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Abstract. The 6x6 real matrix N(i>) for anisotropic elastic materials under a two-
dimensional steady-state motion with speed v is extraordinary semisimple when N(t>)
has three identical complex eigenvalues p and three independent associated eigenvectors.
We show that such an N(i,) exists when v ^ 0. The eigenvalues are purely imagi-
nary. The material can sustain a steady-state motion such as a moving line dislocation.
Explicit expressions of the Barnett-Lothe tensors for v ^ 0 are presented. However,
N(i>) cannot be extraordinary semisimple for surface waves. When v — 0, N(0) can be
extraordinary semisimple if the strain energy of the material is allowed to be positive
semidefinite. Explicit expressions of the Barnett-Lothe tensors and Green's functions for
the infinite space and half-space are presented. An unusual phenomenon for the material
with positive semidefinite strain energy considered here is that it can support an edge
dislocation with zero stresses everywhere. In the special case when p = i is a triple
eigenvalue, this material is an un-pressurable material in the sense that it can change its
(two-dimensional) volume with zero pressure. It is a counterpart of an incompressible
material (whose strain energy is also positive semidefinite) that can support pressure
with zero volume change.

1. Introduction. A key role in two-dimensional deformations of anisotropic elastic
materials under a steady-state motion with speed v is the eigenrelation [1,2]

N (v)£ = p£,

Ni N2'

_N3 + pv2l Nj

N1 = -T-1RX, N2 = T"1, N3 = RT1Rt-Q.

N(u) = (1)

In the above p is the mass density, a and b are 3-vectors, I is the unit matrix, the
superscript T stands for the transpose, and Q, R, T are 3x3 matrices whose elements
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are
Qik — Cnkl, Rik = Ciife2, Tik — Ci2k2,

in which Cijks are the elastic stiffnesses. When the eigenvalues p are complex they
consist of three pairs of complex conjugates [3, 4], If Pi,P2,P3 are assumed to have
a positive imaginary part, the remaining three eigenvalues are complex conjugates of
Pi,P2,P3• The 6x6 matrix N(u) is simple when Pi,P2,P3 are distinct. If Pi = P2 ^ P3
and there exist three independent eigenvectors £i,£2>£3>N(i>) is semisimple. Isotropic
material is an example for which N(v) is semisimple when v / 0. For v = 0, we will
present an example of semisimple N(0) at the end of Sec. 4. If p\ = p2 — p-i and
there exist three independent eigenvectors £1,^2, £3, N(w) is extraordinary semisimple.
No anisotropic materials have been found to possess an extraordinary semisimple N(v).
We will show that an extraordinary semisimple N(u) exists if v ^ 0. When v = 0 it
exists if the strain energy of the material is allowed to be positive semidefinite.

It should be noted that there are numerous anisotropic materials for which p\ = P2 =
Pi are the eigenvalues of N(0) [5]. However, they are all found to possess only two, not
three, independent eigenvectors. Certain properties related to N(0) are discussed in [6].

2. Extraordinary semisimple N(v). Equation (1) is equivalent to

Nla + N2b = pa) (N3 + pv2l)a + Njb = pb. (2)

Elimination of b leads to

{Q — pv2I + p(R + Rt) + p2T }a = 0, (3)

which recovers the result first obtained in [3, 4]. This provides an equation for the
3-vector a. The 3-vector b is obtained from (2)i as

b = {Rt + pT}a. (4)

When N(u) is extraordinary semisimple there exist three independent eigenvectors £.
Since b is determined from a through (4), this implies that there exist three independent
vectors a. If (3) has three independent solutions a for the same p we must have

Q — pv2l + p(R + Rt) + p2T = 0. (5)

Setting
p = a + i(3, A = (a2 + (32)l/2,

where a, (3 are real and (3 > 0, the real and imaginary parts of (5) give

Q - A2T = pv21, R + Rt = —2qT. (6)

Conversely, when (6) holds (3) reduces to

(p2 — 2 ap + A2)Ta = 0.
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The vanishing of the determinant of the 3x3 coefficient matrix of a yields

(p2 -2ap + A2)3|T| =0.

Since T is nonsingular we have

\p-(a + i(3)]3\p - (a - i/3)]3 = 0.

Thus p = a ± i/3 is a triple root, and there are three independent vectors a.
Employing the contracted notation for Cijks, (6) is written in full as

C16 = — &Cq6, C26 = — CKC22, C45 = — CHC44,

Cl6 = A2C26, C15 = A2C"46, C56 = A2C"24,

C\2 + C*66 = ~~ 2aC26, C14 + C56 = —2aC46, C25 + C46 = —2aC24,

C\\ — A2Cg6 = C55 — A"C44 = C66 — A2C22 = P^2-

(7)

Let C be the 6x6 matrix whose elements are Cks■ Since C3S (s — 1,2,... ,6) do not
appear in (7) we will consider the 5x5 matrix C° obtained by deleting the third rows and
the third column of the 6x6 matrix C. The structure of C° that satisfies (7) depends on
whether Cee = A2C22 or not. This is due to the three equations in (7)1^,4. Elimination
of C16 and C26 among these three equations yields

a(C66 ~ A"C*22) = 0.

Let Cqq = A2C22- Then a can be arbitrary, including a — 0. If Cee 7^ A2C22, a must
vanish and A = (3.

Consider the case Cee = A2C22 first. The last equation in (7) tells us that

pv2 = 0.

Equations (7) are satisfied by

A4C22 C12 Cu A 2C46 —A2qC22
C12 C22 C24 C25 —aC22

Cu = C14 C2i C44 -aC4 4 C46

A2C"46 C25 —O1C44 A2C*44 A2C*24
. — A2aC22 —aC22 C4e X2C24 X2C22

(8a)

in which

C12 = (2a2 — A2)C"22, C14 = — A"C24 — 2aC46, C25 = ~C4e — 2aC24- (8b)

Hence (8a,b) apply to the statics case v = 0 regardless of whether a is zero or nonzero.
In view of (8b) C22, C24, C44, and C46 are the only independent elastic constants in
addition to the parameters a and A > 0.
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For the case Cqq ^ A2C22, a = 0 and A = 8. This means that p — if}. Equations (7)
are satisfied by

C° =

/32Cq 6 + V ~Cqq — /32C24 f}2CiQ 0
—Ce 6 C22 C24 —C46 0

—/32C24 C24 C44 0 C46
/?2C46 -C46 0 /32C44 + t7 /32C24

0 0 C46 /32C24 C66 J

(9a)

in which, from the the last equation of (7),

Cqe = /32C22 + r), r) = pv2 > 0. (9b)

Thus (9a,b) apply to a steady-state motion with a nonzero v. In view of (9b) C22, C24,
C44, and C46 are the only independent elastic constants in addition to the parameters
f} > 0 and T} > 0. When v —> 0 (i.e., 77 —» 0), the C° in (9) is identical to the C° in (8)
with a = 0 (and hence A = f}).

The strain energy is positive if the 6x6 matrix C is positive definite. When the 5x5
matrix C° is positive definite, it is always possible to choose Css (s = 1,2,... ,6) such
that the 6x6 matrix C is positive definite [5]. It suffices therefore to study if the C° in
(8) and (9) are positive definite. If C" is positive definite, an extraordinary semisimple
N(t>) exists.

We will consider the case v — 0 first. The case w/0 will be studied in Sec. 7.

3. Extraordinary semisimple N(0) for elastostatics. A set of necessary and suf-
ficient conditions for a symmetric matrix to be positive definite is that the determinants
of the 1x1,2x2,... submatrices obtained from the upper left corner of the matrix
be positive [7]. Instead of taking the submatrices from the upper left corner, we could
take the submatrices from the lower right corner of the matrix. It can be shown that the
determinants of the 1x1,2x2,... submatrices taken from the lower right corner of the
5x5 matrix C° in (8a) (with the use of (8b)) are, respectively,

A2C22, A4£, A2C44A, A2, 0, (10)

in which
<5 = C22C44 ~ Cl,

A = /32(C22C44 - C|4) - (aC24 + C46)2.

That the determinant of C° vanishes can be proved easily by observing that addition
of the first row, the second row multiplied by A2, and the fifth row multiplied by 2a
vanishes. Consequently the matrix C° is singular, and hence it is not positive definite.

The matrix C° is positive semidefinite if the first four quantities in (10) are positive.
It is easily seen that

C44 > 0 and A > 0

are the necessary and sufficient conditions for C" to be positive semidefinite. By (11) the
conditions 6 > 0 and C22 > 0 are redundant. One can then choose C-ss (s = 1, 2,..., 6)
such that C is positive semidefinite [5].
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Even though C° is not positive definite, it can be shown that the matrices Q and T
deduced from (8) are. The three matrices N2,Ni,N3, computed in that order, have the
expression

No =
C22 A

6 C24C46 + CHC22C44 — C22(ctC24 + C46)
C24C46 + aC22C44 A2C22C44 — C46 ~(^22(°;C'46 + A2C24)

. -C22(aC24 + C46) -C22(aC4 6 + A2C24) /?2C22

Nl C22
2aC22 —C22 —C24
A 2C22 0 C46

0 0 aC22
N3 = ^

^22

0 0 0
0 0 0
0 0 1

(12)

4. The Barnett-Lothe tensors. When pk {k = 1,2,3) are distinct, let ak (k =
1,2,3) be the solution of (3) associated with pk. The vectors bk are determined from (4).
They automatically satisfy the orthogonality relations [1, 2]

ak ■ bs + as ■ bk = 0 (k ^ s). (13)

The vectors ak,bk are not unique. They can be normalized by

2ak-bk = l (fc = 1,2,3). (14)

Let the 3x3 matrices A and B be defined by

A = [ox, o2, a3], B = [61, b2,63]-

When Ofc and bk are normalized according to (14), the three Barnett-Lothe tensors
S, H, L given by

S = z(2AB1 -1), H = 2zAAt, L = -2iBBT (15)

are real [1, 2]. They are related by

HL - SS = I (16)

If the strain energy is positive definite, H and L are symmetric and positive definite, and

LS, SH, SL \ H XS

are skew-symmetric. Making use of the identities

BA"1 = (ABt)t(AAt)-\ AB 1 = (ABT)(BBT)"1,

which can be verified easily, the impedance tensor M and its inverse M_1 have the
expressions

M = -iBA-1=H-1 + iH-1S,
(17)M = iAB = L - iSL .
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They are positive definite Hermitian. It should be mentioned that, while the normaliza-
tion (14) is required for the columns of A and B in (15), it is redundant for the columns
of A and B in (17). This is so because the normalization factors cancel out after the ma-
trix multiplication [8]. Thus (17) and (16) can be employed to compute S,H, L without
normalizing the vectors ak and ftfc.

When the real part of an eigenvalue p is nonzero (i.e., a / 0), one can rotate the
coordinate system about the a^-axis by an angle ip given by

tan2tf- -(P + t) - ~2a
pp — 1 A2 — 1

where the overbar denotes the complex conjugate. The eigenvalue p referred to the
rotated coordinate system reduces to purely imaginary [9]. Since the Barnett-Lothe
tensors are tensors of rank two when the transformation is a rotation about the £3-axis
[9], it suffices to compute S,H, L referred to the rotated coordinate system for which p
is purely imaginary. Therefore we set a = 0 in (8) and consider

p4c22 -p2c22 -p2c24 p2c4(i 0
—P2C22 C22 C24 — C46 0

cu = (18)

a = 0. (20)

~P2C24 C24 C44 0 C46

P2C46 -C46 0 /32 C44 p2C24
0 0 C4Q /32C24 P2C22

The A in (11) is now given by

A - /32(C22C44 - C24) - C26. (19)

Equation (3) with v = 0 has the expression

rp2(P2 + p2)C22 0 (P2+p2)C46

0 {P2+p2)C22 (P2+p2)C24

_ (P2+p2)C46 (P2+p2)C24 {P2 + p2)C44 J

The vanishing of the determinant of the 3x3 matrix yields

(P2 +p2)3A = 0

and hence p = z/3 is a triple root.
The matrix C° in (18) tells us that addition of the first column and the second column

multiplied by P2 vanishes. This means that all stresses vanish if the nonzero strains are
£11 and £22 with £22 = P2£ 11 • When p = 1, it implies that a change in the volume
caused by £n = £22 requires no pressure. Therefore the material is an un-pressurable
material. It is a counterpart of an incompressible material (whose strain energy is also
positive semidefinite) that can support a pressure with no volume change. This peculiar
phenomenon is due to the positive semidefiniteness of the strain energy.

When N(0) is extraordinary semisimple, Ofc (k = 1,2,3) obtained from (20) and b^
from (4) may not satisfy the orthogonality relations (13). We outline below how one can
compute a set of 0^,6^ (k — 1,2,3) that satisfy (13).
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The vector a\ can be chosen arbitrarily. Let
T

oi = 0
_0

The vector 61 is then determined from (4). This provides an unnormalized £. Let the
vector a2 be given by

"tf
a2 = e

_0_
where d and e are arbitrary. With b2 obtained from (4), d and e are determined, within
a constant multiplier, by (13) for (k,s) = (1,2). Finally, the vectors a3 and 63 obtained
from (4) must satisfy (13) for (k,s) = (1,3) and (2,3). Again, a3 and 63 are determined
within a constant multiplier. The constant multipliers can be ignored when ak,bk (fc =
1,2,3) are not normalized.

With the procedure outlined above the unnormalized (k = 1,2,3) can be com-
puted. The result is

A =

B

Hence

1 0 -C46
0 1 ~/32C24
0 0 (32C22

ipzC2 2 P2C22 0

—/32C22 i/3C22 0
i(3(C46 + ipC2A) C46 + i/?A

A-1 =
■1 0 c46/(p2c22y
0 1 C24/C22

.0 0 1/(02C22) J
Notice that the unnormalized matrix A is real, which is unusual in anisotropic elasticity.
The matrix A is not singular. The matrix b is singular because the first column is equal
to i(3 times the second column. After performing the product —iBA-1 and using (17)2
we have r (32C22 0 CV

H ~L=f3 0 C22 C2i
C46 C24 C44

H-1S =

The Barnett-Lothe tensors are

1

0 -p2c22 -p2c24
(32C22 0 C46
J32C2A -C46 0

H =
C22/3A

S =

S C24C4e —C22C46
C24C4& A + /32C24 -02C22C24

-C22C46 -P2C22C24 p2C22

1
pc22

0 —C22 — C24
02C22 0 C46

0 0 0

(21)

(22)
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and, from (16),

L =
0C22

0 0 0
0 0 0
0 0 1

(23)

Since the strain energy is positive semidefinite, it affects the tensor L in that L is positive
semidefinite. However, H is positive definite.

While the matrices A and B are not unique depending on the choices of a\ and a2,
the Barnett-Lothe tensors are unique. We will prove this in the Appendix where we
consider the general case a ^ 0, and present explicit expressions of S,H, L directly in
terms of Ni, N2, N3 given in (12).

In closing this section we point out that the matrix C° in (18) can be made positive
definite if we replace the C\\ element by

Cn = {P2 + £)C22, £ > 0.

The eigenvalues p\ and p2 remain equal to i/3 while

Pi = iy/P2 +e{6/A).

The 6x6 matrix N(0) is now semisimple. Another example of semisimple N(0) can be
found in [10]. The tensor L is positive definite and its inverse L"1 exists.

5. The Green's function for the infinite space. In a fixed rectangular coordinate
system Xi (i = 1,2,3) let the infinite anisotropic elastic material be subjected to a line
force f and a line dislocation with Burgers' vector b (not to be confused with the italic
b employed earlier) at X\ = x2 = 0. The solution for the displacement u and the stress
function <f> for the extraordinary semisimple case with the triple eigenvalues p — i(3 can
be deduced from the solution for distinct eigenvalue obtained in [1] as

u =-Im{(lnx)Aq°°}, 4> = - Im^lnzjBq30}. (24)
7T 7T

In the above, Im stands for the imaginary part, q°° is a constant vector to be determined,
and

Z — X1 +px2.

The stresses al3 are determined from [11]:

oa = d(f>i/dx 1, (Tii = -d(f)i/dx2. (25)

When the columns of A and B are normalized, it is shown in [12] that

q°° = ATf + BTb. (26)

With the use of (15) we obtain

Aq°° = i{b — i(Sb + Hf)}, Bq00 = ±{f - i(STf - Lb)}. (27)
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Thus the Aq°° and Bq°° in (24) are replaced by the right-hand sides of (27). The
question of normalization of the columns of A, B, and the nonuniqueness of A, B becomes
immaterial.

With the expressions of S and L given in (22) and (23), Bq°° in (27)2 can be written
explicitly as

Bc'°° = \

-ipg

9
h

(28)

where

-1,„ r „ , . s (29)
9 = fi + 0 h
h — fz + i(0C22) 1 (C24/1 — + A63)

Notice that the 61,62 components of the Burgers' vector b are absent in (29). This
implies that Bq°° vanishes if the infinite space is subjected to an edge dislocation only.
By (24) (j> vanishes, so do stresses. We therefore have the result that the anisotropic
material considered here can support an edge dislocation in the infinite space with zero
stresses everywhere. To find the displacement field due to an edge dislocation, we set
f = 0 and 63 = 0 in (27)i. We have

1
Aq°° = ±(b1 + i(3-%) -i/3

0
(30)

and (24)i provides the displacement. A direct differentiation of (24) 1 shows that the
only nonzero strains are £n and £22 with £22 = /32£ 11 • This confirms the statement made
earlier that the stresses vanish under these strains for the material considered here.

6. The Green's functions for the half-space. In this section we consider the half-
space subjected to a line force f and a line dislocation with Burgers' vector b located
inside the half-space. Since we have chosen the coordinate system (2:1,2:2) such that the
eigenvalue p is purely imaginary, the boundary of the half-space may not be at £2 = 0.
If the boundary makes an angle 9 with the 2^-axis, let

n
cos f
sin(;

0

— sin 11
cos#

0
be two mutually orthogonal unit vectors. The material occupies the region

x • m > 0.

Let the line force f and the line dislocation b be located at a distance d from the boundary,
i.e., at

x • n = 0, x • m = d. (31)

We now consider the solution

u = — Im{ln(£ - p(0)rf)Aq°°} + — Im{ln(£ - p{6)d)Aq},
1 [ (32)4> — — Im{ln(i — p{0)d)Bq°°} -I— Im{ln(z — p(#)d)Bq},
7T 7T
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in which
z = x ■ n + p(9)x • m,

p cos 8 —sin 9 (33)
P(0) = ■  a'p sm 9 + cos 9

Aq00 and Bq=° are given in (27) while q is a constant vector to be determined by the
condition at the boundary x • m = 0. In view of the nonuniqueness of A and B, we will
determine Aq and Bq instead of q.

The use of z instead of 2 is very common in the study of surface waves [1, 2, 13] but
it has rarely been employed for an oblique boundary. The p(0) in (33) is the eigenvalue
p of the material referred to the rotated coordinate system in which the boundary of the
half-space is the new £i-axis [9]. The first terms on the right-hand sides of (32) represent
the Green's function for the infinite space with the line force f and the line dislocation b
at the location given in (31). The second terms represent an image singularity [12]. The
location of the image singularity is at

x • n + p{9)x • m = p(9)d

or
x m ——d, x • n = 2 Re{p(6>)} d (34)

where Re denotes the real part. It is outside the half-space.
(I) Rigidly clamped boundary. When the boundary of the half-space is a rigidly

clamped surface, u = 0 at x m = 0. By (32) i,

0 = — Im{ln(x ■ n - p(9)d)Aq°°} + — Im{ln(x • n - p(9)d)Aq}.
7T 7T

The first term is identical to the negative of its complex conjugate. Hence we obtain

Aq = Aq30. (35)

Writing Bq as
Bq = (BA_1)Aq = (BA""1)Aq°°

and using (17)2, we have
Bq = (iH 1 — H 1S)Aq°°. (36)

Equations (35) and (36) provide the Aq and Bq in (32) in terms of Aq30, which can be
deduced from (27) i.

(II) Traction-free boundary. If the boundary of the half-space is a traction-free surface,
t/> = 0atxm = 0. A similar analysis leads to

Bq = Bq°°. (37)

We cannot write
Aq = (AB_1)Bq = (AB-1)Bq°°
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because B is singular, and B_1 does not exist. Despite B being singular, (37) has a
solution for q if Bq°° is orthogonal to the left null vector of B, which is

1
i/3
0

With Bq°° deduced from (28), this condition leads to g — 0 or

fx = h = 0. (38)

Therefore, a solution for q exists if the applied force is an antiplane force. The Burgers'
vector b for the dislocation can be arbitrary.

When (38) holds (37) reduces to

Bq = 7 7 = x{/3 +iAb3(pC22) X}- (39)

It can be shown that the solution for q is

—27
q=jA

where k is an arbitrary constant and

qo

+ kq0 (40)

1
-i(3
0

is the right null vector of B. The product Aqo is

Aq0 =
1

-i@
0

According to (30) this term represents the solution due to an edge dislocation at the
location (34) for the image singularity. This term produces no stresses. Hence the
traction-free boundary condition is not violated. We obtain from (40)

AAq=
C46

24

PZC22

-p2Q
1

-iP
0

(41)

Equation (41) and (39) provide the Aq and Bq in (32). The solution for the displacement
is not unique. (In contrast, the solution for the stress is not unique if the material is
incompressible.) In fact, we could also add any edge dislocation at any point outside the
half-space without violating the traction-free condition at the boundary.
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7. Extraordinary semisimple N(u) for steady-state motion. The matrix C° in
(9) applies when v ^ 0. Let Ik (k — 1,2,... ,5) be the determinants of the 1x1,2x2,...
submatrices taken from the lower right corner of the matrix C°. It can be shown that

h = /32C22 + rj,

h = (f32C22 + 7?)(/32C44 + v) - P'Cl4,
h = C44(h - pel) - r,C2e,
h = /T2A(/2 - /32C|6) + t]2(3~2CIq,

h = 77(1 - P2)h - V2h,

where A is defined in (19). 15 can be written explicitly as

r?(/2 - /32C|6)[/T2(1 - /32)A - r/C44] + v3r2C246.

Keeping in mind that rj and 0 are positive and nonzero, it is not difficult to see that
Ji, I2, ■ ■ •, I5 are positive and nonzero if

/? < 1, C44>0, /3>0, p-2{l-p2)A-r]C44>0. (42)

The last two inequalities in (42) can be satisfied by choosing a sufficiently large C22-
Hence C° can be positive definite, and an extraordinary semisimple N(u) exists when
v / 0. Explicit expressions of the Barnett-Lothe tensors H, L, S for v ^ 0 are presented in
the Appendix. Also shown in the Appendix is that N(u) can be extraordinary semisimple
only for v > vr where vr is the Rayleigh wave speed for the anisotropic material.

As an example, consider the matrix

3 -4000
-4 6 0 0 0

C° = 0 0 2 0 0
0 0 0 2 0
0 0 0 0 4

which is clearly positive definite. Equation (3) becomes

3 — pv2 + 4 p2 0 0
0 4 — pv2 + 6 p2 0
0 0 2 - pv2 + 2p2 _

a = 0. (43)

The eigenvalues are

. y/Z — pv2 . \J4 pv2 _ . 2 - pv2
pi —1 """ "

When pv2 = 1 we have

and the 3x3 matrix in (43) vanishes identically.

1
P\=P2=Pi = l-j^,
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Subjected to the conditions (42) the wave speed v is arbitrary for a steady-state motion
such as a moving line dislocation. For surface waves in a half-space x2 > 0, v has to be
chosen such that the surface traction at x2 = 0 vanishes. We will show that N(u) cannot
be extraordinary semisimple for subsonic surface waves.

Suppose that N(v) is extraordinary semisimple and that a subsonic surface wave exists.
This means that p\ — p2 — P3 = iP, and the solution can be written as [2, 4, 13]

u = Aqeikz, <fi = Bqeikz,

z — x 1 + if3x2 ~ vt,

where k is a positive parameter and q is a complex vector to be determined. Equation
(4) for pi — p2 = ps = i/3 can be combined into one equation as

B = (Rt + ipT)A.

Hence
Bq = (Rt + i/?T)Aq.

That the traction at x2 = 0 vanishes demands that Bq = 0. The matrix A is not
singular because the columns of A are 01,02,03, which are independent vectors. This
means that the matrix

R1 +if3T =
i/3(P2C22 + V) (P2C22 + r,) (3((3C24 + iC46)
— {/32C22 + T}) i0C22 i(f3C24 + iC4e)

~P(f3C24 — iC46) i(PC24 — iC4e) i(3C44

must be singular. The determinant of the 3x3 matrix can be shown to be

i(3r](A + 77C44),

which is nonzero because /?, 77, C44 are all positive and nonzero, and so is A as can be
deduced from (42)4. This leads to a contradiction. Therefore, N(u) cannot be extraor-
dinary semisimple for surface waves. An alternate and simpler proof is given at the end
of the Appendix.

8. Remarks. A related problem is the question of whether there exists an N(t>) that
has three identical eigenvalues but has only one independent eigenvector. The answer is
that it exists for v = 0, and for a steady-state motion with v ^ 0 such as a moving line
dislocation [14]. It also exists for surface waves [17].
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nicated to him with an elegant proof that N(u) cannot be extraordinary semisimple for
v < vr. A different proof, motivated by his proof, is given at the end of the Appendix
that makes use of the tensor L obtained in Eq. (A7). The work presented here was
supported by the U.S. Army Research Office through grant DAAL 03-91-G-0082.
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Appendix. We will derive explicit expressions of the Barnett-Lothe tensors and show
that they are unique even though the matrices A and B are not.

Equation (4) for p\ = P2 = Pa can be combined into one equation as

B = (Rt + pT)A. (Al)

When (13) and (14) are written as

' bs 4" CLS * bfc — &ks

where Sks is the Kronecker delta, we have

ArB + BtA = I

or, using (Al),
At{(R + R1) + 2pT}A = I.

By virtue of (6)2 this is simplified to

(:2i/3)ArTA = I. (A2)

Since T is symmetric and positive definite, there exists a unique square root T1//2 such
that it is symmetric and positive definite. Equation (A2) is satisfied by

A = (2i/?)"1/2T"1/2n, tirn = l = nnT, (A3)

where £7 is any orthogonal tensor. Hence A is not unique.
For v — 0, substitution of (A3)i into (15)2 yields

H = -^T"1 = ±N2. (A4)

Inserting (Al) into (15)3 and making use of (15)2, (A4), and (6), it is readily shown that

L = ^N3. (A5)

Finally, substituting (Al) into (15) 1 and following the derivation of L we have

S = i(N1—al). (A6)

With Ni,N2,N3 presented in (12) we have obtained explicitly S,H,L for the general
case a ^ 0. They do not depend on the arbitrary orthogonal tensor fi, and hence are
unique. For the special case a — 0 they recover S,H,L given in (21)-(23).

For u/0, the results obtained above apply if we replace N3 by N3 + pv21 and set
a — 0. We have

h=^N2, L = y(N3 + pW2I), s = ^Ni- (A7)



SEMISIMPLE MATRIX FOR ANISOTROPIC ELASTIC MATERIALS 737

The matrices N2, Nj, N3 for v ^ 0 obtained from (9) can be shown to be

N2 = ^
6 C24C46 —C22C46

C24C46 C44C66 — Cj6 —C24C66
—C22C46 —C24C66 C22C&Q

N, = i
77C24C46 — C —C24A

C*66(A + 77C44) 0 C^e(A + 77644)
—77(724(^66 0 —VC24C46

N3 = i
X 0 z
0 0 0
Z 0 F

(A8)

where S and A are defined in (ll)i and (19), and

77 = pv2, C66 = f32C2 2 + ?7, C = C22A + 677,

X = —?j[(l - /?2)C " r/(C44C66 - Cf6)],
y = — [A2 + rj/\(C22 + C44) + Z = 77C46(A + rjC'44).

With (A8), the Barnett-Lothe tensors for v / 0 are obtained from (A7).
The 3x3 matrix N3 has zero elements in the second row and the second column

(see [11, 15] and (A8) above). With this property, (A7)2 tells us that —pv2/(3 < 0 is an
eigenvalue of L. This is not possible for v < vr where vr is the Rayleigh wave speed
for the anisotropic material. It is shown in [16] that L is positive definite for v < vr
and that, at v = vr, two of the eigenvalues of L vanish while the third one is positive.
Therefore, N(f) cannot be extraordinary semisimple for v < vr and v = vr; the latter
applies to surface waves.
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