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Abstract. The extremum properties of the generalized Rayleigh quotient related to
flutter instability are investigated. It is shown that, in addition to the well-known sta-
tionary property, under certain circumstances the quotient exhibits maximum-minimum
properties which are in contrast to those of the classical Rayleigh quotient. One con-
sequence is that an approximate method of stability analysis using these results leads
to a lower bound as opposed to an upper bound in the classical case. The results are
applied to multiple-parameter systems and a physical interpretation is given for the
generalized Rayleigh quotient, leading to the proof of a convexity theorem.

1. Introduction. The vibration or stability analysis of linear conservative systems
leads to an eigenvalue problem involving a symmetric matrix pencil A — \B. In such
problems each eigenvalue can be expressed as a quotient in terms of its eigenvectors
and the matrices A and B. The classical Rayleigh quotient is obtained when the eigen-
vectors are replaced by arbitrary vectors in the space of the eigenvectors. It is well
known that the Rayleigh quotient is stationary in the neighborhood of an eigenvector,
with its stationary value given by the corresponding eigenvalue. This property forms
the basis of the Rayleigh-Ritz technique for computing eigenvalues of a self-adjoint
system. The Rayleigh quotient has an even more interesting extremum property: for A
and B real and symmetric and B positive definite, the value of the Rayleigh quotient
necessarily lies between the smallest and largest eigenvalues of the pencil. In other
words, the minimum (maximum) value attainable by the Rayleigh quotient is given by
the smallest (largest) eigenvalue [1-4],

Linear nonconservative systems, on the other hand, lead to an eigenvalue problem
associated with an asymmetric matrix pencil which has distinct left and right eigen-
vectors. In this case the generalized Rayleigh quotient can be introduced as a natural
extension of the classical one, involving a quotient of bilinear forms rather than quad-
ratic forms. If the matrix pencil is simple, it has been shown that the generalized Rayleigh
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quotient has a stationary value at a pair of left and right eigenvectors and its value is
given by the corresponding eigenvalue [4, 5], This corresponds directly to the stationary
property of the classical Rayleigh quotient. Extremum properties in the asymmetric
case, however, pose fundamental difficulties since the eigenvalues will, in general, be
complex.

Attention in this paper is focussed on flutter instability, which may occur in non-
conservative systems. After a brief description of the generalized Rayleigh quotient
in Sec. 2, its application to this type of instability is described in Sec. 3. At flutter the
left and right eigenvectors are related in a certain manner. Although extremum prop-
erties like those in the symmetric case cannot be derived in general, such properties
do exist when there are only two degrees of freedom and both eigenvalues are real.
This is shown in Sec. 4, and interestingly the behavior is opposite to that in the sym-
metric problem. In the flutter case, the value of the generalized Rayleigh quotient must
lie outside of the eigenvalues if they have the same sign and it must lie between them if
they have opposite signs. This result can be used to compute bounds on the eigenvalues.
It also can be applied to obtain convexity properties for the flutter boundary in multiple-
parameter systems, as shown in Sec. 5. A physical interpretation of the generalized
Rayleigh quotient is also given in this last section.

2. Generalized Rayleigh quotient. Consider the eigenvalue problem

Aq = \Bq (2.1)

where A and B are real n X n matrices with B nonsingular and q is a column vector
of order n. This system of equations may be written as

{A - \B)q = 0. (2.2)

If X< , i = 1, • • • , n are the eigenvalues of the matrix pencil A — \B and if the corre-
sponding right eigenvectors are u% and the left eigenvectors are i», , then

(A — \iB)Ui = 0, i = 1, • • • , n, (2.3)

and

v/(A — \{B) =0, i = 1, • • • , n, (2.4)

where a prime denotes transpose. Eq. (2.4) is sometimes written in the form

{A' — \tB')Vi = 0, i = 1, • • • , n, (2.5)

and referred to as the adjoint system to Eq. (2.3). If Eq. (2.3) is premultiplied by v,'
one obtains the scalar equations

Vi'(A — \iB)Ui = 0, i = 1, • ■ • , n, (2.6)

or, in the notation to be used here,

(v{ , (A - \iB)Ui) = 0, i = 1, • • • , n. (2.7)

Therefore the eigenvalues X; satisfy the relations

<28)

assuming and h, are such that the denominator is not zero.
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The generalized Rayleigh quotient R (x, y) is defined by

»> - tM <2-9)
where x and y are vectors of order n. If the matrix pencil A — \B is simple, so that it
has n linearly independent right eigenvectors, then w, and «,■ can be chosen to satisfy
the bi-orthogonality relations

(Vj , But) = Sa , i, j = 1, • • • , n, (2.10)

where §,,■ is the Kronecker delta, and R(x, y) has a stationary value at x = m, , y = v{
with R(Ui , Vi) = \i [5].

3. Flutter instability. The problem treated in this paper arises in the study of the
stability of nonconservative systems. Consider a linear autonomous dynamical system
with n degrees of freedom. The equations of motion are assumed to be of the form

M §+(U- ,E)r - 0 {31)

where t denotes time, r(l) is a vector of order n representing the generalized coordinates,
7j is a loading parameter, and M, U and E are real n X n matrices with M and U sym-
metric and positive definite and E nonsingular. For harmonic motion of amplitude q
and frequency u, one obtains

(U - rjE - m)q = 0 (3.2)

where 0 = to2. This is a double eigenvalue problem involving the loading parameter
■q and the frequency parameter 0.

In a vibration analysis one is interested in the frequencies and the modes of vibration
for a fixed value of 17. With the notation of Sec. 2, one would then treat X = fl, A =
U — f}E, and B = M. Eq. (2.8) gives the values 0; of the squares of the vibration fre-
quencies. At j; = 0 these values are real and positive and are assumed to be distinct.
As the loading parameter is increased or decreased from zero, instability may occur by
divergence, when one 0, value becomes zero, or by flutter, when two 0, values coalesce.
If Ui and Vi are the eigenvectors corresponding to the equal pair of eigenvalues, they
satisfy the relation

<!>, , Mih) = 0 (3.3)

[6, 7], Hence this matrix pencil associated with flutter is dejective [5]. This is significant
since the mathematical theory related to matrix pencils has been developed mostly
with regard to simple (or non-defective) pencils.

In a stability analysis the loading parameter ?? is treated as the eigenvalue. For this
case consider X = y, A = U — OA/, and B = E, and the generalized Rayleigh quotient

fife T, 0) = <»■ (3.4)

Since our attention is on flutter instability, only pairs of vectors x, y which satisfy the
flutter condition

(y, Mx) = 0 (3.5)
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will be considered in what follows. The generalized Rayleigh quotient then reduces to
the form

»> " tm' M
Consider a critical flutter point at which ft = ftc , ?; = rti , and the eigenvectors ux

and Vi satisfy condition (3.3). At this fixed frequency Eqs. (2.3) and (2.4) become

(U — SlcM — rjiE)Ui = 0, i = 1, • • • , n, (3.7)

and

Vi'(U — ttcM — ViE) = 0, i = 1, • • • , n, (3.8)

while the bi-orthogonality conditions (2.10) are given by

(v, , Eui) = ba , i, j = 1, • • • , n. (3.9)

For the class of vectors x, y under consideration, R(x, y) has a stationary value at x — it,,
y = Vi with R(Ui , vt) = Vi ■

With the use of Eqs. (3.3) and (3.7)-(3.9) one can obtain the following:

(vi , Uiii) = 77! , (3.10)

(v. , Uu.) = v. + ®c(v, , Mm.), s = 2, • ■ • , n, (3.11)

(vi , Uu.) = , Mu.), s = 2, • • • , n, (3.12)

(v. , UUi) = 2c(v, , Mut), s = 2, • ■ ■ , n. (3.13)

Further, if A (ft) = U — MI is considered as a function of ft so that j? becomes a function
of ft, then the first and second derivatives of ?j with respect to ft and evaluated at y = vi ,
ft = ft„ are given by [8, 9]

dr\
dft VVi

^ ' ^Ull = 0 (3.14)
<t>i , J&Mi)

and

d\
dtf V=Vi

n=nc

_ 2 £ ("'' Mu'Nv', Mu>)_ (315)
8 = 2 (vi ~ vj

4. Extremum properties. In order to investigate extremum properties of the
generalized Rayleigh quotient with respect to the flutter point rj1 , it is convenient to
write x and y in the form

x = Mi + w, y = Vi + z. (4.1)

When this form is substituted into Eq. (3.5) one obtains, after using Eq. (3.3),

{vi , Mw) + (z, Mui) + (z, Mw) = 0. (4.2)

Also, the generalized Rayleigh quotient defined in Eq. (3.6) can be written in the form

ru \ t>, \ i (z, (U — ftcAT — ViE)w) tA ^R(x, y) = fl(w, , t>,) + ^ J^Ex)  ( ^
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with the use of Eqs. (3.7)-(3.10), (4.1), and (4.2). If in addition w and z are expressed as
n n

W = ^2, otiUi , z = 23 0ivi > (4.4)

then Eq. (4.3) becomes

where

R(x, y) = R(ux , t>0 + h (4.5)

k = (^Ex) S ~ Vl)aA • (4"6)

It is seen from Eq. (4.5) that the generalized Rayleigh quotient will have a local
minimum (maximum) at ux , if h > 0 (h < 0) for all x, y in a neighborhood of .
Such extremum results will now be derived for the case of n = 2 with ^ real and vi ^ V2 ■
Since vi is real, tj2 is necessarily real and so are the corresponding eigenvectors, and a,
and /?, in Eq. (4.4) will be taken as real numbers in what follows. It follows that x and
y will be real.

First, it is noted that Eq. (3.15) takes the form

d\
V = Vi

_ (t>i , Mu2)(v2 , Mih)
- u.) ' K '

Next consider an asymptotic analysis in which w and z are proportional to a small
parameter «. One can then obtain

h = (172 — rh)a202 (4.8)

from Eqs. (4.1), (4.5), and (4.6), and

(iVi , Mw) + (z, Mui) = 0 (4.9)

from Eq. (4.2) as first-order approximations. This last expression can be written as

<*2(^1 , Mu2) + /32(t>2 , Mui) = 0 (4.10)

and multiplying by /32(f2 , Mui) leads to the inequality

(vi , Mu2)(v2 , Mui)a202 < 0. (4.11)

The following conclusion can then be deduced from expressions (4.5), (4.7), (4.8) and
(4.11): subject to condition (3.5) with real x and y, the generalized Rayleigh quotient
(3.6) has a local minimum (maximum) at x = Mi , y = if

dO2 > 0 (CO). (4.12)
n=ne

Inequality (4.12) can be related to the two values of 771 at which flutter occurs.
Let superscripts a and b designate the two flutter points. Then the characteristic equa-
tion

det | U - m - VE\ = 0 (4.13)
has a double root in 0 at 0 = Qca, rj = r)° and at SI = fl/, 77 = ?ji\ A typical loading-frequency
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curve for the case 0 < t)° < Vi is depicted in Fig. 1. It is a conic section, and one can
see that A\!<Kt is negative at t]" and positive at 77/'. The cases of eigenvalues with
opposite sign and of two negative eigenvalues can be drawn similarly, and one obtains
the following conclusions:

(i) if 0 < t] i° < i)x, then R(x, y) has a local maximum at r)° and a local minimum
at

(ii) if < 0 < t]i, then R(x, y) has a local minimum at rj° and a local maximum
at r]i',

(iii) if -tii < Tji < 0, then R(x, y) has a local maximum at r)i and a local minimum
at i)i.

If one solves explicitly for t]", rji and the corresponding eigenvectors in terms of
the elements of the matrices U, M, and E, one can show that the generalized Rayleigh
quotient must lie in one of the shaded regions shown in Fig. 2. That is, for cases (i) and
(iii) R(x, y) cannot lie between rj" and y]i , while for case (ii) it must lie between these
two eigenvalues (see Appendix A).

The extremum properties derived above are in direct contrast to those for symmetric

Fig. 1. Loading-frequency relationship.
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( i) /////////////////////\ + //H |V/////////// fj

0 v>

(ii)  [/////////J/////// 77
V° ° V*

(iii) // + /J//////'/////f///+///////// 7)
„a _b 0Vi Vi

Fig. 2. Range of generalized Rayleigh quotient.

systems. If U and E are real symmetric matrices of order two, U is positive definite,
E is nonsingular, and -q", rji are now defined as the eigenvalues of the pencil U — rjE
with r)i < t)i, then the classical Rayleigh quotient

m - (4.i4)
can only take values in the unshaded regions of Fig. 2.

As in the symmetric case, an approximate procedure can be used to compute eigen-
values and also to determine some bounds on the eigenvalues. If both critical values of
t? at flutter are positive, for example, then one can obtain a lower bound for the smaller
critical value and an upper bound for the higher value by using, in Eq. (3.6), vectors
x, y satisfying Eq. (3.5) (see Fig. 2(i)). A lower bound i?t for t]° is especially useful
since it assures that the system is stable for jj < i]L . If one attempts to approach this
critical value ??r by an iterative process, tj," will be approached from below according
to the present results, while the Rayleigh-Ritz procedure for symmetric systems ap-
proaches the smallest critical value from above and yields an upper bound rather than
a lower bound.

5. Multiple-parameter systems. The generalized Rayleigh quotient has an interest-
ing interpretation for systems with multiple loading parameters. In addition, the results
of Sec. 4 can be used to derive some convexity properties for the flutter boundary in
the space of the loading parameters.

\i if, k = 1, • • • , m are independent loading parameters with associated matrices
Ek, then Eq. (3.2) has the form

(u ~ Z vkEk - m)q = 0 (5.1)

and the corresponding vector p in the adjoint system satisfies the equation

V'(u - J] vkEk - OAf) = 0. (5.2)

Pre-multiplying Eq. (5.1) by p' leads to the relation
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(p, (u - £ r,kEk - = 0. (5.3)

Consider the m-dimensional loading space with coordinates -q. The points in this
space corresponding to flutter instability comprise the "flutter boundary". Let q = x,
p — y designate the eigenvectors at a flutter point. The flutter condition (3.5) must
be satisfied, so that Eq. (5.3) becomes

(y, Ux) - X v"(y, Ekx) = 0. (5.4)
A: = 1

Eq. (5.4) is then the equation of the hyperplane tangent to the flutter boundary at
this point, and the normal vector to this hyperplane has components Nk given by

Nk = (y, Ekx) (5.5)

(see Appendix B).
Now consider a ray emerging from the origin in the loading space. If the direction

cosines are given by lk, k = 1, • • • , m and the distance along the ray is 77, then

v = vlk, E(«T = 1. (5.6)
k= 1

Also, define

E = £ lkEk (5.7)
k = 1

and assume that the ray initially hits the flutter boundary at rj = 771 > 0 with corre-
sponding eigenvectors u, , v, , and that it intersects the hyperplane defined by Eq. (5.4)
at 77 = 77, . It follows that

Vl = IhTEu^ = R(Ml ' (5'8)

and

-'tm(5-9)
In other words, the generalized Rayleigh quotient R(x, y) gives the distance rj, from the
origin to the intersection of the ray with the hyperplane, while its stationary value
R{ui , vx) is the distance i?i to the flutter boundary. This is depicted in Fig. 3, where the
eigenvectors x, y correspond to point A and ut , v, correspond to point B.

Convexity properties of the flutter boundary for the case n = 2, m. = 2 were in-
vestigated in [6], These properties now can be generalized to cover an arbitrary number
of loading parameters by application of the results of Sec. 4 and the interpretation
above. For example, with t?i representing the initial loss of stability by flutter on the
positive ray, it follows from Eqs. (5.8), (5.9) and Figs. 2, 3 that

v• < Vi (5.10)
for points A in the neighborhood of B. Hence the flutter boundary at B is convex toward
the origin. This result can be of practical use in obtaining lower and upper bounds on
the portion of the flutter boundary which yields initial flutter instability.
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V

FLUTTER
BOUNDARY

Fig. 3. Flutter boundary.

In addition one can determine conditions under which the flutter boundary consists
of hyperplanes. If the eigenvectors x and y at a flutter point are independent of the
direction cosines of the ray to that point, then the normal vector with components
given by Eq. (5.5) is constant for that portion of the flutter boundary and hence this
boundary is linear. For the case n = 2 this condition is satisfied if Eq. (5.1) is in the
form such that M is the identity matrix and U is a diagonal matrix and if the ratio of
the off-diagonal terms for each matrix Ek is the same.

For multiple-parameter conservative systems the classical Rayleigh quotient (4.14)
can be interpreted as a similar distance in the loading space. The matrices Ek are sym-
metric and only divergence instability can occur. Consider any values of n and m. If
E is positive definite for a given ray, R(x) must lie between the smallest and largest
eigenvalues r;,- . It then follows that the initial portion of the divergence boundary
intersected by the ray is concave toward the origin and the final portion is convex.
If E is not positive definite for a ray, one can apply similar reasoning to the reciprocal
of R(x) and conclude that the initial portion of the divergence boundary is concave
toward the origin. Also, it is easy to show that the divergence boundary consists of
hyperplanes if U is diagonal and if Ek, k = 1, • ■ • , m are all diagonal. Previous investiga-
tions of these convexity properties for linear conservative and "pseudo-conservative"
systems include [10-14],

Appendix A. The results shown in Fig. 2 will now be proved. Consider n = 2 and
Vi" < Vi- Let
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t)i = R(ux°, 0> " = a,b, (Al)

let rj, be defined by Eq. (5.9) where x, y satisfy Eq. (3.5), and let

h° = t], — iji", <r = a, b. (A2)

It is desired to show that h" and hb have the same (opposite) signs whenever ij° and rji6
have the same (opposite) signs. Fig. 2 then follows directly from this.

Assume that the matrices M and U have been simultaneously diagonalized by a
linear transformation such that M is the identity matrix and U is a diagonal matrix.
The characteristic equation (4.13) and the condition for a double root in lead to the
values

= (U22 - Uu)/D", <r = a, b (A3)

and

0/ = [UuE22 - U22En ± (t/„ + U22)(-E12E21)1/2]/D', <t = a, b (A4)

where

D" = E22 - Eu ± 2(-El2E2l)l/2, <t — a, b (A5)

with the appropriate choice of sign so that r/° < r]lb. For the eigenvectors, let

»•■(:)' »• -(;;)■ »'■(:;)■ <a6>

With the use of Eqs. (3.7)-(3.9) and (A3)-(A5) one can calculate these values and
show that

Mi7a + n 271 = 0, vit2 + c2ei = 0, (A7)

and

mi* = l/D", T.e. = 1 /D\ (A8)
while the flutter condition (3.3) yields

Mi^i + H2V2 = 0, yjt! + y2e2 = 0. (A9)

From Eq. (4.6),

h" = (772' — vi)oL2fi2/{y, Ex), <j = a, b. (A10)

Let the expression in Eq. (4.7) be denoted by k, so that

k' = 2{vi, Mu2°)(v2°, MO/im' - O, cr = a, 6. (All)

Then it is seen from Fig. 1 that k and k have opposite signs. Eq. (A10) may be written
in the form

2a2 iv\ ; Mu2 )(v2 , Mux )
K°{y, Ex) ' a' ' ( }

and, with the use of Eqs. (3.3), (4.1), and (4.4),

_ 2(vi°, Mx)(y, Mu') _
k ~ K'(y, Ex) ' a ( }
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Now let

* = ^>2/ ' * ~ \*2,
X =

where
C;) ■ y - (S) ■ <"«
<t> lii + <t> 2^2 = 0 (A15)

from Eq. (3.5). Using Eqs. (A7), (A9) and (A15), one can obtain the following relations:

(v^, Mx) = vl{<j)2yl + 0172V72

(y, Mui) = Mi^i(02Ti + 72<^i)/(^27i) ^A16^

{Vl, MX) = 6i(</)!72 — Cf>27l)/72

(2/, Mm/) = 7l>Al(^27l — <£l72)/(4>27l)-

Substitution of Eqs. (A16) into (A13) and application of Eqs. (A3) and (A8) finally
yield the following expressions:

h" = 7h°£(4>27i + </> i72)2A"

— <t> i72)2A6

where £ = 2i/'1/[$27172((722 — Un)(y, Ex)]. Since k" and k6 have opposite signs, it is seen
from Eqs. (A17) that h" and hb have the same (opposite) signs whenever -q ° and rti
have the same (opposite) signs.

Appendix B. Let rjFk , k = 1, . . . , m represent the coordinates of a flutter point F
in the loading space and let x and y denote the corresponding right and left eigenvectors,
respectively. Then, from Eq. (5.1),

(u - E VFkEk - m)x = 0. (Bl)
\ k=1 /

Pre-multiplying by y' gives

(y, (u - fj 7,/e" - m)x} = 0 (B2)

and, due to the flutter condition (3.5),

(v, (u - ± VFkEk)x} = 0. (B3)

It will be demonstrated that the equation

(y, (U - E i?*®4)®) = 0 (B4)

represents the tangent hyperplane to the flutter boundary at this point F.
First, note that Eq. (B4) does represent a hyperplane with derivatives

dy _ (y, E'x)
dv' - " <y, E'x)V" = T?r„\ (B5)

in arbitrary — r\ planes. This hyperplane passes through the point F, since the
values -q = i)Fk satisfy Eq. (B4).
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Next consider the characteristic surface in the vicinity of the flutter point F. Critical
points in the neighborhood of F should satisfy Eqs. (5.1), (5.2), and the flutter condition
(3.5), and the critical values of t)' and Q, can, therefore, be described as functions of
m — 1 independent variables. Choosing the V, j ^ as these to — 1 variables, assuming
a solution in the form ^(r)') and 0(j)'), inserting this into Eq. (5.3) and differentiating
the resulting equation with respect to an arbitrary 77', say 77 s, one obtains

(p", (u- t VkE" - + (p, (u - E ykEk -

- (p, W"ET + E' + n 'M)q) = 0 (B6)

where superscripts s following a comma denote differentiation with respect to 77s. The
first two terms in Eq. (B6) are zero due to Eqs. (5.1) and (5.2). Evaluating the last
term at F and using the flutter condition yields

_  (y> E x) fR7,i

These derivatives for the flutter boundary at F coincide with Eq. (B5), and it follows
that Eq. (B4) represents the tangent hyperplane at F.

The components Nk of a normal vector to the tangent hyperplane at F satisfy the
equation

m

S (VF1 - v)Nk = 0 (B8)
k= 1

where rjk, k = 1, • • • , to is any point in the hyperplane, since the dot product between
the normal and any vector in the hyperplane must be zero. By subtracting Eq. (B3)
from Eq. (B4) and comparing the result with Eq. (B8), it follows that the values

N" = (y, Ekx) (B9)

are the components of such a normal vector.
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