, the string/band complex Q•

π(w)

attains its maximal cohomological degree in degree 0. Moreover, homotopy letters oc-
curring in the module part of π(w) provide components of the differential in Q•

π(w) from

degree −1 to degree 0. Indeed, together with those homotopy letters incident with
dir(w) and inv(w) these provide all components of the differential in Q•

π(w) from degree

−1 to degree 0.
(5) Suppose σk is a homotopy letter of π(w). If length(σk) > 1 then deg(P (e(σk))) ∈ {0,−1}

and deg(P (s(σk))) ∈ {−1, 0}, where deg(P (x)) denotes the cohomological degree in
which P (x) occurs.

3. Determining extensions in the module category

Recall that in [25] extensions for string modules are given in terms of string combinatorics.
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Definition 3.1. Let v be a string or band and w be a string or band.

(1) (Arrow extension) If there exists a ∈ Q1 such that u = wav is a string then there is
a non-split short exact sequence

0→M(w)→M(u)→M(v)→ 0.

(2) (Overlap extension) Suppose that v = vLB̄mAvR and w = wLDmC̄wR with
A,B,C,D ∈ Q1 and m, vL, vR, wL, wR (possibly trivial) strings such that
(i) if A = ∅ then C 6= ∅;
(ii) if B = ∅ then D 6= ∅; and,
(iii) if m = 1x for some x ∈ Q0, i.e. a trivial string, then CA ∈ I and BD ∈ I (whenever

they exist, subject to the constraints above).
Then there is a non-split short exact sequence

0→M(w)→M(u)⊕M(u′)→M(v)→ 0

where u = wLDmAvR and u′ = vLB̄mC̄wR.

Remark 3.2. Condition (iii) is a ‘compatibly oriented’ condition corresponding to [9, Def 2.1].
We remark that this condition is missing in the definition of overlap extension in [11], but it is
used implicitly in the arguments therein.

Recall the canonical isomorphism (1) from the introduction,

Φ : HomKb,−(proj(Λ))(Q
•

π(v),ΣQ
•

π(w))
∼
→ Ext1Λ(M(v),M(w)).

Theorem 3.3. With the notation above, let M(v) and M(w) be indecomposable Λ-modules with
strings or bands w and v respectively and let Q•

σ and Q•
τ with σ = π(v) and τ = π(w) be their

projective resolutions. Then for any standard basis element f• in HomKb,−(proj(Λ))(Q
•
σ,ΣQ

•
τ )

the corresponding extension Φ(f•) in Ext1Λ(M(v),M(w)) is given by an arrow or an overlap
extension. In particular, the set of overlap and arrow extensions form a generating set for
Ext1Λ(M(v),M(w)).

In the rest of this section we prove Theorem 3.3 by considering each type of map of the stan-
dard basis of HomKb,−(proj(Λ))(Q

•
σ,ΣQ

•
τ ) as defined in [1]. We start by showing that Theorem 3.3

holds for graph maps.

3.1. Graph maps. Throughout this subsection we fix the following setup.

Setup 3.4. Let v and w be strings or bands andM(v) andM(w) be the corresponding string or
band modules. Let σ = π(v) and τ = π(w) be the homotopy strings or bands corresponding to
the projective resolutions Q•

σ and Q•
τ ofM(v) andM(w) as given in Corollary 2.12, respectively.

Lemma 3.5. Let f• : Q•
σ → ΣQ•

τ be a graph map incident with an antipath in Q•
σ and an

antipath in ΣQ•
τ . Then Φ(f•) is an arrow extension in Ext1Λ(M(v),M(w)).

Proof. Recall that π(v) = σ and π(w) = τ . We treat the case π(v) = dir(a)vϕ and π(w) =
ϕ′w inv(a′) in detail, where a, ā′ ∈ Q1, ϕ is an inverse antipath and ϕ′ is a direct antipath,
putting π(v) and π(w) both in case (1) of Corollary 2.12. If one of ϕ = ∅ or ϕ′ = ∅, i.e. if
π(v) = dir(a)v′ or π(w) = w′inv(a′), then the calculations below remain essentially the same,
even in the case that v is inverse and w is direct.

To simplify the notation, set dir(a) = θ = · · · θ2θ1 and inv(a′) = θ′ = θ′1θ
′
2 · · · with θi, θ̄

′
i ∈ Q1

and θ1 = a and θ′1 = a′. Suppose that f• induces an isomorphism of projective modules lying in
θ and θ′ and suppose this isomorphism is in degree −n. Then as homotopy letters in antipaths
are of length 1 and since Λ is gentle, there exists an isomorphism θn ≃ θ̄′n−1 and we obtain
an isomorphism in degree −n − 1. We now continue inductively to the left and right; we only
need to take care about what happens in degree −1, which we analyse in cases below. Write
v = vk · · · v1 and w = wl · · ·w1.

Case 1: vk is inverse and w1 is direct.
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We have the following unfolded diagram

Q•
σ :

f• ��

•
θ3 // •

θ2 // •
a // • •

vk···vioo // •

ΣQ•
τ̄ : •

θ̄′
2

// •
ā′=θ2

// • •
w̄1···w̄j

oo // •

where 1 ≤ i ≤ k and 1 ≤ j ≤ l. Then by [9, Thm. 2.2] the homotopy string of the (shift of the)
mapping cone of f• is given by α = ϕ′wavϕ. By the form of π(w) and π(v), it follows from
Corollary 2.12 that there exist b̄, b′ ∈ Q1 such that ϕ = bρ and ϕ′ = ρ′b′ and b′wavb is a string.
Then by Lemma 2.3, M(wav) is the cohomology (in cohomological degree zero) of Q•

α.
The shift of the mapping cone, Q•

α, by definition sits in a distinguished triangle

(6) Q•

τ
h•
−→ Q•

α

g•

−→ Q•

σ

f•

−→ ΣQ•

τ .

We now observe that H0(g•) := g : M(wav) → M(v) is the canonical map in the arrow ex-
tension, showing that the corresponding graph map does indeed induce the claimed arrow
extension.

Decompose v = νn · · · ν1 and w = µm · · ·µ1 into homotopy letters so that σ = θνn · · · ν1bρ
and α = ϕ′µm · · ·µ1aνn · · · ν1bρ. We assume that ν1 is direct so that b is a homotopy letter; the
case ν1 is inverse is similar. The map g• : Q•

α → Q•
σ is given by the following unfolded diagram

Q•
α :

g• ��

• •oo
µ1a //

µ1
��

• •
νnoo // · · · •

ν1 // • •
boo •

ϕ2oo

Q•
σ : •

θ3

// •
θ2

// •
a

// • •
νn

oo // · · · •
ν1

// • •
b

oo •
ϕ2

oo

which is supported in cohomological degree −1 at the left endpoint. Wrapping α and σ back
up into complexes as in the proof of Lemma 2.3, where we have taken a ‘mirror image’ of σ in
order to more easily match up the cohomological degree 0 parts, we get the following diagram.

(7) P (e(µ1a))
ωa //

⊕

P (e(νn))

⊕

P (e(νn))

⊕

P (e(a))
aoo

⊕

P (s(νn))

νn
55

νn−1 //

⊕

P (s(νn−1))

⊕

P (s(νn−1))

⊕

P (s(νn))

νn
ii

νn−1oo

⊕

P (s(νn−2))

νn−2
55

νn−3 //

⊕

...

⊕

...
...

⊕

P (s(νn−2))

νn−2
ii

νn−3oo

⊕

...
ν1 //

⊕

P (s(ν1)) P (s(ν1))
...

ν1oo

⊕

P (s(ϕ2))
ϕ2 // P (s(b))

b
55

P (s(b))

b
ii

P (s(ϕ2))
ϕ2oo

In Figure 3, we re-write diagram (7) as in Figure 2. Here we see immediately that H0(g•) is the
canonical factor map M(wav)։M(v). Taking the long exact cohomology sequence associated
to the triangle (6) gives a short exact sequence

0 −→M(w)
H0(h•)
−→ M(wav)

H0(g•)
−→ M(v) −→ 0,

in which H0(g•) is the canonical map, whence it follows immediately that H0(h•) is also the
canonical map associated to the obvious substring/factor string decomposition.

It now follows that f• induces an arrow extension corresponding to the arrow induced by a,
where the middle term of the extension is given by the string module M(wav).

Case 2: Both vk and w1 are inverse.
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•

s(νn−1)

•

•

e(νn)

•

•

•

s(µ3)

•

•

αn−2βn−2

νn−2νn−1

αnβn

νna

µ1

γ2δ2

µ2µ3

γ4δ2

· · ·

•

s(ν5)

•

•

s(ν3)

•

•

s(ν1)

•

•
α6β6

ν5 ν4

α4β4

ν3 ν2

α2β2

ν1 b

α0

•

•

•

•

•

•

αn−2βn−2

νn−2νn−1

αnβn

νna

µ1

δ2

· · ·

•

s(ν5)

•

•

•

•

•

•
α6β6

ν5 ν4

α4β4

ν3 ν2

α2β2

ν1 b

α0

Figure 3. The strings shaded in grey are the cohomology of Q•
α and Q•

σ in
degree 0. The identity maps between projective modules are indicated in alter-
nating red and green colour. The induced map between cohomology modules is
the canonical factor map M(wav)։M(v).

We have the following unfolded diagram

Q•
σ :

f• ��

•
θ3 // •

θ2 // •
a //

w̄1···w̄j
��

• •
vk···vioo // •

ΣQ•
τ̄ : •

θ̄′
2
=θ3

// •
ā′w̄1···w̄j

// • •oo

where 1 ≤ i ≤ k and 1 ≤ j ≤ l. Then a′ = θ1 and by [9, Thm. 2.2] the homotopy string of the
mapping cone of f• is given by α = ρ′b′wavbρ where ϕ = bρ and ϕ′ = ρ′b′ with b̄, b′ ∈ Q1 such
that b′wavb is a string. As in Case 1 above, one can check that the map H0(g•) : M(wav) →
M(v) is the canonical map given by the obvious substring/factor string decomposition. It then
follows that, taking cohomology, f• induces an arrow extension, corresponding to the arrow a,
whose middle term is M(wav).

Case 3: Both vk and w1 are direct.

This case is similar to case 1. We have the following unfolded diagram

Q•
σ :

f• ��

•
θ3 // •

θ3 // •
avk···vi// • •oo

ΣQ•
τ̄ : •

θ̄′
2
=θ3

// •
ā′=θ2

// • •
w̄1···w̄j

oo // •

where 1 ≤ i ≤ k and 1 ≤ j ≤ l. Then as above the cohomology of the mapping cone induces an
arrow extension corresponding to the arrow a.

Case 4: vk is direct and w1 is inverse.

This case is similar to case 2. We have the following unfolded diagram

Q•
σ :

f• ��

•
θ3 // •

θ2 // •
avk···vi//

w̄1···w̄j
��

• •oo

ΣQ•
τ̄ : •

θ̄′
1
=θ3

// •
ā′w̄1···w̄j

// • •oo

where 1 ≤ i ≤ k and 1 ≤ j ≤ l. Then as above the cohomology of the mapping cone induces an
arrow extension corresponding to the arrow a.

Case 5: v or w or both are trivial.
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If v is trivial but w is not, this is a degenerate case of Case 1 or 2. If v is not trivial but w
is, this is a degenerate case of Case 1 or 3. If both v and w are trivial, this is a degenerate case
of Case 1. �

Lemma 3.6. Let f• : Q•
σ → ΣQ•

τ be a graph map and let ν in σ and ω in τ be the maximal
alternating homotopy substrings corresponding to the module parts of σ and τ respectively. Sup-
pose that f• is supported in projective modules lying in ν and ω. Then f• is supported in a
single indecomposable projective Λ-module P in degree −1 unless it is incident with antipaths
in both Q•

σ and ΣQ•
τ .

Furthermore, Φ(f•) gives rise to either an arrow extension or an overlap extension where the
overlap is given by the simple Λ-module P/rad(P ).

Proof. There are three cases to be considered.

Case 1: f• is supported in ν, and f• is not incident with any antipath of σ.

In this case, we must have at least one isomorphism between projective modules in degree
−1 as follows

(8) 0 -1 0

Q•
σ :

f• ��

• x
νioo

νi−1 // •

ΣQ•
τ : •

ωj

// x •
ωj−1

oo

-2 -1 -2

where x ∈ Q0. Since the projectives in ν as a substring of σ are in cohomological degrees 0 and
−1 and the projectives in ω as a substring of the homotopy string corresponding to ΣQ•

τ are in
degrees −1 and −2, the graph map f• can only be supported in a single degree, as shown. By
reversing the orientation on τ if necessary, we may assume that σ and τ are compatibly oriented
in the sense of [9, Def 2.1].

Now, the homotopy letters νi−1, νi, ωj−1 and ωj have the form νi−1 = Aν ′i−1, νi = ν ′iB̄,

ωj−1 = D̄ω′
j−1 and ωj = ω′

jC, where A,B,C,D ∈ Q1 and the primed symbols are homotopy

subletters. Then v = vLB̄AvR and w = wLDC̄wR where vL, vR are (possibly trivial) subwords
of v and wL, wR are (possibly trivial) subwords of w. Set x = e(A) (= e(B̄) = s(C̄) = s(D)). We
wish to verify we have an overlap extension in which m = 1x in the sense of Definition 3.1(2).

First observe that whenever A,B,C,D exist, the fact that diagram (8) is compatibly oriented
means that CA ∈ I and BD ∈ I. We now need to check that if A = ∅ then C 6= ∅ and if
B = ∅ then D 6= ∅. We check the first condition, the second is analogous.

Suppose that C = ∅, i.e. w = wLD. If A = ∅ then v = vLB̄. There must be an arrow
a ∈ Q1 such that vā is defined as a string, otherwise by Corollary 2.12, B̄ would be removed
as a maximal inverse prefix and the situation depicted in the unfolded diagram (8) would not
occur. However, in this case the homotopy letters νi = ν ′iB̄ā and νi−1 must be inverse or empty,
again taking us outside the situation occurring in diagram (8). Hence, we must have A 6= ∅, as
required. A similar argument shows that if B = ∅ then D 6= ∅. We have thus verified that the
conditions for an overlap extension in Definition 3.1(2) hold.

Finally, by [9, §2] the mapping cone of f• is a direct sum of the projective resolutions of the
Λ-modules M(u) and M(u′) where u = wLDexAvR and u′ = vLB̄exC̄wR. Taking cohomology
and checking the maps in the corresponding triangle as in the proof of Lemma 3.5 then shows
that f• gives rise to an overlap extension in the simple Λ-module S(x).

Case 2: f• is incident with an antipath in Q•
σ and the module part in ΣQ•

τ .
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In this case we obtain the following diagram for f•.

-3 -2 -1

Q•
σ :

f• ��

•
θ2 // •

θ1 // •
a // •

ΣQ•
τ : •

ϕ′

1

•
ωj

// • •
ωj−1

oo

-2 -1

Since θ1 is a homotopy letter of length 1, in order to obtain a graph map supported in more than
one degree, we must have θ1 = ωj . If ϕ′

1 is inverse or empty then we reach a non-commuting
endpoint condition as defined in Section 1.4.4, see also [9, §1.4.4] for more details on non-
commuting endpoint conditions. This contradicts the fact that f• is a graph map. Thus ϕ′

1

must be direct and ϕ′
1 = θ2. We are therefore in the setup of Lemma 3.5 and the corresponding

extension in the module category is an arrow extension.

Case 3: f• is incident with the module part in Q•
σ and an antipath in ΣQ•

τ

This case cannot happen for degree reasons. �

Remark 3.7. Suppose one of v or w is a band, in which case σ or τ is a homotopy band.
A priori, one might expect that there may be a graph map f• : Q•

σ → ΣQ•
τ determined by an

overlap which is longer than σ or τ . However, Lemmas 3.5 and 3.6 ensure that this situation can
never occur. This makes sense: in [10, §1] such a situation corresponds to a ‘shortening’ of the
homotopy string or homotopy band determining the mapping cone relative to those occurring
in the domain and target of the map. This would correspond to having a middle term of an
extension of smaller dimension than the sum of the outer terms.

3.2. Quasi-graph maps. In this section we consider a quasi-graph map ϕ : Q•
σ  

Q•
τ , corresponding to a homotopic family of single and double maps in the basis of

HomKb,−(proj(Λ))(Q
•
σ,ΣQ

•
τ ); see [1, Def. 3.12].

We start by placing a restriction on the cohomological degrees in which a quasi-graph map
ϕ : Q•

σ  Q•
τ can be supported.

Lemma 3.8. Under the hypotheses of Setup 3.4, a quasi-graph map ϕ : Q•
σ  Q•

τ is supported
in cohomological degrees −1 and 0 only.

Proof. If one of Q•
σ or Q•

τ is a band complex then, by Corollary 2.13, it is supported in coho-
mological degrees −1 and 0 only, and therefore any quasi-graph map ϕ : Q•

σ  Q•
τ is trivially

supported in only those cohomological degrees. Therefore we assume thatQ•
σ = P •

σ andQ•
τ = P •

τ

are string complexes.
Suppose, for a contradiction, that ϕ : P •

σ  P •
τ is supported in cohomological degree−k ≤ −2.

By Remark 2.15(4), any component of ϕ supported in degrees −k ≤ −2 occurs in antipath parts
of P •

σ and P •
τ . Without loss of generality, we may assume, up to inversion if necessary, that

σ = dir(b)w′σR and τ = dir(d)v′τR, where σR is either an inverse antipath or empty; likewise
for τR. Thus, the antipath parts have the form

dir(b) = · · · θn · · · θ2θ1 and dir(c) = · · ·ψn · · ·ψ2ψ1,

where θ1 = b and ψ1 = d and b, d ∈ Q1 are such that bw and dv are defined as strings.
Since ϕ : P •

σ  P •
τ is supported in cohomological degree −k ≤ −2, we have the following

subdiagram of the unfolded diagram for ϕ.

•
θk+1 // •

θk // •

•
ψk+1

// •
ψk

// •

20



We first show that ϕ is supported in degrees −k − 1 and −k + 1. Suppose that ϕ was not
supported in cohomological degree −k + 1, then inverting τ the unfolded diagram of ϕ would
have the form,

•
θk+1 // •

θk //

(∗)

•

• •
ψk

oo •
ψk+1

oo

where (∗) corresponds to the graph map right endpoint condition (RG3) in [9, §1.4.1], whence
by [1, Rem. 4.9] corresponds to a family of null-homotopic maps. Similarly, one can show that
ϕ is supported in cohomological degree −k−1. This means that we can extend the subdiagram
of the unfolded diagram of ϕ to the following,

•
θk+1 // •

θk // •

•
ψk+1

// •
ψk

// •

showing that θk = ψk for each k ≥ 2. But this means that the unfolded diagram of ϕ satisfies
(LG3) or (LG∞) (cf. [9, §1.4.1]) and, therefore, invoking [1, Rem. 4.9] again, we see that
ϕ corresponds to a null-homotopic family of single and double maps. This contradicts our
assumption that ϕ is a quasi-graph map, therefore ϕ cannot be supported in cohomological
degrees smaller than −2, as claimed. �

We now consider the endpoints of a quasi-graph map ϕ : Q•
σ  Q•

τ . Lemma 3.8 says that they
must occur in degrees −1 or 0. Recall the definition of homotopy strings or bands σ and τ being
compatibly oriented for a quasi-graph map ϕ from [9, Def. 3.1]; note that if a quasi-graph map
is supported in more than one degree it is automatically compatibly oriented in its unfolded
form.

Lemma 3.9. Suppose the quasi-graph map ϕ : Q•
σ  Q•

τ has right endpoint in degree 0.

(1) The compatibly oriented unfolded diagram for ϕ has the following form at the right
endpoint of ϕ:

•
σs // x oo

σR
•

α

•
τt

// x oo
τR
•

such that σs, σR 6= ∅, τt = ∅ or τt = σ′sσs for some (possibly nontrivial) σ′s, and τR = ∅

or τR = σRσ
′

R for some nontrivial σ′R.
(2) Write σR = āk · · · ā1 and σs = bl · · · b1 for k, l ≥ 1 and ai, bj ∈ Q1. Then

(i) v has a substring of the form

ṽ =

{
bl−1 · · · b1āk · · · ā2 if σR is incident with inv(v),
bl−1 · · · b1āk · · · ā1a for some a ∈ Q1 otherwise;

(ii) w has a substring of the form

w̃ =

{
bl−1 · · · b1āk · · · ā1ā

′ for some a′ ∈ Q1 if τR 6= ∅,
bl−1 · · · b1āk · · · ā1 otherwise.

Proof. (1) Since P (x) sits in degree zero it must be a sink for any differential incident with it
because Q•

σ and Q•
τ are projective resolutions. If σs = ∅ or σR = ∅, then the diagram indicates

a graph map endpoint and ϕ : Q•
σ  Q•

τ is not a quasi-graph map. Therefore, σs, σR 6= ∅. If
τR 6= ∅, the orientation of the differentials means that ϕ must satisfy the quasi-graph map right
endpoint condition (RQ2), whence τR = σRσ

′

R for some nontrivial σ′R. The statement regarding
τt just lists the possible cases that may occur with the given orientation.

(2)(i) First note that bl−1 · · · b1 is a substring of v by Corollary 2.12. If σR is incident with
inv(v) then the first statement is clear. By Remark 2.15(1), σ cannot start with the inverse
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homotopy letter σR unless it is incident with inv(v). Thus, if σR is not incident with inv(v)
then α must end with a direct homotopy letter, whose last arrow we denote by a ∈ Q1, say,
giving the required form for ṽ.

(2)(ii) We treat this in cases. Firstly, if τt, τR = ∅, then Q•
τ is the stalk complex P (x)

concentrated in degree zero. Using the form of σs and σR we see that P (x) ∼= M(u) for some
string u = qbl · · · b1āk · · · ā1p̄, where q is a maximal direct string and p̄ a maximal inverse string
composable with bl and āk, respectively, as strings. The claim is now clear in this case.

Now assume that τt 6= ∅ and τR = ∅. By (1), τt = σ′sσs, where σ′s is possibly trivial.
Since τR = ∅, w either starts with b1 (a direct arrow) or else w has had a maximal inverse
prefix removed. The former case cannot occur because b1āk is defined as a string, which by
Corollary 2.12 would make τR 6= ∅. Thus, by gentleness, w = uā1wR for some (possibly trivial)
inverse string wR. If āk · · · ā1 is a (possibly equal) substring of ākwR then w contains the
substring w̃ as claimed. So suppose ākwR = āk · · · āi for some 1 < i ≤ k. Then, ākwRāi−1 is
defined as a string, again rendering τR 6= ∅ by Corollary 2.12; a contradiction.

Suppose now that τt = ∅ and τR 6= ∅. Since τt = ∅, w ends with a direct substring which
has been removed by Remark 2.15(2). By gentleness, the maximal direct suffix that has been
removed is pbl · · · b1, where again p is the maximal direct path composable with bl as a string.
Now since τR = σRσ

′

R is a strictly longer inverse homotopy letter than σR, it follows that w̃ is
a substring of w, where σ′R = ā′σ′′R for some a′ ∈ Q1 and σ′′R is possibly trivial.

Finally, if τt, τR 6= ∅, then arguing as above shows that w̃ is a substring of w. �

Lemma 3.10. Suppose the quasi-graph map ϕ : Q•
σ  Q•

τ has right endpoint in degree −1.

(1) The compatibly oriented unfolded diagram for ϕ has the following form at the right
endpoint of ϕ:

(a) • oo
σs

x
σR // •

• oo
τt

x
τR

// •

(b) • oo
σs

x oo
σR
•

• oo
τt

x
τR

// •

,

where τt 6= ∅. In case (a), σs = ∅ or σs = τ ′tτt for some τ ′t and we require τR 6= ∅ and
σR = ∅ or else σR = τRτ

′

R for some nontrivial τ ′R. In case (b) σs = τ ′tτt for some τ ′t and
we require one of τR 6= ∅ or σR 6= ∅ and if both are not empty letters then σ̄RτR 6= 0.
In both cases τ ′t may be trivial.

(2) Write τt = d̄q · · · d̄1 and τR = cp · · · c1 for k, l ≥ 1 and ci, dj ∈ Q1. Then
(i) v has a substring of the form

ṽ =





d̄q · · · d̄2 if σs is incident with inv(v),
cp−1 · · · c1c for some c ∈ Q1 if σs = ∅ and σR is incident with dir(v),
d̄q · · · d̄1cp · · · c1c for some c ∈ Q1 if σs 6= ∅ and σR 6= ∅ is direct;

(ii) w has a substring of the form

w̃ =

{
d̄q · · · d̄1cp · · · c1 τR 6= ∅,
d̄q · · · d̄2 otherwise.

Proof. (1) There are three possible orientations for the homotopy strings σ and τ with right
endpoint in degree −1, where in the following diagrams x sits in degree −1:

(I) • xoo // • (II) • xoo •oo (III) • // x // • .

Note that the fourth possible orientation does not occur because then the corresponding string
or band complex would have maximal cohomological degree −1, contradicting Remark 2.15(4).
One can check that if σ has orientation (I) then so does τ : the other orientations produce graph
map endpoint conditions (and hence null-homotopies; see [1, Rem. 4.9]), this gives case (a)
above. Observe that in case (a), τt 6= ∅ and τR 6= ∅, for otherwise we would have a graph map
endpoint condition.
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If σ has orientation (II) then τ cannot have orientation (III) because this again gives a
graph map endpoint condition. If τ has orientation (II) then we may assume τR 6= ∅ (the
case τR = ∅ is trivial can be considered as a subcase of τ having orientation (I)), in which
case length(τR) ≥ 1. However, for degree reasons, it must be incident with inv(w) and hence
length(τR) = 1. Therefore τ cannot have orientation (II). This gives us case (b). Note in this
case that since x sits in degree −1, σs 6= ∅ by Remark 2.15(2); as above, τs 6= ∅ otherwise we
have a graph map endpoint condition.

When σ has orientation (III), the unfolded diagrams are those for the dual left endpoint
conditions, and can be properly stated in the dual of this lemma.

(2)(i) First observe that, in both cases, either σs 6= ∅ or σR 6= ∅ (or both) for degree reasons:
if both were empty homotopy letters, Q•

σ would be a stalk complex concentrated in degree −1,
contradicting Remark 2.15(4).

Suppose we are in case (a) of part (1). Suppose σs = ∅ but σR 6= ∅. Then σR = τRτ
′

R for
some nontrivial τ ′R by the (RQ1) endpoint condition. By Remark 2.15(2), σ cannot end with
a direct homotopy letter unless it is incident with dir(v). Let c ∈ Q1 be the final arrow of the
homotopy (sub)letter τ ′R. Then since σR is incident with dir(v), we have that ṽ = cp−1 · · · c1c is
a substring of v.

If σs 6= ∅ but σR = ∅, then Remark 2.15(1) shows that σs is incident with inv(v), giving
ṽ = d̄q · · · d̄2 as a substring of v.

If σ1, σR 6= ∅, then neither is incident with dir(v) or inv(v), in which case ṽ =
d̄q · · · d̄1cp · · · c1c, where c ∈ Q1 is as above, is a substring of v.

Now suppose we are in case (b) of part (1). If σR = ∅ then using Remark 2.15(1) again
we have σs is incident with inv(v) and ṽ = d̄q · · · d̄2 is a substring of v. If σR 6= ∅, then by
Remark 2.15(5), length(σR) = 1 and σR is incident with inv(v), in which case ṽ = d̄q · · · d̄2 is
again a substring of v.

(2)(ii) Suppose we are in case (a) of part (1). Since τt, τR 6= ∅, the homotopy substring τ1τR
cannot be incident with dir(w) nor inv(w) for degree reasons. Thus, w̃ = d̄q · · · d̄1cp · · · c1 is a
substring of w.

Finally, suppose we are in case (b) of (1). If τR = ∅, then Remark 2.15(1) shows that τ1 is
incident with inv(w), giving w̃ = d̄q · · · d̄2 as a substring of w. If τR 6= ∅, then as above the
homotopy substring τ1τR cannot be incident with dir(w) nor inv(w). Thus, w̃ = d̄q · · · d̄1cp · · · c1
is a substring of w. �

Lemmas 3.9 and 3.10 admit obvious duals for the left endpoints of quasi-graph maps.
Now applying the graphical calculus for the mapping cones of the homotopy set determined

by a quasi-graph map [9, Prop. 5.2] and [10, §2] determines the middle term of the extension
Q•
τ → E• → Q•

σ → ΣQ•
τ in K

b,−(proj(Λ)). Lemmas 3.9 and 3.10 and their duals, Theorem 2.8,
together with a calculation as in the proof of Lemma 3.5 allows us to take cohomology to
determine the extension 0→M(w)→ H0(E•)→M(v)→ 0. We summarise this computation
in the next proposition.

Proposition 3.11. Suppose ϕ : Q•
σ  Q•

τ is a quasi-graph map with the following unfolded
diagram, with t ≥ 0 and, when t = 0 we mean a quasi-graph map supported in precisely one
degree and we replace ρ1 by σL and τL as appropriate.

deg: h′ h

Q•
σ :

ϕ
��

β
•

σL
•

ρt
•

ρt−1

· · ·
ρ2
•

ρ1
•

σR
•

α

Q•
τ : δ

•
τL
•

ρt
•

ρt−1
· · ·

ρ2
•

ρ1
•

τR
•

γ
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Let f• : Q•
σ → ΣQ•

τ be any representative of ϕ, then Φ(f•) is an overlap extension with overlap
m = mLρt−1 · · · ρ2mR, where

mR =





ρ̃1āk · · · ā2 if h = 0 and σR = āk · · · ā2 is incident with inv(v);
ρ̃1āk · · · ā1 if h = 0 and σR = āk · · · ā1 is not incident with inv(v);
d̄q · · · d̄2 if h = −1 and ρ1 6= ∅ is incident with inv(v);
ρ̃1cp · · · c2 if h = −1, ρ1 6= ∅ and σR = cp · · · c1 with p > 0;

m = cp−1 · · · c1 if ρ1 = ∅ and σR = cp · · · c1 is incident with dir(v),

where ai, di, ci ∈ Q1, mL is defined dually, and

ρ̃1 =

{
ρ1 if t ≥ 1,

the last homotopy letter of mL if t = 0.

Remark 3.12. The analysis concerning quasi-graph maps above leading to Proposition 3.11
only concerns the endpoints of the overlap defining a quasi-graph map in the unfolded diagram.
As such, the length of the overlap is not relevant for the argument. In particular, this means
that when one (or both) of v or w is a band, and thus σ or τ is a homotopy band, we are able
to get quasi-graph maps whose overlaps are longer than at least one of the bands, but this does
not affect the computation carried out in Proposition 3.11.

3.3. Singleton maps. As before, throughout this subsection σ = π(v) and τ = π(w) for some
strings or bands v and w. We now examine the kinds of extensions that arise from singleton
(single and double) maps f• : Q•

σ → ΣQ•
τ . We first note that singleton double maps never occur

as morphisms between projective resolutions of modules.

Lemma 3.13. There are no singleton double maps f• : Q•
σ → ΣQ•

τ .

Proof. By definition, the unfolded diagram of a singleton double map has the form

Q•
σ :

β
•

σL
•
σC=fLf

′

//

fL
��

•
σR

fR
��

•
α

ΣQ•
τ :

δ
•

τL
•
τC=f ′fR

// •
τR
•

γ

where fL, f
′ and fR are nontrivial. By Remark 2.15(5), length(σC) > 1 and length(τC) > 1.

In particular, since σ is a homotopy string or band corresponding to a projective resolution,
σC is a homotopy letter occurring between degrees −1 and 0. On the other hand, τ is also a
homotopy string or band corresponding to a projective resolution, but ΣQ•

τ has been shifted,
whence τC must be a homotopy letter occurring between degrees −2 and −1. Hence there are
no such maps. �

Recall the notation and unfolded diagram for a singleton single map f• : Q•
σ → ΣQ•

τ from
Section 1.4.2(4). Throughout this section, whenever σR 6= ∅ or τR 6= ∅ in (4) then since fR
and fL are direct strings, we can assume, without loss of generality, that fR ∈ Q1 and fL ∈ Q1,
respectively.

Lemma 3.14. Suppose f• : Q•
σ → ΣQ•

τ as a singleton single map with single component f =
fn · · · f1. Then the component f occurs in cohomological degree −1.

Proof. Suppose f• is supported in cohomological degree d. Since Q•
τ is a projective resolution,

ΣQ•
τ attains its maximal degree in degree −1, thus d ≤ −1. By Remark 2.15(5), if in (4) either

σR 6= ∅ or τR 6= ∅ then d = −1. So assume σR, τR = ∅ and d < −1. By Corollary 2.12, since
τL is the endpoint of a homotopy string occurring in degree d it must be inverse (otherwise
there would be nontrivial cohomology in degree d, contradicting the fact that ΣQ•

τ is a (shifted)
projective resolution). Moreover, for degree reasons, τL must be the first homotopy letter of
inv(w). Writing τL = b̄l · · · b̄1 for some bi ∈ Q1, i = 1, . . . , l, the definition of single maps gives
us that b̄1f̄1 = 0. This contradicts the fact that inv(w) is the longest inverse antipath incident
with w′ (see Corollary 2.12). Therefore, d = −1, as claimed. �
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Corollary 3.15. Suppose f• : Q•
σ → ΣQ•

τ is a singleton single map. In the unfolded diagram
(4) in Section 1.4.2, τL must be a direct homotopy letter or τL = ∅.

Proof. Since ΣQ•
τ attains its maximal cohomological degree in degree −1 and f• is supported

in degree −1 by Lemma 3.14, τL cannot be inverse. �

Corollary 3.15 allows us to further specialise the setup in Section 1.4.2(4) in the statement
of the next proposition.

Proposition 3.16. Suppose f• : Q•
σ → ΣQ•

τ is a singleton single map with single component
f = fn · · · f1. Write τL = bl · · · b1 with bi ∈ Q1 for i = 1, . . . , l. Whenever σL is an inverse
homotopy letter we shall write σL = āk · · · ā1, where ai ∈ Q1 for i = 1, · · · , k with k ≥ 1.

(1) If σR = ∅ then τR = ∅ and σL is inverse. The corresponding extension Φ(f•) ∈
Ext1Λ(M(v̄),M(w)) is an arrow extension given by a1, i.e. Φ(f•) gives rise to an exten-
sion of M(w) by M(v̄) with middle term M(u) where u = wa1v̄.

Suppose σR 6= ∅. If σR is not incident with dir(v) then σL is inverse and we have:

(2) If τR = ∅ then the corresponding extension Φ(f•) ∈ Ext1Λ(M(v̄),M(w)) is an overlap
extension whose middle term is given by

m = f̄1 · · · f̄n−1, A = ∅, B = fR, C = fn and D = b1 if σR is incident with dir(v);

m = f̄1 · · · f̄n, A = a1, B = fR, C = ∅ and D = b1 otherwise.

(3) If τR 6= ∅ then the corresponding extension Φ(f•) ∈ Ext1Λ(M(v̄),M(w)) is an overlap
extension which, when σR is incident with dir(v), has its middle term given by,

m = f̄1 · · · f̄n−1, A = ∅, B = fR, C = fn and D = c1 if τL = ∅;

m = f̄1 · · · f̄n−1, A = ∅, B = fR, C = fn and D = b1 if τL 6= ∅,

and is an overlap extension which, when σR is not incident with dir(v), has its middle
term given by,

m = f̄1 · · · f̄n, A = a1, B = fR, C = ∅ and D = c1 if τL = ∅;

m = f̄1 · · · f̄n, A = a1, B = fR, C = ∅ and D = b1 if τL 6= ∅.

In case (3) of the proof below, we do an example of a computation as in Lemma 3.5 for
an overlap extension. An example computation for an arrow extension is done in the proof of
Lemma 3.5, and we refer the reader to Figure 3 for a schematic of such a computation.

Proof. (1) First note that σL is inverse, since if it were direct or empty Q•
σ would have nontrivial

cohomology in degree −1, contradicting the fact that it is a projective resolution. Therefore,
σL = āk · · · ā1 with ai ∈ Q1 for i = 1, . . . , k for some k ≥ 1. Moreover, σL is the start of
inv(v), for otherwise σ would start in degree 0 after the removal of a maximal inverse prefix. It
follows that v starts with the inverse substring āk · · · ā2, whence v̄ ends with the direct substring
a2 · · · ak.

Consider the local subquiver of Q, where, without loss of generality, we assume fL ∈ Q1,

•
ak // • •

a1 // x

fL
��

•
fnoo • y

f1oo
b1 // • •

bl // • .

•

If τR 6= ∅ then ā1f̄L = 0, contradicting the fact that σL is the start of inv(v). Thus, τR = ∅.
Since f is not a subletter of τL or vice versa we must have f1 6= b1 and b1f̄1 is defined as

a string. This means that a maximal inverse prefix, whose last (inverse) arrow is f̄1, has been
removed from w in the computation of τ = π(w) for otherwise τR 6= ∅. We claim that f̄ is
precisely the maximal inverse prefix that has been removed. Clearly, the maximal inverse prefix
cannot be a proper substring of f̄ for the computation of τ = π(w) in Corollary 2.12 would
require us to compose this with w giving τR 6= ∅. However, if f̄ were a proper substring of the
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maximal inverse prefix then there would be an arrow fn+1 ∈ Q1 such that ā1f̄n+1 = 0 giving
us a contradiction as above. Therefore, w starts with the substring τLf̄ . Applying [9, Thm.
3.2], Theorem 2.8 and a computation as in Lemma 3.5 shows that that Φ(f•) gives an arrow
extension corresponding to the arrow a1 with middle term M(u), where u = wa1v̄.

Suppose that σR 6= ∅. If σR is not incident with dir(v) then by Remark 2.15(1), σL 6= ∅ and
is inverse and we write σL = āk · · · ā1, where ai ∈ Q1 for i = 1, . . . , k with k ≥ 1.

(2) Suppose that τR = ∅. First observe that, by Corollary 2.12, w has a substring of the
form bl−1 · · · b1f̄1 · · · f̄n. If σR is incident with dir(v) (in which case so is σL regardless of
whether it is empty), then v ends with a substring fn−1 · · · f1fR, i.e. v̄ starts with a substring
f̄Rf̄1 · · · f̄n−1, by Corollary 2.12. Applying [9, Thm. 3.2], taking cohomology using Theorem 2.8
and a calculation as in Lemma 3.5 then gives us an overlap extension between M(w) and M(v̄):

m = f̄1 · · · f̄n−1, A = ∅, B = fR, C = fn and D = b1.

Now suppose σR is not incident with dir(v). By Corollary 2.12 v has a substring σLfn · · · f1fR,
i.e. v̄ has a substring f̄Rf̄1 · · · f̄nσ̄L. Again applying [9, Thm. 3.2], Theorem 2.8 and a calculation
as in Lemma 3.5 gives us the following overlap extension between M(w) and M((̄v)):

m = f̄1 · · · f̄n, A = a1, B = fR, C = ∅ and D = b1.

(3) Suppose that τR 6= ∅. First we assume σR is incident with dir(v), whence v̄ starts with
the substring f̄Rf̄1 · · · f̄n−1 as above. If τL = ∅, then, by Corollary 2.12, w ends with a substring
ct · · · c1f̄1 · · · f̄nf̄L, where ci ∈ Q1 for i = 1, · · · , t and t ≥ 0. In this case the application of [9,
Thm. 3.2], Theorem 2.8 and a calculation as in Lemma 3.5, which we sketch below, gives us
the following overlap extension between M(w) and M(v̄):

m = f̄1 · · · f̄n−1, A = ∅, B = fR, C = fn and D = c1.

We now sketch the calculation as in Lemma 3.5 for this case. The unfolded diagrams of the
morphisms occurring in the mapping cone triangle of [9, Thm. 3.2] are:

Q•
τ :

g•
1 ��

γ̄
•

fL
��

fLf // •

E•
1 :

h•
1 ��

β
•

σL // •
f

// •

fR
��

Q•
σ :

β
•

σL
// •

ffR

// •
α

and Q•
τ :

g•
2 ��

γ̄
•

fLf // •

fR
��

E•
2 :

h•
2 ��

•
γ̄
•

fL
��

fLffR // •
α

Q•
σ :

β
•

σL
// •

ffR

// •
α

.

Figure 4 below shows the calculation of the induced maps in cohomology: it is clear that they
are the canonical maps in the resulting overlap extension. If τL 6= ∅, then w has a substring
bl−1 · · · b1f̄1 · · · f̄nf̄L. Applying [9, Thm. 3.2] and Theorem 2.8 gives us the following overlap
extension between M(w) and M(v̄):

m = f̄1 · · · f̄n−1, A = ∅, B = fR, C = fn and D = b1.

Now assume that σR is not incident with dir(v), whence v̄ has a substring f̄Rf̄1 · · · f̄nσ̄L as
above. Using the calculations of substrings of w for τL = ∅ and τL 6= ∅ above respectively, and
the application of [9, Thm. 3.2], Theorem 2.8 and a calculation as in Lemma 3.5 gives us the
following overlap extensions between M(w) and M(v̄):

m = f̄1 · · · f̄n, A = a1, B = fR, C = ∅ and D = c1 if τL = ∅;

m = f̄1 · · · f̄n, A = a1, B = fR, C = ∅ and D = b1 if τL 6= ∅. �

4. Surjectivity of Φ onto overlap and arrow extensions

In this section, we use the combinatorics of an overlap or arrow extension to show that the
isomorphism Φ: HomKb,−(proj(Λ))(Q

•

π(v),ΣQ
•

π(w))→ Ext1Λ(M(v),M(w)) restricts to a surjection,

Φ:

{
standard basis elements of
HomKb,−(proj(Λ))(Q

•

π(v),ΣQ
•

π(w))

}
։

{
overlap and arrow extensions
η ∈ Ext1Λ(M(v),M(w))

}
.
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s(f)

•

•

•

•

•

•

•

•

c1

ct

f1

fn−1

fn

fL

γ

s(f)

•

•

•

•

•

•

•

•

c1

ct

f1

fn−1

fn

fL

σL

s(f)

s(fR)

•

•

•

•

•

α

f1

fn−1

fn

fL

σL

•

•

•

•

•

•

•

•

•

c1

ct

f1

fn−1

fn

fL

γ

•

•

•

•

•

•

•

fR

α

f1

σL

fn−1

fn

fL

γ

•

•

•

•

•

•

•

fR

α

f1

fn−1

fn

fL

σL

Figure 4. The diagram of the left shows the calculation of g•1 : Q
•
τ → E•

1 and
h•1 : E

•
1 → Q•

σ, that on the right shows the calculation of g•2 : Q
•
τ → E•

2 and
h•2 : E

•
2 → Q•

σ in the case (3) of the proof of Proposition 3.16.

4.1. Overlap extensions. Throughout this section we shall have the following setup.

Setup 4.1. Let v and w be strings or bands and π(v) and π(w) be the corresponding homotopy
strings or bands of their projective resolutions.

Suppose 0 6= η ∈ Ext1Λ(M(v),M(w)) is an overlap extension corresponding to the decomposi-
tions v = vLB̄mAvR and w = wLDmC̄wR. We consider m and decompose it into its homotopy
letters m = µl · · ·µ1 with l ≥ 0. When l = 0, m is a trivial string, i.e. m = 1x for some x ∈ Q0

and we call it a trivial overlap. If l = 1, we say m is a direct or inverse overlap. If l > 1, we say
that m is a zigzag overlap.

4.1.1. Zigzag overlaps. We start with the zigzag overlap case.

Lemma 4.2. Suppose in Setup 4.1, the string m is a zigzag overlap. Then the map f : M(w)→
M(v) associated with this decomposition induces a graph map f• : Q•

π(w) → Q•

π(v) of homotopy

string or band complexes such that H0(f•) = f .

Proof. We first show that the given decomposition induces a graph map Q•

π(w) → Q•

π(v). It is

sufficient only to consider the endpoints of the map, as determined by the decomposition. We
consider only the right endpoints; the analysis for left endpoints is analogous.

Before breaking the argument up into a case analysis, first note that one of A and C̄ must
exist (i.e. be nonempty) since η is a non-split extension. By gentleness, if both A and C̄ exist
we must have CA = 0.

Case: µ1 is a direct homotopy letter.

By Corollary 2.12, the homotopy string or band π(w) has the following form:

π(w) =





•
µ1 // • if C̄wR = ∅ or is removed;

•
µ1 // • •

Cp
oo for some path p in (Q, I) otherwise.
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Similarly, the homotopy string or band π(v) has the following form:

π(v) =





•
µ1 // • •

C̄oo if A = ∅;

•
µ1Aq // • for some path q in (Q, I) otherwise.

Combining these, we get the following unfolded diagrams of graph map right endpoint condi-
tions, showing the claim in this case.

•
µ1 // •

•
µ1

// • •
C̄

oo

•
µ1 // •

Aq
��

•
µ1Aq

// •

•
µ1 // • •

Cp
oo

p
��

•
µ1

// • •
C̄

oo

•
µ1 // •

Aq
��

•
Cp

oo

•
µ1Aq

// •

Case: µ1 is an inverse homotopy letter.

π(w) =





• if C̄ = ∅ or C̄wR is inverse, and there is no a ∈ Q1 with
wā defined as a string;

• •
µ1āoo if C̄ = ∅ and there exists a ∈ Q1 with µ1ā a string;

• •
µ1C̄p̄oo for some (possibly trivial) path p in (Q, I), otherwise,

where the homotopy string in the first case starts with µ2 if it exists, or a single projective or the
start of an antipath otherwise. Similarly, the homotopy string or band π(v) has the following
form:

π(v) =





• •
µ1oo

Aq
// • for some path q in (Q, I) if A 6= ∅;

• •
µ1C̄oo if A = ∅.

We leave it to the reader to match up the various forms of the projective resolutions and confirm
that they give rise to graph map right endpoint conditions as above.

Now examining the components of f• : Q•

π(w) → Q•

π(v) consisting of identity maps between

indecomposable projective modules and following these maps through a calculation of the kind
in Lemma 3.5 shows that the H0(f•) = f : M(w)→M(v), i.e. f• is indeed induced from f . �

Applying Remark 1.8 we get the following corollary.

Corollary 4.3. Keep the setup as in Lemma 4.2. The map f : M(w)→M(v) induces a quasi-
graph map ϕ : Q•

π(v)  Q•

π(w) of homotopy string or band complexes, and hence a homotopy

family of maps Q•

π(v) → ΣQ•

π(w).

Let g• : Q•

π(v) → ΣQ•

π(w) be a representative of the homotopy family of single or double maps

defined by the quasi-graph map ϕ : Q•

π(v)  Q•

π(w) obtained in Corollary 4.3 above. Then, by

Proposition 3.11 one obtains Φ(g•) = η.

4.1.2. Direct or inverse overlaps. Here we consider the case of Setup 4.1 in which m is a direct
overlap; the case that m is an inverse overlap is analogous. As in previous sections σ = π(v) and
τ = π(w). Again, we use the combinatorics of the overlap to define a map g• : Q•

π(v) → ΣQ•

π(w)

such that Φ(g•) = η. In this case, g• is either a singleton single map or a representative of a
homotopy family of maps defined by a quasi-graph map ϕ : Q•

π(v)  Q•

π(w).

In the following we do a detailed analysis of the different types of standard basis maps which
are induced by the different possible forms the strings v and w can take. We present the
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results by grouping the different cases giving rise to the same type of standard basis element in
HomKb,−(proj(Λ))(Q

•

π(v),ΣQ
•

π(w)).

Case: g• : Q•

π(v) → ΣQ•

π(w) is a singleton single map.

The unfolded diagram of the singleton single map is one of the diagrams below; we explain
in which cases they arise. In each case the precise description of τR is irrelevant, we note only
that in each case it is necessarily empty or an inverse homotopy letter not containing m as a
substring, or vice versa.

(I) σ : • •
q̄B̄

oo
mAp

//

m
��

•

Στ : •
τL

// • •
τR

oo

(II) σ : • •
DmAp

//

Dm
��

•

Στ : •
τL

// • •
τR

oo

,

where p and q are (possibly trivial) paths in (Q, I). Diagram (I) occurs precisely when both
A 6= ∅ and B̄ 6= ∅: the pertinent part of the projective resolution of M(v) has this form by
Corollary 2.12. Now, applying Corollary 2.12 to w we see that,

τL =





dm if D = ∅ but there exists d ∈ Q1 with dm defined as a string;

q′Dm for some (possibly trivial) path q′ in (Q, I) if D 6= ∅ and wL is not direct or
wLD is direct and there exists d ∈ Q1 with dw defined as a string;

∅ otherwise.

Diagram (II) occurs in the case that A 6= ∅ but B̄ = ∅; in this case to avoid η being a split
extension we must have D 6= ∅. In this case we have

τL =




∅ if wLD is direct and there exists no d ∈ Q1 with dw defined as a string;

q′Dm for some nontrivial path q′ in (Q, I) if the first letter of wL is not inverse and
we are not in the case above.

Note that in the case above when the first letter of wL is inverse, we do not get a singleton
single map, hence this case is included in this argument but is treated in the next case below.
In each case it is straightforward to verify that the diagram defines a singleton single map. One
now applies Proposition 3.16 to see that Φ(g•) = η.

Case: g• : Q•

π(v) → ΣQ•

π(w) is a representative of a homotopy family determined by a quasi-graph

map ϕ : Q•

π(v)  Q•

π(w).

We actually check that we get a graph map f• : Q•

π(w) → Q•

π(v) in the opposite direction and

apply Remark 1.8.
In the case that A 6= ∅ but B̄ = ∅, and the first letter of wL is inverse, i.e. the one case

excluded in treating diagram (II) above, then we get the following graph map, in which p is
some (possibly trivial) path in (Q, I).

π(w) : • •oo Dm // •

Ap
��

•oo

π(v) : • // •
DmAp

// •

Now suppose A = ∅, whence C̄ 6= ∅. The overlap data gives rise to a graph map with the
unfolded diagram,

π(w) : • •
τL //

fL
��

• •
τRoo

fR
��

τ0
• ,

π(v) : •
σL

// • •
C̄

oo
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fL σL = m σL = Dm
τL = ∅ ∅ ∅

τL = qDm qD q
and

fR σR = C̄
τR = C̄p̄ p
τR = ∅ ∅

Table 1. Left: the value of fL in each case; right: the value of fR in each case.

in which,

σL =

{
m if B̄ 6= ∅;

Dm if B̄ = ∅;

τR =

{
C̄p̄ if C̄wR is not removed when computing π(w);

∅ otherwise;

τL =

{
∅ if wLDm is removed when computing π(w);

qDm otherwise,

where p is some (possibly trivial) path in (Q, I) and q is either the (possibly trivial) maximal
direct prefix of wL if wL 6= ∅ is not a direct string, and q = dwL for some d ∈ Q1 with dwL
defined as a string otherwise; in this second case, wL is also possibly empty. The values of
(fL, fR) in each case are recorded in Table 1

4.1.3. Trivial overlaps. We finally turn our attention to trivial overlaps. Suppose m = 1x for
some x ∈ Q0. In this case, we fix the orientation of our strings and bands by requiring, whenever
the relevant arrows exist, that CB 6= 0 and DA 6= 0. We again describe in each case how the
combinatorics of the overlap can be used to construct a standard basis map g• : Q•

π(v) → Q•

π(w)

such that Φ(g•) = η.

Case: g• : Q•

π(v) → ΣQ•

π(w) is a graph map supported in one degree.

This is simply a degeneration of diagram (I) in the singleton single map case of Section 4.1.2,
where instead m = 1x for some vertex x ∈ Q0, i.e. providing a graph map concentrated in one
degree. Applying Lemma 3.6 we get Φ(g•) = η.

Case: g• : Q•

π(v) → ΣQ•

π(w) is a singleton single map.

If A = ∅ and B 6= ∅, in which case C̄ 6= ∅, then by Corollary 2.12, the homotopy string
π(v) has the form

π(v) : • •
q̄B̄C̄
oo •

σRoo ,

where σR may be an empty homotopy letter. Similarly, the homotopy string π(w) has the form

•
τL // • •

C̄p̄
oo

τR
• or •

τL // • ,

where p is a (possibly trivial) path in (Q, I), and τL and τR are possibly empty homotopy
letters. The form of τL depends on the form of the substring wLD, but is not relevant for the
description of the map. The second case occurs when w starts with C̄ and we fall in case (3) or
(4) of Corollary 2.12. In the case that p is nontrivial, we get the unfolded diagram on the left
below. In the case that π(w) starts with τL, we get the unfolded diagram on the right. In both
cases we get a singleton single map.

π(v) : • •
q̄B̄C̄
oo

C
��

•
σRoo

Σπ(w) : •
τL

// • •
C̄p̄

oo
τR
•

or π(v) : • •
q̄B̄C̄
oo

C
��

•
σRoo

Σπ(w) : •
τL

// •

The case that p is trivial gives rise to a quasi-graph map, which is dealt with below. There are
obvious dual considerations when A 6= ∅ and B = ∅. Now apply Proposition 3.16.
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Case: g• : Q•

π(v) → ΣQ•

π(w) is a representative of a homotopy family determined by a quasi-graph

map ϕ : Q•

π(v)  Q•

π(w).

In the case that A = ∅ but B 6= ∅ above, in which the path p occurring in the homotopy
string π(w) is trivial, we must have that τR 6= ∅ and is direct by Corollary 2.12. This gives rise
to a graph map f• : Q•

π(w) → Q•

π(v) given by the following unfolded diagram.

π(w) : •
τL // •

Bq
��

•
C̄oo

τR
•

π(v) : • •
q̄B̄C̄

oo •
σR

oo

By Remark 1.8, this gives rise to the quasi-graph map ϕ : Q•

π(v)  Q•

π(w), as claimed. Indeed,

one can see that the map given in the unfolded diagram above is one member of the homotopy
family determined by ϕ. Dual considerations apply for the case A 6= ∅ and B• = ∅.

Finally, the case A = ∅ and B = ∅ gives rise to a graph map f• : Q•

π(w) → Q•

π(v), whence a

quasi-graph map ϕ : Q•

π(v)  Q•

π(w) by Remark 1.8. Note that, necessarily, C 6= ∅ and D 6= ∅.

In this case, by Corollary 2.12, π(v) has the form,

π(v) : •
σL // •

D // x •
C̄oo •

σRoo ,

in which the homotopy letters σL and σR may be empty. The homotopy string π(w) has one of
the following four forms

•
τL
•

qD
// x •

C̄p̄
oo •

τR
x

•
τL
•

qD
// x x •

C̄p̄
oo •

τRoo

where p and q are (possibly trivial) paths in (Q, I). Whenever p is trivial τR 6= ∅ and is
direct; whenever q is trivial τL 6= ∅ and is inverse. The graph map f• : Q•

π(w) → Q•

π(v) can

be read off from the following unfolded diagram, interpreting p and q as trivial paths (whence
isomorphisms) and deleting homotopy letters as appropriate to fit the cases.

π(w) : •
τL
•
q
��

qD
// x •

C̄p̄
oo

p
��

•
τR

π(v) : •
σL // •

D // x •
C̄oo •

σRoo

As above, we apply Proposition 3.11 to get Φ(g•) = η.

4.2. Arrow Extensions. Let v = vm · · · v1 and w = wn · · ·w1 where vi, wi ∈ Q1∪Q̄1. Suppose
that η ∈ Ext1Λ(M(v),M(w)) is an arrow extension corresponding to an arrow a ∈ Q1, i.e. η
corresponds to an extension with M(u) as the middle term where u = wav.

Since we know av is defined as a string, then we are in case (1) or (3) in Corollary 2.12 so
that π(v) = dir(a)ṽ, where ṽ = v′inv(b) for some b̄ ∈ Q1 or ṽ = v′ depending on whether we fall
into case (1) or (3), respectively. We set dir(a) = · · · θ2θ1a. Likewise,

π(w) =

{
w̃ inv(c) if there exists c ∈ Q1 such that w1c̄ is defined as a string;

w̃ otherwise,

where w̃ is defined in a manner analogous to ṽ, depending on considerations at its end. We
write inv(c) = c̄ϕ̄1 · · · ϕ̄2 · · · .

The form of the map g• : Q•

π(v) → Q•

π(w) such that Φ(g•) = η depends on whether v ends

with an inverse or direct letter and w starts with an inverse or direct letter. We deal with the
cases in turn.

Case: w1 ∈ Q1 and vm ∈ Q̄1.
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If w̃ inv(c) is defined, then we get the unfolded diagram of a (one-sided) graph map,

g• : Q•

π(v) → ΣQ•

π(w), below, where we have used π(w) in the diagram.

Q•

π(v) :

g• ��

•
θ2 // •

θ1 // •
a // •

vm···vioo

ΣQ•

π(w) : •
ϕ1

// •
c=θ1

// • •
w̄1···w̄j

oo

Since w1a is defined as a string, we have w1a /∈ I, whence c = θ1 by gentleness. Continuing, we
see that ϕi = θi+1 for each i > 1. Applying Lemma 3.5 one verifies that Φ(g•) = η.

If w̃ inv(c) is not defined, then we get the following unfolded diagram of a (one-sided) graph
map g• : Q•

π(v) → ΣQ•

π(w) supported in one degree; applying Lemma 3.5 shows Φ(g•) = η.

Q•

π(v) :

g• ��

•
a // • •

vm···vioo

ΣQ•

π(w) : • •
w̄1···w̄j

oo

Note that since w1a /∈ I then θ1 = ∅ (i.e. dir(a) = a) because otherwise θ1 would provide such
a c by gentleness of Λ.

Case: w1 ∈ Q1 and vm ∈ Q1.

By the same argument as above, we have one of the following unfolded diagram of a (one-
sided) graph map, g• : Q•

π(v) → ΣQ•

π(w), depending on whether w̃ inv(c) is defined. In both

cases, one then applies Lemma 3.5.

Q•

π(v) :

g• ��

•
θ2 // •

θ1 // •
avm···vi// •

ΣQ•

π(w) : •
ϕ1

// •
c=θ1

// • •
w̄1···w̄j

oo

or Q•

π(v) :

g• ��

•
avm···vi// •

ΣQ•

π(w) : • •
w̄1···w̄j

oo

Case: w1 ∈ Q̄1 and vm ∈ Q̄1.

Suppose w̃ inv(c) is defined. Since θ1a ∈ I we have that θ1w̄1 is a string and c = θ1 is
the unique arrow such that cw̄1 /∈ I. Continuing we have ϕi = θi+1 for i ≥ 1. This gives
the following unfolded diagram of a (one-sided) graph map, g• : Q•

π(v) → ΣQ•

π(w); now apply

Lemma 3.5 again.

Q•

π(v) :

g• ��

•
θ2 // •

θ1=c // •
a //

w̄1···w̄j
��

• •
vm···vioo

ΣQ•

π(w) : •
ϕ1

// •
cw̄1···w̄j

// • •oo

If w̃ inv(c) is not defined, then suppose wj · · ·w1 is the maximal inverse substring starting
w, in particular, w̃ starts with wj+1 which is either direct or empty. Furthermore, θ1 = ∅ for
otherwise w1θ̄1 would be defined as a string and we could take c = θ1. Hence we get the following
unfolded diagram of a singleton single map g• : Q•

π(v) → ΣQ•

π(w) and we apply Proposition 3.16.

Q•

π(v) :

g• ��

•
a //

w̄1···w̄j
��

• •
vm···vioo

ΣQ•

π(w) : • •
w̄j+1···w̄k

oo

Case: w1 ∈ Q̄1 and vm ∈ Q1.

Arguing as above, we get the following unfolded diagram of a (one-sided) graph map or
a singleton single map, g• : Q•

π(v) → ΣQ•

π(w), when w̃ inv(c) is defined and when it is not,

32



respectively. One then applies Lemma 3.5 or Proposition 3.16, respectively.

Q•

π(v) :

g• ��

•
θ2 // •

θ1 // •
avm···vi//

w̄1···w̄j
��

• •oo

ΣQ•

π(w) : •
ϕ1

// •
cw̄1···w̄j

// • •oo

or

Q•

π(v) :

g• ��

•
avm···vi//

w̄1···w̄j
��

• •oo

ΣQ•

π(w) : • •
w̄j+1···w̄k

oo
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