JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 1, February 2015 http://dx.doi.org/10.14403/jcms.2015.28.1.127

ON *f*-DERIVATIONS OF BE-ALGEBRAS

Kyung Ho Kim* and B. Davvaz**

ABSTRACT. In this paper, we introduce the notion of f-derivation in a BE- algebra, and consider the properties of f-derivations. Also, we characterize the fixed set $Fix_d(X)$ and Kerd by f-derivations. Moreover, we prove that if d is a f-derivation of a BE-algebra, every f-filter F is a d-invariant.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([4, 5]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2, 3], Q. P. Hu and X. Li introduced a wide class of abstracts: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. The notion of a BE-algebra is a dualization of a generalization of a BCK-algebra. In this paper, we introduce the notion of f-derivation in a BE- algebra, and consider the properties of f-derivations. Also, we characterize the fixed set $Fix_d(X)$ and Kerdby f-derivations. Moreover, we prove that if d is a f-derivation of a BE-algebra, every f-filter F is a a d-invariant.

2. Preliminaries

In what follows, let X denote an BE-algebra unless otherwise specified.

By a *BE-algebra* we mean an algebra (X; *, 1) of type (2, 0) with a single binary operation "*" that satisfies the following identities: for any $x, y, z \in X$,

(BE1) x * x = 1 for all $x \in X$,

Received November 19, 2014; Accepted January 27, 2015.

2010 Mathematics Subject Classification: Primary 06F35, 03G25, 08A30.

Key words and phrases: BE-algebra, self-distributive, filter (normal filter), derivation, f-derivation, isotone, Kerd.

- (BE2) x * 1 = 1 for all $x \in X$,
- (BE3) 1 * x = x for all $x \in X$,
- (BE4) x * (y * z) = y * (x * z) for all $x, y, z \in X$.

A BE-algebra (X, *, 1) is said to be *self-distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$. A non-empty subset S of a BE-algebra X is called a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$. For any x, y in a BE-algebra X, we define $x \lor y = (y * x) * x$.

In a BE-algebra, the following identities are true: for any $x, y, z \in X$,

- (p1) x * (y * x) = 1.
- (p2) x * ((x * y) * y)) = 1.
- (p3) Let X be a self-distributive BE-algebra. If $x \le y$, then $z * x \le z * y$ and $y * z \le x * z$.

DEFINITION 2.1. A non-empty subset F of X is called a *filter* of X if

(F1) $1 \in F$,

(F2) If $x \in F$ and $x * y \in F$, then $y \in F$.

DEFINITION 2.2. Let X be a BE-algebra. We say that X is *commutative* if

$$(x * y) * y = (y * x) * x$$

for all $x, y \in X$.

DEFINITION 2.3. A self-map d on a BE-algebra X is called a *derivation* if

$$d(x*y) = (x*d(y)) \lor (d(x)*y)$$

for every $x, y \in X$.

EXAMPLE 2.4. Let $X = \{1, a, b\}$ be a set in which "*" is defined by

Then X is a BE-algebra. Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, a \\ b & \text{if } x = b \end{cases}$$

Then it is easy to check that d is a derivation of a BE-algebra X.

DEFINITION 2.5. A self-map d on a BE-algebra X is called to be regular if d(1) = 1.

DEFINITION 2.6. Let X be a BE-algebra. We define the binary operation " \leq " as the following,

$$x \le y \Leftrightarrow x * y = 1$$

for all $x, y \in X$.

3. *f*-derivations of BE-algebras

DEFINITION 3.1. Let X be a BE-algebra. A function $d: X \to X$ is called an *f*-derivation on X if there exists an endomorphism $f: X \to X$ such that

$$d(x * y) = (f(x) * d(y)) \lor (d(x) * f(y))$$

for every $x, y \in X$.

EXAMPLE 3.2. Let $X = \{1, a, b\}$ be a set in which "*" is defined by

Then X is a BE-algebra. Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, b \\ b & \text{if } x = a \end{cases}$$

and define an endomorphism $f: X \to X$ by

$$f(x) = \begin{cases} 1 & \text{if } x = 1\\ b & \text{if } x = a, b \end{cases}$$

Then it is easy to check that d is a f-derivation of a BE-algebra X.

EXAMPLE 3.3. Let $X = \{1, a, b, c\}$ be a set in which "*" is defined by

*	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	a	1	c
c	1	1	1	1

Then X is a BE-algebra. Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, b, c \\ a & \text{if } x = a \end{cases}$$

and define an endomorphism $f:X\to X$ by

$$f(x) = \begin{cases} 1 & \text{if } x = 1, b \\ a & \text{if } x = a \\ b & \text{if } x = c \end{cases}$$

Then it is easy to check that d is a f-derivation of a BE-algebra X.

EXAMPLE 3.4. Let $X = \{1, a, b, c\}$ be a set in which "*" is defined by

Then X is a BE-algebra. Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, b \\ c & \text{if } x = a, c \end{cases}$$

and define an endomorphism $f:X\to X$ by

$$f(x) = \begin{cases} 1 & \text{if } x = 1, b \\ a & \text{if } x = a, c \end{cases}$$

Then it is easy to check that d is a f-derivation of a BE-algebra X.

EXAMPLE 3.5. Let $X = \{1, a, b\}$ be a set in which "*" is defined by

Then X is a BE-algebra. Define a map $d:X\to X$ by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, a \\ a & \text{if } x = b \end{cases}$$

and define an endomorphism $f:X\to X$ by

$$f(x) = \begin{cases} 1 & \text{if } x = 1, a \\ b & \text{if } x = b \end{cases}$$

Then it is easy to check that d is a f-derivation of a BE-algebra X. But d is not a derivation of X since

$$a = d(b) = d(a * b) \neq (a * d(b)) \lor (d(a) * b)$$

= (a * a) \langle (1 * b) = 1 \langle b = (b * 1) * 1 = 1 * 1 = 1

PROPOSITION 3.6. Every endomorphism f of a BE-algebra X is its f-derivation.

Proof. Let X be a BE-algebra and let f be an endomorphism on X. Then

$$f(x) * f(y) \lor f(x) * f(y) = f(x) * f(y) = f(x * y)$$
for all $x, y \in X$. This completes the proof.

PROPOSITION 3.7. Let X be a BE-algebra. Then every f-derivation of X is regular.

Proof. Since f is an endomorphism on X, we have f(1) = 1. Hence we have

$$d(1) = d(x * 1) = (f(x) * d(1)) \lor (d(x) * f(1))$$

= $(f(x) * d(1)) \lor (d(x) * 1)$
= $(f(x) * d(1)) \lor 1$
= 1.

This completes the proof.

PROPOSITION 3.8. Let X be a BE-algebra and let d be a f-derivation on X. Then $d(x) = d(x) \lor f(x)$ for all $x \in X$.

Proof. For all $x \in X$, we have

$$\begin{aligned} d(x) &= d(1 * x) = (f(1) * d(x)) \lor (d(1) * f(x)) \\ &= (f(1) * d(x)) \lor (1 * f(x)) = (1 * d(x)) \lor f(x) \\ &= d(x) \lor f(x). \end{aligned}$$

PROPOSITION 3.9. Let X be a BE-algebra. If d is a f-derivation of X, then the following identities hold:

- (1) $f(x) \le d(x)$ for all $x \in X$,
- (2) $d(x) * f(y) \le f(x) * d(y)$ for all $x, y \in X$.

Proof. (1) By Proposition 3.8, we have

$$f(x) * d(x) = f(x) * (d(x) \lor f(x)) = f(x) * ((f(x) * d(x)) * d(x))$$

= (f(x) * d(x)) * (f(x) * d(x))
= 1

which implies $f(x) \leq d(x)$.

(2) From (1) and (p3), we have $d(x) * f(y) \le f(x) * f(y) \le f(x) *$ d(y).

THEOREM 3.10. Let X be a BE-algebra and let d be a f-derivation of X. Then we have d(x * y) = f(x) * d(y) for all $x, y \in X$.

Proof. Let d be a f-derivation on X and $x, y \in X$. Then we have $d(x) * f(y) \leq f(x) * d(y)$ from Proposition 3.9 (2). Hence we get

$$d(x * y) = (f(x) * d(y)) \lor (d(x) * f(y))$$

= $((d(x) * f(y)) * (f(x) * d(y))) * (f(x) * d(y))$
= $1 * (f(x) * d(y)) = f(x) * d(y).$

PROPOSITION 3.11. Let X be a BE-algebra and let d be a f-derivation of X. If it satisfies d(x * y) = d(x) * f(y) for all $x, y \in X$, we have d(x) = f(x).

Proof. Let d be a f-derivation of X. If it satisfies d(x*y) = d(x)*f(y)for all $x, y \in X$, we have

$$d(x) = d(1 * x) = d(1) * f(x)$$

= 1 * f(x) = f(x).

This completes the proof.

PROPOSITION 3.12. Let X be a BE-algebra and let d be a f-derivation of X. If it satisfies f(x) * d(y) = d(x) * f(y) for all $x, y \in X$, then d(x) = f(x) for all $x \in X$.

Proof. Let d be a f-derivation of X. If it satisfies f(x) * d(y) = d(x) * d(y) = d(x) * d(y) = d(x) + d(y) = d(y) = d(x) + d(y) = df(y) for all $x, y \in X$, we have

$$d(x) = d(1 * x) = f(1) * d(x)$$

= d(1) * f(x) = 1 * f(x)
= f(x)

from Theorem 3.10. This completes the proof.

THEOREM 3.13. Let d be a f-derivation on X. If $d \circ f = f \circ d$, then we have d(f(x) * d(x)) = 1 for all $x \in X$.

Proof. Let d be a f-derivation on X and $d \circ f = f \circ d$. For all $x \in X$, we have

$$d(f(x) * d(x)) = (f(f(x)) * d(d(x))) \lor (d(f(x)) * f(d(x)))$$

= $(f(f(x)) * d(d(x))) \lor (f(d(x)) * f(d(x)))$
= $(f(f(x)) * d(d(x))) \lor 1 = 1.$

DEFINITION 3.14. Let X be a BE-algebra and let d be a f-derivation on X. If $x \leq y$ implies $d(x) \leq d(y)$ for all $x, y \in X$, then d is called an *isotone* f-derivation of X.

PROPOSITION 3.15. Let d be a f-derivation of a BE-algebra X. If $d(x) \lor d(y) \le d(x \lor y)$ for all $x, y \in X$, then d is an isotone f-derivation of X.

Proof. Suppose that $d(x) \lor d(y) \le d(x \lor y)$ and $x \le y$. Then we have $d(x) \le d(x) \lor d(y) \le d(x \lor y) = d(y)$.

Let d be a f-derivation of X. Define a set $Fix_d(X)$ by

$$Fix_d(X) := \{x \in X \mid d(x) = f(x)\}$$

for all $x \in X$.

PROPOSITION 3.16. Let d be a f-derivation of a BE-algebra X. Then $Fix_d(X)$ is a subalgebra of X.

Proof. Clearly, $1 \in Fix_d(X)$ and so $Fix_d(X)$ is non-empty. Let $x, y \in Fix_d(X)$. Then we have d(x) = f(x) and d(y) = f(y), and so

$$d(x*y) = (f(x)*d(y)) \lor (d(x)*f(y)) = (f(x)*f(y)) \lor (f(x)*f(y)) = f(x*y).$$

This implies $x*y \in Fix_d(X)$.

PROPOSITION 3.17. Let X be a BE-algebra and let d be a f-derivation of X. If $x, y \in Fix_d(X)$, then we have $x \lor y \in Fix_d(X)$.

 $\begin{array}{l} Proof. \ \text{Let} \ x, y \in Fix_d(X). \ \text{Then we have} \ d(x) = f(x) \ \text{and} \ d(y) = f(y), \ \text{and so} \\ d(x \lor y) = d((y \ast x) \ast x) = (f(y \ast x) \ast d(x)) \lor (d(y \ast x) \ast f(x)) \\ = ((f(y) \ast f(x)) \ast f(x)) \lor (((f(y) \ast d(x)) \lor (d(y) \ast f(x))) \ast f(x)) \\ = (f(y) \ast f(x)) \ast f(x) \lor (((f(y) \ast f(x)) \lor (f(y) \ast f(x))) \ast f(x)) \\ = (f(y) \ast f(x)) \ast f(x)) \lor (((f(y) \ast f(x)) \lor f(x)) \\ = ((f(y) \ast f(x)) \ast f(x)) \lor ((f(y) \ast x) \ast x) = f(x \lor y). \end{array}$

This completes the proof.

Let d be a f-derivation of X. Define a Kerd by

$$Kerd = \{x \in X \mid d(x) = 1\}$$

for all $x \in X$.

Proof.

PROPOSITION 3.18. Let d be a f-derivation of X. Then Kerd is a subalgebra of X.

Proof. Clearly, $1 \in Kerd$, and so Kerd is non-empty. Let $x, y \in Kerd$. Then d(x) = 1 and d(y) = 1. Hence we have

$$\begin{split} d(x*y) &= (f(x)*d(y)) \lor (d(x)*f(y)) \\ &= (f(x)*1) \lor (1*f(y)) = 1 \lor f(y) \\ &= (f(y)*1)*1 = 1*1 \\ &= 1, \end{split}$$

and so $x * y \in Kerd$. Thus Kerd is a subalgebra of X.

PROPOSITION 3.19. Let X be a commutative BE-algebra and let d be a f-derivation of X. If $x \in Kerd$ and $x \leq y$, then we have $y \in Kerd$.

Let
$$x \in Kerd$$
 and $x \le y$. Then $d(x) = 1$ and $x * y = 1$.
 $d(y) = d(1 * y) = d((x * y) * y)$
 $= d((y * x) * x)$
 $= (f(y * x) * d(x)) \lor (d(y * x) * f(x))$
 $= (f(y * x) * 1) \lor (d(y * x) * f(x))$
 $= 1 \lor (d(y * x) * f(x))$
 $= 1,$

and so $y \in Kerd$. This completes the proof.

PROPOSITION 3.20. Let X be a BE-algebra and let d be a f-derivation of X. If $y \in Kerd$, then we have $x * y \in Kerd$ for all $x \in X$.

134

Proof. Let
$$y \in Kerd$$
. Then $d(y) = 1$. Thus we have

$$d(x * y) = (f(x) * d(y)) \lor (d(x) * f(y))$$

$$= (f(x) * 1) \lor (d(x) * f(y))$$

$$= 1 \lor (d(x) * f(y))$$

$$= 1,$$

which implies $x * y \in Kerd$.

PROPOSITION 3.21. Let X be a BE-algebra and let d be a f-derivation of X. If $x \in Kerd$, then we have $x \lor y \in Kerd$ for all $y \in X$.

Proof. Let
$$x \in Kerd$$
. Then $d(x) = 1$. Then we have
 $d(x \lor y) = d((y * x) * x) = (f(y * x) * d(x)) \lor (d(y * x) * f(x))$
 $= (f(y * x) * 1) \lor (d(y * x) * f(x))$
 $= 1 \lor (d(y * x) * f(x))$
 $= 1,$

which implies $x \lor y \in Kerd$.

PROPOSITION 3.22. Let X be a BE-algebra and let d be a f-derivation. If d is an endomorphism on X, then Kerd is a filter of X.

Proof. Clearly, $1 \in Kerd$. Let $x, x * y \in Kerd$, respectively. Then d(x) = 1 and d(x * y) = 1. Thus, we have 1 = d(x * y) = d(x) * d(y) = 1 * d(y) = d(y), which implies $y \in Kerd$. This completes the proof. \Box

Let X be a BE-algebra. We define the binary operation " + " as the following

$$x + y = (x * y) * y$$

for all $x, y \in X$. Clearly, X is a commutative BE-algebra if and only if x + y = y + x for all $x, y \in X$.

PROPOSITION 3.23. Let X be a commutative BE-algebra. Then the followings hold for all $x, y, z \in X$,

(1)
$$x + 1 = 1 + x$$
.
(2) $x + y = y + x$.
(3) $x + (y + z) = (x + y) + z$.
(4) $x + x = x$.

Proof. The proof is clear.

PROPOSITION 3.24. Let X be a BE-algebra and let d be a f-derivation of X. Then the followings hold for all $x, y \in X$,

135

Kyung Ho Kim and B. Davvaz

(1) d(x + 1) = 1.(2) d(x + x) = f(x) + d(x).(3) d(x) = f(x) + d(x).

Proof. (1) Let $x \in X$. Then we get

$$\begin{aligned} d(x+1) &= d((x*1)*1) = (f(x*1)*d(1)) \lor (d(x*1)*f(1)) \\ &= (f(1)*d(1)) \lor (1*1) = 1 \lor 1 = (1*1)*1 \\ &= 1. \end{aligned}$$

(2) Let $x \in X$. Then we have

$$\begin{aligned} d(x+x) &= d((x*x)*x) = (f(x*x)*d(x)) \lor (d(x*x)*f(x)) \\ &= (f(1)*d(x)) \lor (d(1)*f(x)) = (1*d(x)) \lor (1*f(x)) \\ &= d(x) \lor f(x) \\ &= (f(x)*d(x))*d(x) = f(x) + d(x). \end{aligned}$$

(3) Let $x \in X$. Then we have

$$\begin{aligned} d(x) &= d(1 * x) = (f(1) * d(x)) \lor (d(1) * f(x)) \\ &= (1 * d(x)) \lor (1 * f(x) = d(x)) \lor f(x) \\ &= (f(x) * d(x)) * d(x) \\ &= f(x) + d(x) \end{aligned}$$

DEFINITION 3.25. Let X be a BE-algebra. A non-empty set F of X is called a *normal filter* of X if it satisfies the following conditions:

(NF1) $1 \in F$,

(NF2) $x \in X$ and $y \in F$ imply $x * y \in F$.

EXAMPLE 3.26. Let $X = \{1, a, b, c\}$ be a set in which "*" is defined by

*	1	a	b	c	
1	1	a	b	c	
a	1	1	b	c	
b	1	1	1	c	
c	1	1	1	1	

Then X is a BE-algebra. Let $F = \{1, a\}$. Then F is a normal filter of X.

PROPOSITION 3.27. Let X be a BE-algebra and let d be a f-derivation of X. Then $Fix_d(X)$ is a normal filter of X.

Proof. Clearly, $1 \in Fix_d(X)$. Let $x \in X$ and $y \in Fix_d(X)$. Then we have d(y) = f(y), and so

$$d(x * y) = f(x) * d(y)$$
$$= f(x) * f(y)$$
$$= f(x * y),$$

which implies $x * y \in Fix_d(X)$ from Theorem 3.10. This completes the proof.

PROPOSITION 3.28. Let X be a BE-algebra and let d be a f-derivation of X. Then Kerd is a normal filter of X.

Proof. Clearly, $1 \in Kerd$. Let $x \in X$ and $y \in Kerd$. Then we have d(y) = 1, and so

$$d(x * y) = (f(x) * d(y)) \lor (d(x) * f(y))$$

= $(f(x) * 1) \lor (d(x) * f(y))$
= $1 \lor (d(x) * f(y)) = 1,$

which implies $x * y \in Kerd$. Hence Kerd is a normal filter of X. \Box

PROPOSITION 3.29. Let X be a self-distributive BE-algebra and let d be a f-derivation of X. Then $F_a = \{x \in X \mid a \leq d(x)\}$ is a normal filter of X.

Proof. Clearly, $a \leq d(1) = 1$ for any $a \in X$, and so $1 \in F_a$. Let $x \in X$ and $y \in F_a$. Then we have a * d(y) = 1, and so from Theorem 3.10,

$$\begin{split} a*d(x*y) &= a*(f(x)*d(y)) = (a*f(x))*(a*d(y)) \\ &= (a*f(x))*1 \\ &= 1, \end{split}$$

which implies $x * y \in F_a$. Hence F_a is a normal filter of X.

DEFINITION 3.30. Let f be a map on X. . A filter F of a BE-algebra X is said to be f-filter if $f(F) \subseteq F$.

DEFINITION 3.31. Let d be a self-map of a BE-algebra X. A f-filter F of X is said to be a d-invariant if $d(F) \subseteq F$.

PROPOSITION 3.32. Let X be a self-distributive BE-algebra X. If d is a f-derivation of X, then every f-filter F is d-invariant.

Proof. Let F be a f-filter of X. Let $y \in d(F)$. Then y = d(x) for some $x \in F$. It follows from Proposition 3.9(1) that $f(x) * y = f(x) * d(x) = 1 \in F$. Since F is a f-filter of X, we have $y \in F$. Thus $d(F) \subseteq F$. Hence F is d-invariant.

Kyung Ho Kim and B. Davvaz

References

- A. Firat, On f-derivations of BCC-algebras, Ars Combinatoria, XCVIIA (2010), 377-382.
- [2] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [3] Q. P. Hu and X. Li, On proper BCH-algebras, Math Japonicae 30 (1985), 659-661.
- [4] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonicae 23 (1978), 1-20.
- [5] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [6] K. H. Kim and S. M. Lee, On derivations of BE-algebras, Honam Mathematical Journal 36 (2014), no. 1, 167-178.
- [7] S. S. Ahn and K. S. So, On ideals and uppers in BE-algebras, Sci. Math. Japo. Online e-2008, 351-357.

*

Department of Mathematics Korea National University of Transportation Chungju 380-702, Republic of Korea *E-mail*: ghkim@ut.ac.kr

**

Department of Mathematics, Yazd University Yazd, Iran *E-mail*: davvaz@yazd.ac.ir