ON f-DERIVATIONS OF BE-ALGEBRAS

Kyung Ho Kim* and B. Davvaz**

Abstract

In this paper, we introduce the notion of f-derivation in a BE- algebra, and consider the properties of f-derivations. Also, we characterize the fixed set $F i x_{d}(X)$ and Kerd by f-derivations. Moreover, we prove that if d is a f-derivation of a $B E$-algebra, every f-filter F is a a d-invariant.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([4, 5]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2, 3], Q. P. Hu and X. Li introduced a wide class of abstracts: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH -algebras. The notion of a BE-algebra is a dualization of a generalization of a BCK-algebra. In this paper, we introduce the notion of f-derivation in a BE- algebra, and consider the properties of f-derivations. Also, we characterize the fixed set $F i x_{d}(X)$ and Kerd by f-derivations. Moreover, we prove that if d is a f-derivation of a $B E$-algebra, every f-filter F is a a d-invariant.

2. Preliminaries

In what follows, let X denote an BE-algebra unless otherwise specified.

By a $B E$-algebra we mean an algebra $(X ; *, 1)$ of type $(2,0)$ with a single binary operation " $*$ " that satisfies the following identities: for any $x, y, z \in X$,
(BE1) $x * x=1$ for all $x \in X$,

[^0](BE2) $x * 1=1$ for all $x \in X$,
(BE3) $1 * x=x$ for all $x \in X$,
(BE4) $x *(y * z)=y *(x * z)$ for all $x, y, z \in X$.
A BE-algebra $(X, *, 1)$ is said to be self-distributive if $x *(y * z)=$ $(x * y) *(x * z)$ for all $x, y, z \in X$. A non-empty subset S of a BE-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. For any x, y in a BE-algebra X, we define $x \vee y=(y * x) * x$.

In a BE-algebra, the following identities are true: for any $x, y, z \in X$, (p1) $x *(y * x)=1$.
$(\mathrm{p} 2) x *((x * y) * y))=1$.
(p3) Let X be a self-distributive BE-algebra. If $x \leq y$, then $z * x \leq z * y$ and $y * z \leq x * z$.

Definition 2.1. A non-empty subset F of X is called a filter of X if
(F1) $1 \in F$,
(F2) If $x \in F$ and $x * y \in F$, then $y \in F$.
Definition 2.2. Let X be a BE-algebra. We say that X is commutative if

$$
(x * y) * y=(y * x) * x
$$

for all $x, y \in X$.
Definition 2.3. A self-map d on a BE-algebra X is called a derivation if

$$
d(x * y)=(x * d(y)) \vee(d(x) * y)
$$

for every $x, y \in X$.
Example 2.4. Let $X=\{1, a, b\}$ be a set in which "*" is defined by

$$
\begin{array}{c|ccc}
* & 1 & a & b \\
\hline 1 & 1 & a & b \\
a & 1 & 1 & b \\
b & 1 & a & 1
\end{array}
$$

Then X is a BE-algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1, a \\ b & \text { if } x=b\end{cases}
$$

Then it is easy to check that d is a derivation of a BE-algebra X.
Definition 2.5. A self-map d on a BE-algebra X is called to be regular if $d(1)=1$.

Definition 2.6. Let X be a BE-algebra. We define the binary operation " \leq " as the following,

$$
x \leq y \Leftrightarrow x * y=1
$$

for all $x, y \in X$.

3. f-derivations of BE-algebras

Definition 3.1. Let X be a BE-algebra. A function $d: X \rightarrow X$ is called an f-derivation on X if there exists an endomorphism $f: X \rightarrow X$ such that

$$
d(x * y)=(f(x) * d(y)) \vee(d(x) * f(y))
$$

for every $x, y \in X$.
Example 3.2. Let $X=\{1, a, b\}$ be a set in which "*" is defined by

$*$	1	a	b
1	1	a	b
a	1	1	1
b	1	1	1

Then X is a BE-algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1, b \\ b & \text { if } x=a\end{cases}
$$

and define an endomorphism $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}1 & \text { if } x=1 \\ b & \text { if } x=a, b\end{cases}
$$

Then it is easy to check that d is a f-derivation of a BE-algebra X.
Example 3.3. Let $X=\{1, a, b, c\}$ be a set in which "*" is defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	a	1	c
c	1	1	1	1

Then X is a BE-algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1, b, c \\ a & \text { if } x=a\end{cases}
$$

and define an endomorphism $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}1 & \text { if } x=1, b \\ a & \text { if } x=a \\ b & \text { if } x=c\end{cases}
$$

Then it is easy to check that d is a f-derivation of a BE-algebra X.
Example 3.4. Let $X=\{1, a, b, c\}$ be a set in which "*" is defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	1
b	1	c	1	c
c	1	1	b	1

Then X is a BE-algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1, b \\ c & \text { if } x=a, c\end{cases}
$$

and define an endomorphism $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}1 & \text { if } x=1, b \\ a & \text { if } x=a, c\end{cases}
$$

Then it is easy to check that d is a f-derivation of a BE-algebra X.
Example 3.5. Let $X=\{1, a, b\}$ be a set in which "*" is defined by

$$
\begin{array}{c|ccc}
* & 1 & a & b \\
\hline 1 & 1 & a & b \\
a & 1 & 1 & b \\
b & 1 & 1 & 1
\end{array}
$$

Then X is a BE-algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1, a \\ a & \text { if } x=b\end{cases}
$$

and define an endomorphism $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}1 & \text { if } x=1, a \\ b & \text { if } x=b\end{cases}
$$

Then it is easy to check that d is a f-derivation of a BE-algebra X. But d is not a derivation of X since

$$
\begin{aligned}
a & =d(b)=d(a * b) \neq(a * d(b)) \vee(d(a) * b) \\
& =(a * a) \vee(1 * b)=1 \vee b=(b * 1) * 1=1 * 1=1
\end{aligned}
$$

Proposition 3.6. Every endomorphism f of a $B E$-algebra X is its f-derivation.

Proof. Let X be a BE-algebra and let f be an endomorphism on X. Then

$$
f(x) * f(y) \vee f(x) * f(y)=f(x) * f(y)=f(x * y)
$$

for all $x, y \in X$. This completes the proof.
Proposition 3.7. Let X be a $B E$-algebra. Then every f-derivation of X is regular.

Proof. Since f is an endomorphism on X, we have $f(1)=1$. Hence we have

$$
\begin{aligned}
d(1) & =d(x * 1)=(f(x) * d(1)) \vee(d(x) * f(1)) \\
& =(f(x) * d(1)) \vee(d(x) * 1) \\
& =(f(x) * d(1)) \vee 1 \\
& =1
\end{aligned}
$$

This completes the proof.
Proposition 3.8. Let X be a $B E$-algebra and let d be a f-derivation on X. Then $d(x)=d(x) \vee f(x)$ for all $x \in X$.

Proof. For all $x \in X$, we have

$$
\begin{aligned}
d(x) & =d(1 * x)=(f(1) * d(x)) \vee(d(1) * f(x)) \\
& =(f(1) * d(x)) \vee(1 * f(x))=(1 * d(x)) \vee f(x) \\
& =d(x) \vee f(x)
\end{aligned}
$$

Proposition 3.9. Let X be a $B E$-algebra. If d is a f-derivation of X, then the following identities hold:
(1) $f(x) \leq d(x)$ for all $x \in X$,
(2) $d(x) * f(y) \leq f(x) * d(y)$ for all $x, y \in X$.

Proof. (1) By Proposition 3.8, we have

$$
\begin{aligned}
f(x) * d(x) & =f(x) *(d(x) \vee f(x))=f(x) *((f(x) * d(x)) * d(x)) \\
& =(f(x) * d(x)) *(f(x) * d(x)) \\
& =1
\end{aligned}
$$

which implies $f(x) \leq d(x)$.
(2) From (1) and (p3), we have $d(x) * f(y) \leq f(x) * f(y) \leq f(x) *$ $d(y)$.

Theorem 3.10. Let X be a $B E$-algebra and let d be a f-derivation of X. Then we have $d(x * y)=f(x) * d(y)$ for all $x, y \in X$.

Proof. Let d be a f-derivation on X and $x, y \in X$. Then we have $d(x) * f(y) \leq f(x) * d(y)$ from Proposition 3.9 (2). Hence we get

$$
\begin{aligned}
d(x * y) & =(f(x) * d(y)) \vee(d(x) * f(y)) \\
& =((d(x) * f(y)) *(f(x) * d(y))) *(f(x) * d(y)) \\
& =1 *(f(x) * d(y))=f(x) * d(y) .
\end{aligned}
$$

Proposition 3.11. Let X be a $B E$-algebra and let d be a f-derivation of X. If it satisfies $d(x * y)=d(x) * f(y)$ for all $x, y \in X$, we have $d(x)=f(x)$.

Proof. Let d be a f-derivation of X. If it satisfies $d(x * y)=d(x) * f(y)$ for all $x, y \in X$, we have

$$
\begin{aligned}
d(x) & =d(1 * x)=d(1) * f(x) \\
& =1 * f(x)=f(x) .
\end{aligned}
$$

This completes the proof.
Proposition 3.12. Let X be a $B E$-algebra and let d be a f-derivation of X. If it satisfies $f(x) * d(y)=d(x) * f(y)$ for all $x, y \in X$, then $d(x)=f(x)$ for all $x \in X$.

Proof. Let d be a f-derivation of X. If it satisfies $f(x) * d(y)=d(x) *$ $f(y)$ for all $x, y \in X$, we have

$$
\begin{aligned}
d(x) & =d(1 * x)=f(1) * d(x) \\
& =d(1) * f(x)=1 * f(x) \\
& =f(x)
\end{aligned}
$$

from Theorem 3.10. This completes the proof.

Theorem 3.13. Let d be a f-derivation on X. If $d \circ f=f \circ d$, then we have $d(f(x) * d(x))=1$ for all $x \in X$.

Proof. Let d be a f-derivation on X and $d \circ f=f \circ d$. For all $x \in X$, we have

$$
\begin{aligned}
d(f(x) * d(x)) & =(f(f(x)) * d(d(x))) \vee(d(f(x)) * f(d(x))) \\
& =(f(f(x)) * d(d(x))) \vee(f(d(x)) * f(d(x))) \\
& =(f(f(x)) * d(d(x))) \vee 1=1 .
\end{aligned}
$$

Definition 3.14. Let X be a BE-algebra and let d be a f-derivation on X. If $x \leq y$ implies $d(x) \leq d(y)$ for all $x, y \in X$, then d is called an isotone f-derivation of X.

Proposition 3.15. Let d be a f-derivation of a BE-algebra X. If $d(x) \vee d(y) \leq d(x \vee y)$ for all $x, y \in X$, then d is an isotone f-derivation of X.

Proof. Suppose that $d(x) \vee d(y) \leq d(x \vee y)$ and $x \leq y$. Then we have $d(x) \leq d(x) \vee d(y) \leq d(x \vee y)=d(y)$.

Let d be a f-derivation of X. Define a set $F i x_{d}(X)$ by

$$
\operatorname{Fix}_{d}(X):=\{x \in X \mid d(x)=f(x)\}
$$

for all $x \in X$.
Proposition 3.16. Let d be a f-derivation of a $B E$-algebra X. Then $\operatorname{Fix}_{d}(X)$ is a subalgebra of X.

Proof. Clearly, $1 \in \operatorname{Fix}_{d}(X)$ and so $\operatorname{Fix}_{d}(X)$ is non-empty. Let $x, y \in$ Fix (X). Then we have $d(x)=f(x)$ and $d(y)=f(y)$, and so
$d(x * y)=(f(x) * d(y)) \vee(d(x) * f(y))=(f(x) * f(y)) \vee(f(x) * f(y))=f(x * y)$.
This implies $x * y \in \operatorname{Fix}_{d}(X)$.
Proposition 3.17. Let X be a BE-algebra and let d be a f-derivation of X. If $x, y \in \operatorname{Fix}_{d}(X)$, then we have $x \vee y \in \operatorname{Fix}_{d}(X)$.

Proof. Let $x, y \in \operatorname{Fix}_{d}(X)$. Then we have $d(x)=f(x)$ and $d(y)=$ $f(y)$, and so

$$
\begin{aligned}
d(x \vee y) & =d((y * x) * x)=(f(y * x) * d(x)) \vee(d(y * x) * f(x)) \\
& =((f(y) * f(x)) * f(x)) \vee(((f(y) * d(x)) \vee(d(y) * f(x))) * f(x)) \\
& =(f(y) * f(x)) * f(x) \vee((f(y) * f(x)) \vee(f(y) * f(x))) * f(x) \\
& =(f(y) * f(x)) * f(x)) \vee((f(y) * f(x)) * f(x)) \\
& =((f(y) * f(x)) * f(x))=f((y * x) * x)=f(x \vee y) .
\end{aligned}
$$

This completes the proof.
Let d be a f-derivation of X. Define a Kerd by

$$
\text { Kerd }=\{x \in X \mid d(x)=1\}
$$

for all $x \in X$.
Proposition 3.18. Let d be a f-derivation of X. Then Kerd is a subalgebra of X.

Proof. Clearly, $1 \in \operatorname{Kerd}$, and so Kerd is non-empty. Let $x, y \in$ Kerd. Then $d(x)=1$ and $d(y)=1$. Hence we have

$$
\begin{aligned}
d(x * y) & =(f(x) * d(y)) \vee(d(x) * f(y)) \\
& =(f(x) * 1) \vee(1 * f(y))=1 \vee f(y) \\
& =(f(y) * 1) * 1=1 * 1 \\
& =1,
\end{aligned}
$$

and so $x * y \in$ Kerd. Thus Kerd is a subalgebra of X.
Proposition 3.19. Let X be a commutative BE-algebra and let d be a f-derivation of X. If $x \in$ Kerd and $x \leq y$, then we have $y \in$ Kerd.

Proof. Let $x \in \operatorname{Kerd}$ and $x \leq y$. Then $d(x)=1$ and $x * y=1$.

$$
\begin{aligned}
d(y) & =d(1 * y)=d((x * y) * y) \\
& =d((y * x) * x) \\
& =(f(y * x) * d(x)) \vee(d(y * x) * f(x)) \\
& =(f(y * x) * 1) \vee(d(y * x) * f(x)) \\
& =1 \vee(d(y * x) * f(x)) \\
& =1
\end{aligned}
$$

and so $y \in \operatorname{Kerd}$. This completes the proof.
Proposition 3.20. Let X be a $B E$-algebra and let d be a f-derivation of X. If $y \in \operatorname{Kerd}$, then we have $x * y \in \operatorname{Kerd}$ for all $x \in X$.

Proof. Let $y \in \operatorname{Kerd}$. Then $d(y)=1$. Thus we have

$$
\begin{aligned}
d(x * y) & =(f(x) * d(y)) \vee(d(x) * f(y)) \\
& =(f(x) * 1) \vee(d(x) * f(y)) \\
& =1 \vee(d(x) * f(y)) \\
& =1,
\end{aligned}
$$

which implies $x * y \in$ Kerd.
Proposition 3.21. Let X be a $B E$-algebra and let d be a f-derivation of X. If $x \in K e r d$, then we have $x \vee y \in K e r d$ for all $y \in X$.

Proof. Let $x \in \operatorname{Kerd}$. Then $d(x)=1$. Then we have

$$
\begin{aligned}
d(x \vee y) & =d((y * x) * x)=(f(y * x) * d(x)) \vee(d(y * x) * f(x)) \\
& =(f(y * x) * 1) \vee(d(y * x) * f(x)) \\
& =1 \vee(d(y * x) * f(x)) \\
& =1
\end{aligned}
$$

which implies $x \vee y \in$ Kerd.
Proposition 3.22. Let X be a BE-algebra and let d be a f-derivation. If d is an endomorphism on X, then Kerd is a filter of X.

Proof. Clearly, $1 \in$ Kerd. Let $x, x * y \in K e r d$, respectively. Then $d(x)=1$ and $d(x * y)=1$. Thus, we have $1=d(x * y)=d(x) * d(y)=$ $1 * d(y)=d(y)$, which implies $y \in K e r d$. This completes the proof.

Let X be a BE-algebra. We define the binary operation $"+"$ as the following

$$
x+y=(x * y) * y
$$

for all $x, y \in X$. Clearly, X is a commutative BE-algebra if and only if $x+y=y+x$ for all $x, y \in X$.

Proposition 3.23. Let X be a commutative BE-algebra. Then the followings hold for all $x, y, z \in X$,
(1) $x+1=1+x$.
(2) $x+y=y+x$.
(3) $x+(y+z)=(x+y)+z$.
(4) $x+x=x$.

Proof. The proof is clear.
Proposition 3.24. Let X be a $B E$-algebra and let d be a f-derivation of X. Then the followings hold for all $x, y \in X$,
(1) $d(x+1)=1$.
(2) $d(x+x)=f(x)+d(x)$.
(3) $d(x)=f(x)+d(x)$.

Proof. (1) Let $x \in X$. Then we get

$$
\begin{aligned}
d(x+1) & =d((x * 1) * 1)=(f(x * 1) * d(1)) \vee(d(x * 1) * f(1)) \\
& =(f(1) * d(1)) \vee(1 * 1)=1 \vee 1=(1 * 1) * 1 \\
& =1
\end{aligned}
$$

(2) Let $x \in X$. Then we have

$$
\begin{aligned}
d(x+x) & =d((x * x) * x)=(f(x * x) * d(x)) \vee(d(x * x) * f(x)) \\
& =(f(1) * d(x)) \vee(d(1) * f(x))=(1 * d(x)) \vee(1 * f(x)) \\
& =d(x) \vee f(x) \\
& =(f(x) * d(x)) * d(x)=f(x)+d(x) .
\end{aligned}
$$

(3) Let $x \in X$. Then we have

$$
\begin{aligned}
d(x) & =d(1 * x)=(f(1) * d(x)) \vee(d(1) * f(x)) \\
& =(1 * d(x)) \vee(1 * f(x)=d(x)) \vee f(x) \\
& =(f(x) * d(x)) * d(x) \\
& =f(x)+d(x)
\end{aligned}
$$

Definition 3.25. Let X be a BE-algebra. A non-empty set F of X is called a normal filter of X if it satisfies the following conditions:
(NF1) $1 \in F$,
(NF2) $x \in X$ and $y \in F$ imply $x * y \in F$.
Example 3.26 . Let $X=\{1, a, b, c\}$ be a set in which "*" is defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	1	1	c
c	1	1	1	1

Then X is a BE-algebra. Let $F=\{1, a\}$. Then F is a normal filter of X.

Proposition 3.27. Let X be a $B E$-algebra and let d be a f-derivation of X. Then $F i x_{d}(X)$ is a normal filter of X.

Proof. Clearly, $1 \in \operatorname{Fix}_{d}(X)$. Let $x \in X$ and $y \in F i x_{d}(X)$. Then we have $d(y)=f(y)$, and so

$$
\begin{aligned}
d(x * y) & =f(x) * d(y) \\
& =f(x) * f(y) \\
& =f(x * y)
\end{aligned}
$$

which implies $x * y \in F i x_{d}(X)$ from Theorem 3.10. This completes the proof.

Proposition 3.28. Let X be a $B E$-algebra and let d be a f-derivation of X. Then Kerd is a normal filter of X.

Proof. Clearly, $1 \in$ Kerd. Let $x \in X$ and $y \in K e r d$. Then we have $d(y)=1$, and so

$$
\begin{aligned}
d(x * y) & =(f(x) * d(y)) \vee(d(x) * f(y)) \\
& =(f(x) * 1) \vee(d(x) * f(y)) \\
& =1 \vee(d(x) * f(y))=1,
\end{aligned}
$$

which implies $x * y \in K e r d$. Hence Kerd is a normal filter of X.
Proposition 3.29. Let X be a self-distributive BE-algebra and let d be a f-derivation of X. Then $F_{a}=\{x \in X \mid a \leq d(x)\}$ is a normal filter of X.

Proof. Clearly, $a \leq d(1)=1$ for any $a \in X$, and so $1 \in F_{a}$. Let $x \in X$ and $y \in F_{a}$. Then we have $a * d(y)=1$, and so from Theorem 3.10,

$$
\begin{aligned}
a * d(x * y) & =a *(f(x) * d(y))=(a * f(x)) *(a * d(y)) \\
& =(a * f(x)) * 1 \\
& =1
\end{aligned}
$$

which implies $x * y \in F_{a}$. Hence F_{a} is a normal filter of X.
Definition 3.30. Let f be a map on X. . A filter F of a BE-algebra X is said to be f-filter if $f(F) \subseteq F$.

Definition 3.31. Let d be a self-map of a BE-algebra X. A f-filter F of X is said to be a d-invariant if $d(F) \subseteq F$.

Proposition 3.32. Let X be a self-distributive BE-algebra X. If d is a f-derivation of X, then every f-filter F is d-invariant.

Proof. Let F be a f-filter of X. Let $y \in d(F)$. Then $y=d(x)$ for some $x \in F$. It follows from Proposition 3.9(1) that $f(x) * y=f(x) * d(x)=$ $1 \in F$. Since F is a f-filter of X, we have $y \in F$. Thus $d(F) \subseteq F$. Hence F is d-invariant.

References

[1] A. Firat, On f-derivations of BCC-algebras, Ars Combinatoria, XCVIIA (2010), 377-382.
[2] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313320.
[3] Q. P. Hu and X. Li, On proper BCH-algebras, Math Japonicae 30 (1985), 659-661.
[4] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonicae 23 (1978), 1-20.
[5] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[6] K. H. Kim and S. M. Lee, On derivations of BE-algebras, Honam Mathematical Journal 36 (2014), no. 1, 167-178.
[7] S. S. Ahn and K. S. So, On ideals and uppers in BE-algebras, Sci. Math. Japo. Online e-2008, 351-357.
*
Department of Mathematics
Korea National University of Transportation
Chungju 380-702, Republic of Korea
E-mail: ghkim@ut.ac.kr
**
Department of Mathematics,
Yazd University
Yazd, Iran
E-mail: davvaz@yazd.ac.ir

[^0]: Received November 19, 2014; Accepted January 27, 2015.
 2010 Mathematics Subject Classification: Primary 06F35, 03G25, 08A30.
 Key words and phrases: BE-algebra, self-distributive, filter(normal filter), derivation, f-derivation, isotone, $K e r d$.

