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ON f-DERIVATIONS OF LATTICES

Yılmaz Çeven and Mehmet Ali Öztürk

Abstract. In this paper, as a generalization of derivation on a lattice,
the notion of f -derivation for a lattice is introduced and some related

properties are investigated.

1. Introduction and preliminaries

Lattices play an important role in many fields such as information theory,
information retrieval, information access controls and cryptanalysis [2, 6, 13, 8].
Recently the properties of lattices were widely researched [1, 2, 5, 7, 8, 9, 13, 14].

In the theory of rings and near rings, the properties of derivations are an
important topic to study [3, 4, 11, 12]. Y. B. Jun and X. L. Xin [10] applied
the notion of derivation in ring and near ring theory to BCI-algebras. In
[15], J. Zhan and Y. L. Liu introduced the notion of left-right (or right-left) f -
derivation of a BCI algebra and investigated some properties. In [14], X. L. Xin,
T. Y. Li, and J. H. Lu introduced the notion of derivation on a lattice and
discussed some related properties.

In this paper, as a generalization of derivation on a lattice, the notion of f -
derivation of a lattice is introduced and some related properties, which are dis-
cussed in [14] for a derivation on a lattice, are investigated for the f -derivation
on a lattice. As important results of f -derivations on lattices, distributive and
modular lattices are characterized by f -derivations under some conditions.

Definition 1 ([5]). Let L be a nonempty set endowed with operations ∧ and
∨. Then (L,∧,∨) is called a lattice if it satisfies the following conditions for all
x, y, z ∈ L :

(1) x ∧ x = x, x ∨ x = x,
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z) , (x ∨ y) ∨ z = x ∨ (y ∨ z) ,
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x .

Definition 2 ([5]). A lattice L is called a distributive lattice if it satisfies the
identity (5) or (6) for all x, y, z ∈ L :

(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ,
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(6) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) .

Definition 3 ([1]). A lattice L is called a modular lattice if it satisfies the
following condition for all x, y, z ∈ L :

(7) If x ≤ z, then x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Definition 4 ([5]). Let (L,∧,∨) be a lattice. A binary relation ≤ is defined
by x ≤ y if and only if x ∧ y = x and x ∨ y = y.

Definition 5 ([5]). Let L and M be two lattices. The function g : L −→ M
is called a lattice homomorphism if it satisfies the following conditions for all
x, y ∈ L :

(8) g(x ∧ y) = g(x) ∧ g(y),
(9) g(x ∨ y) = g(x) ∨ g(y).

It is known that a homomorphism is called an epimorphism if it is onto.

Lemma 1 ([14]). Let (L,∧,∨) be a lattice. Define the binary relation ≤ as the
Definition 4. Then (L,≤) is a poset and for any x, y ∈ L, x ∧ y is the g.l.b of
{x, y} and x ∨ y is the l.u.b. of {x, y} .

Definition 6 ([14]). A function d : L −→ L on a lattice L is called a derivation
on L if it satisfies the following condition

d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy) .

The abbreviation dx is used for d(x) in the above definition.

Definition 7 ([14]). Let L be a lattice and d be a derivation on L.
(1) If x ≤ y implies dx ≤ dy, d is called an isotone derivation,
(2) If d is one-to-one, d is called a monomorphic derivation,
(3) If d is onto, d is called an epimorphic derivation.

2. The f-derivations in lattices

The following definition introduces the notion of f -derivations on lattices.

Definition 8. Let L be a lattice. A function d : L −→ L is called an f -
derivation on L if there exists a function f : L −→ L such that

(2.1) d (x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y))

for all x, y ∈ L.

It is obvious in the Definition 8 that if f is an identity function then d is
a derivation on L. Furthermore, according to Definition 8, a function d on L
can be an f -derivation only when a function f satisfying equation (2.1) exists.
But, to obtain some results, d or f must satisfy some additional conditions as
in the following propositions and theorems.

In this paper, we’ll abbreviate d(x) as dx and f(x) as fx.

Example 1. Let L be the lattice of Figure 1 and define a function d by d0 = 0,
da = a, db = a, dc = c, d1 = c.
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Then d is not a derivation on L since a = d (b ∧ 1) ̸= (db ∧ 1) ∨ (b ∧ d1) =
(a ∧ 1) ∨ (b ∧ c) = a ∨ b = b. If we define a function f by f0 = 0, fa = a, fb =
a, fc = 1, f1 = 1, then d satisfies the equation (2.1) for all x, y ∈ L and so d is
an f -derivation on L.

Example 2. Let L be a lattice and a ∈ L. Define a function d : L −→ L by
dx = fx∧ a for all x ∈ L where f : L −→ L satisfies f(x∧ y) = fx∧ fy for all
x, y ∈ L. Then d is an f -derivation. In addition, if f is an increasing function
then d is an isotone derivation.

Proposition 1. Let L be a lattice and d be an f-derivation on L. Then the
following identities hold for all x, y ∈ L.

a) dx ≤ fx,
b) dx ∧ dy ≤ d (x ∧ y) ≤ dx ∨ dy,
c) d (x ∧ y) ≤ fx ∨ fy,
d) If L has a least element 0, then f0 = 0 implies d0 = 0.

Proof. a) Since dx = d(x ∧ x) = dx ∧ fx, we have dx ≤ fx.
b) We have dx∧fy ≤ d(x∧y) and fx∧dy ≤ d (x ∧ y) from the equation (2.1).

Since dx ≤ fx, we obtain dx ∧ dy ≤ fx ∧ dy and hence we have dx ∧ dy ≤
d (x ∧ y) . We know that dx ∧ fy ≤ dx and fx ∧ dy ≤ dy. Then we obtain
d (x ∧ y) = (dx ∧ fy) ∨ (fx ∧ dy) ≤ dx ∨ dy.

c) Since dx ∧ fy ≤ fy and fx ∧ dy ≤ fx, we obtain d(x ∧ y)≤ fx ∨ fy.
d) Since dx ≤ fx for all x ∈ L, f0 = 0 and 0 is the least element of L, we

have 0 ≤ d0 ≤ f0 = 0. ¤

Proposition 2. Let L be a lattice and d be an f-derivation and 1 be the greatest
element of L and f1 = 1. Then the following identities hold;

a) If fx ≤ d1, then dx = fx,
b) If fx ≥ d1, then dx ≥ d1.

Proof. a) Since dx = d (x ∧ 1) = (dx ∧ f1) ∨ (fx ∧ d1) = dx ∨ fx, we have
fx ≤ dx. From Proposition 1 a), we obtain dx = fx.

b) Since dx = (dx ∧ f1) ∨ (fx ∧ d1) = dx ∨ d1, we have dx ≥ d1. ¤
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Remark 1. Note that if d1 = 1, since d1 ≤ f1, we have f1 = 1 where 1 the
greatest element of L. In this case, from Proposition 2 a), we get d = f .

Let L be a lattice and d be an f -derivation of L. Define a set F =
{x ∈ L : dx = fx} .

Proposition 3. Let L be a lattice and d be an f-derivation. If f is an increas-
ing function, then y ≤ x and x ∈ F implies y ∈ F.

Proof. Note that, since x ∈ F and dy ≤ fy ≤ fx = dx, we get dy = d(x∧ y) =
(dx ∧ fy) ∨ (fx ∧ dy) = (fx ∧ fy) ∨ dy = fy ∨ dy = fy. ¤

Proposition 4. Let L be a lattice and d be an isotone f-derivation on L. Then
for any x, y ∈ L, dx = dx ∨ (fx ∧ d (x ∨ y)) .

Proof. Since d is an isotone f -derivation, we know that for all x, y ∈ L, dx ≤
d (x ∨ y) ≤ f (x ∨ y) . Hence we have dx = d ((x ∨ y) ∧ x) = (d (x ∨ y) ∧ fx) ∨
(f (x ∨ y) ∧ dx) = dx ∨ (fx ∧ d (x ∨ y)) . ¤

Proposition 5. Let L be a lattice and d be an isotone f-derivation. If x, y ∈ F
and f is a decreasing function, then x ∨ y ∈ F.

Proof. Since x ≤ x∨ y and y ≤ x∨ y, we have f(x∨ y) ≤ fx and f(x∨ y) ≤ fy
respectively. Then we obtain f(x ∨ y) ≤ fx ∨ fy = dx ∨ dy ≤ d(x ∨ y) since d
is an isotone f -derivation. It is known that d(x ∨ y) ≤ f(x ∨ y), hence we get
x ∨ y ∈ F. ¤

Theorem 1. Let L be a lattice with greatest element 1 and d be an f-derivation
on L. Let f1 = 1 and f(x ∧ y) = fx ∧ fy for all x, y ∈ L. Then the following
conditions are equivalent:

(1) d is an isotone f-derivation,
(2) dx ∨ dy ≤ d(x ∨ y),
(3) dx = fx ∧ d1,
(4) d(x ∧ y) = dx ∧ dy.

Proof. (1) =⇒ (2) : Suppose that d is an isotone f -derivation. We know that
x ≤ x ∨ y and y ≤ x ∨ y. Since d is isotone, dx ≤ d(x ∨ y) and dy ≤ d(x ∨ y).
Hence we obtain dx ∨ dy ≤ d(x ∨ y).

(2) =⇒ (1) : Suppose that dx ∨ dy ≤ d(x ∨ y) and x ≤ y. Then we have
dx ≤ dx ∨ dy ≤ d(x ∨ y) = dy.

(1) =⇒ (3) : Suppose that d is an isotone f -derivation. We have dx ≤ d1.
It is known that dx ≤ fx from Proposition 1 a). Then we get dx ≤ fx ∧ d1.
From Proposition 4, for y = 1, we have dx = dx ∨ (fx ∧ d1) = fx ∧ d1.

(3) =⇒ (4) : Assume that (3) holds. Then d(x ∧ y) = f(x ∧ y) ∧ d1 =
fx ∧ fy ∧ d1 = (fx ∧ d1) ∧ (fy ∧ d1) = dx ∧ dy.

(4) =⇒ (1) : Let d(x∧y) = dx∧dy and x ≤ y. Since dx = d(x∧y) = dx∧dy,
we get dx ≤ dy. ¤
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Theorem 2. Let L be a modular lattice and d be an f-derivation on L.
(a) d is an isotone f-derivation if and only if d(x ∧ y) = dx ∧ dy,
(b) If d is an isotone f-derivation where f(x ∨ y) = fx ∨ fy, then dx = fx

implies d(x ∨ y) = dx ∨ dy.

Proof. (a) Suppose that d is an isotone f -derivation. Since x ∧ y ≤ x and
x ∧ y ≤ y, we get d(x ∧ y) ≤ dx and d(x ∧ y) ≤ dy. Hence d(x ∧ y) ≤ dx ∧ dy.
Also using Proposition 1 a) and the fact dx ∧ fy ≤ dx ≤ fx, we get

dx ∧ dy = (dx ∧ dy) ∧ (fx ∧ fy)
≤ (dx ∨ dy) ∧ (fx ∧ fy)
= ((dy ∨ dx) ∧ fy) ∧ fx

= (dy ∨ (dx ∧ fy)) ∧ fx

= ((dx ∧ fy) ∨ dy) ∧ fx

= (dx ∧ fy) ∨ (fx ∧ dy)
= d(x ∧ y).

Conversely, let d(x∧ y) = dx∧ dy and x ≤ y. Since dx = d(x∧ y) = dx∧ dy,
we have dx ≤ dy.

(b) Suppose that d is an isotone f -derivation and dx = fx . Using Proposi-
tion 4 and since L is modular lattice, we have

dy = dy ∨ (fy ∧ d(x ∨ y))
= (dy ∨ fy) ∧ d(x ∨ y)
= fy ∧ d(x ∨ y).

Hence using the hypothesis, we obtain

dx ∨ dy = dx ∨ (fy ∧ d(x ∨ y))
= (dx ∨ fy) ∧ d(x ∨ y)
= (fx ∨ fy) ∧ d(x ∨ y)
= f(x ∨ y) ∧ d(x ∨ y)
= d(x ∨ y).

¤

Theorem 3. Let L be a distributive lattice and d be an f-derivation on L
where f(x ∨ y) = fx ∨ fy. Then the following hold:

(1) d is an isotone f-derivation implies d(x ∧ y) = dx ∧ dy,
(2) d is an isotone f-derivation if and only if d(x ∨ y) = dx ∨ dy.

Proof. (1) Since d is isotone f -derivation, we know that d(x ∧ y) ≤ dx ∧ dy.
From Proposition 1 a), we get

dx ∧ dy = (dx ∧ fx) ∧ (dy ∧ fy)
= (dx ∧ fy) ∧ (fx ∧ dy)
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≤ (dx ∧ fy) ∨ (fx ∧ dy)
= d(x ∧ y).

Hence we have d(x ∧ y) = dx ∧ dy.
(2) Let d is an isotone f -derivation. From (1), we have d(x ∧ y) = dx ∧ dy.

Then, from Proposition 1 a) and Proposition 4, we get dy = dy∨(fy∧d(x∨y)) =
(dy ∨ fy) ∧ (dy ∨ d(x ∨ y)) = fy ∧ d(x ∨ y) and similarly dx = fx ∧ d(x ∨ y).
Then we obtain

dx ∨ dy = (fx ∧ d(x ∨ y)) ∨ (fy ∧ d(x ∨ y))
= (fx ∨ fy) ∧ d(x ∨ y)
= f(x ∨ y) ∧ d(x ∨ y)
= d(x ∨ y).

Conversely, suppose that d(x ∨ y) = dx ∨ dy and x ≤ y. Then since dy =
d(x ∨ y) = dx ∨ dy, we have dx ≤ dy. ¤

Theorem 4. Let L be a lattice. If there exists an f-derivation d on L such
that d(x ∨ y) = dx ∨ dy for all x, y ∈ L and f is an epimorphism, then L is a
distributive lattice.

Proof. We know from Example 2 that the function d defined by dx = fx ∧ c
for c ∈ L where f is a homomorphism is an f -derivation on L. Also suppose
that f is onto and d(x ∨ y) = dx ∨ dy for all x, y ∈ L. Then, for all a, b ∈ L
there exist u, v ∈ L such that fu = a and fv = b. Hence

(a ∨ b) ∧ c = (fu ∨ fv) ∧ c

= f(u ∨ v) ∧ c

= d(u ∨ v)
= du ∨ dv

= (fu ∧ c) ∨ (fv ∧ c)
= (a ∧ c) ∨ (b ∧ c).

¤

Since every distributive lattice is a modular lattice, we have the following
corollary.

Corollary 1. Let L be a lattice. If there exists an f-derivation d on L such
that d(x ∨ y) = dx ∨ dy for all x, y ∈ L and f is an epimorphism, then L is a
modular lattice.
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