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Abstract

The object of this paper is to study φ -recurrent Kenmotsu manifolds. Also three-dimensional locally φ -

recurrent Kenmotsu manifolds have been considered. Among others it is proved that a locally φ -recurrent

Kenmotsu spacetime is the Robertson-Walker spacetime. Finally we give a concrete example of a three-

dimensional Kenmotsu manifold.
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1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakend by many authors in several
ways to a different extent. As a weaker version of local symmetry, T. Takahashi [16] introduced the notion of
locally φ -symmetry on a Sasakian manifold. Generalizing the notion of φ -symmetry, one of the authors, De,
[7] introduced the notion of φ -recurrent Sasakian manifold. In the context of contact geometry the notion of

φ -symmetry is introduced and studied by Boeckx, Buecken and Vanhecke [3] with several examples.

On the other hand Kenmotsu [11] defined a type of contact metric manifold which is nowadays called
Kenmotsu manifold. It may be mentioned that a Kenmotsu manifold is not a Sasakian manifold. Also, a
Kenmotsu manifold is not compact because of divξ = 2n. In [11], Kenmotsu showed that locally a Kenmotsu

manifold is a warped product I×f N of an interval I and a Kahler manifold N with warping function f(t) = set,

where s is a nonzero constant.

The present paper is organized as follows: Section 2 is devoted to preliminaries. In section 3, we prove
that a φ -recurrent Kenmotsu manifold is an Einstein manifold and a locally φ -recurrent Kenmotsu manifold
is locally a hyperbolic space. In the next section, it is proved that a three-dimensional locally φ -recurrent
Kenmotsu manifold is a manifold of constant curvature. In section 5, we prove that a locally φ -recurrent
Kenmotsu spacetime is the Robertson-Walker spacetime. In the last section, we construct an example of a
three-dimensional Kenmotsu manifold.
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2. Preliminaries

Let M2n+1(φ, ξ, η, g) be an almost contact Riemannian manifold, where φ is a (1, 1) tensor field, ξ is

the structure vector field, η is a 1-form and g is the Riemannian metric. It is well known that (φ, ξ, η, g) satisfy

φξ = 0, η(φX) = 0, η(ξ) = 1, (2.1)

φ2X = −X + η(X)ξ, (2.2)

g(X, ξ) = η(X), (2.3)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), (2.4)

for any vector fields X and Y on M [1], [2].
If, moreover,

(∇Xφ)Y = −η(Y )φX − g(X, φY )ξ, X, Y ∈ χ(M), (2.5)

∇Xξ = X − η(X)ξ, (2.6)

where ∇ denotes the Riemannian connection of g, then (M, φ, ξ, η, g) is called an almost Kenmotsu manifold

[11].

Kenmotsu manifolds have been studied by many authors such as Binh, Tamassy, De and Tarafdar [4],

Pitiş [15], De and Pathak [5], Jun, De and Pathak [10], Ozgür [13], Ozgür and De [14], Dileo and Pastore [8]
and many others.

In a Kenmotsu manifold the following relations hold: [11] .

(∇Xη)(Y ) = g(X, Y ) − η(X)η(Y ), (2.7)

η(R(X, Y )Z) = g(X, Z)η(Y ) − g(Y, Z)η(X), (2.8)

R(X, Y )ξ = η(X)Y − η(Y )X, (2.9)

R(ξ, X)Y = η(Y )X − g(X, Y )ξ, (2.10)

S(X, ξ) = −2nη(X), (2.11)

(∇ZR)(X, Y )ξ = g(X, Z)Y − g(Z, Y )X − R(X, Y )Z, (2.12)

for any vector fields X, Y, Z, where R is the Riemannian curvature tensor and S is the Ricci tensor.

Definition 1 A Kenmotsu manifold is said to be a locally φ-symmetric manifold if

φ2((∇W R)(X, Y )Z) = 0, (2.13)

for all vector fields X, Y, Z, W orthogonal to ξ.

This notion was introduced for Sasakian manifolds by Takahashi [16].
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Definition 2 A Kenmotsu manifold is said to be a φ-recurrent manifold if there exists a non-zero 1-form A

such that
φ2((∇W R)(X, Y )Z) = A(W )R(X, Y )Z, (2.14)

for arbitrary vector fields X, Y, Z, W.

If X, Y, Z, W are orthogonal to ξ, then the manifold is called locally φ -recurrent manifold.
If the 1-form A vanishes, then the manifold reduces to a φ -symmetric manifold.

3. φ-Recurrent Kenmotsu Manifolds

To prove the main theorem of the paper we first prove the following lemma.

Lemma 1 In a φ-recurrent Kenmotsu manifold (M2n+1, g), n > 1, the characteristic vector field ξ and the
vector field ρ associated to the 1-form A are co-directional and the 1-form A is given by

A(W ) = η(ρ)η(W ).

Proof. Two vector fields P and Q are said to be co-directional if P = fQ where f is a non-zero scalar.
That is,

g(P, X) = fg(Q, X) for all X . (3.15)

Let us consider a φ -recurrent Kenmotsu manifold. Then by virtue of (2.2) and (2.14), we have

(∇W R)(X, Y )Z = η((∇W R)(X, Y )Z)ξ − A(W )R(X, Y )Z. (3.16)

From (3.16) and the Bianchi identity, we get

A(W )η(R(X, Y )Z) + A(X)η(R(Y, W )Z) + A(Y )η(R(W, X)Z) = 0. (3.17)

Let {ei}, i = 1, 2, 3, ..., 2n + 1, be an orthonormal basis of the tangent space at any point of the manifold.

Putting Y = Z = ei in (3.17) and taking summation over i, 1 ≤ i ≤ 2n + 1, we get by virtue of (2.8)

A(W )η(X) = A(X)η(W ), (3.18)

for all vector fields X, W. Replacing X by ξ in (3.18), it follows that

A(W ) = η(ρ)η(W ), (3.19)

where A(X) = g(X, ρ) and ρ is the vector field associated to the 1-form A. From (3.15) and (3.19) it is clear
that ξ and ρ are co-directional. �

Theorem 1 A φ-recurrent Kenmotsu manifold is an Einstein manifold.

Proof. From (3.16), we have

−g(∇W R)(X, Y )Z, U) + η((∇WR)(X, Y )Z)η(U) = A(W )g(R(X, Y )Z, U). (3.20)
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Putting X = U = ei in (3.20) and taking summation over i, 1 ≤ i ≤ 2n + 1, we get

−(∇WS)(Y, Z) +
2n+1∑

i=1

η((∇WR)(ei, Y )Z)η(ei) = A(W )S(Y, Z). (3.21)

The second term of (3.21) by putting Z = ξ takes the form

η((∇W R)(ei, Y )ξ)η(ei) = g((∇W R)(ei, Y )ξ, ξ)g(ei, ξ), (3.22)

which is denoted by E. In this case E vanishes. Namely, we have

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ) − g(R(∇W ei, Y )ξ, ξ) (3.23)

−g(R(ei,∇WY )ξ, ξ) − g(R(ei, Y )∇W ξ, ξ)

at p ∈ M. In local coordinates ∇Xei = XjΓh
jieh , where Γh

ji are the Christoffel symbols. Since {ei} is an

orthonormal basis, the metric tensor gij = δij , where δij is the Kronecker delta and hence the Christoffel
symbols are zero. Therefore, ∇Xei = 0. Also we have

g(R(ei,∇WY )ξ, ξ) = 0, (3.24)

since R is skew-symmetric. Using (3.24) and ∇Xei = 0 in (3.23), we obtain

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ) − g(R(ei, Y )∇W ξ, ξ).

By virtue of g(R(ei, Y )ξ, ξ) = −g(R(ξ, ξ)Y, ei) = 0, we have

g(∇W R(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0, (3.25)

which implies
g((∇W R)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇W ξ) − g(R(ei, Y )∇W ξ, ξ).

Since R is skew-symmetric
g((∇W R)(ei, Y )ξ, ξ) = 0. (3.26)

Using (3.26) from (3.21), we get

(∇WS)(Y, ξ) = −A(W )S(Y, ξ). (3.27)

We know that
(∇WS)(Y, ξ) = ∇WS(Y, ξ) − S(∇W Y, ξ) − S(Y,∇W ξ).

Again using (2.6), (2.7) and (2.11), we get

(∇WS)(Y, ξ) = −2ng(Y, W ) − S(Y, W ). (3.28)

Now using (3.28) in (3.27), we obtain

S(Y, W ) = −2nA(W )η(Y ) − 2ng(Y, W ). (3.29)

Applying Lemma 1, equation (3.29) reduces to

S(Y, W ) = −2ng(Y, W ) − 2nη(ρ)η(Y )η(W ),

which implies that the manifold is an η -Einstein manifold. �
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In Corollary 9 of Proposition 8 of [11], it is proved that if a Kenmotsu manifold is an η -Einstein manifold

of type S = ag + bη ⊗ η and if b =constant (or a =constant) then M is an Einstein manifold. Hence by the
above result a φ -recurrent Kenmotsu manifold is an Einstein manifold.

Theorem 2 A locally φ-recurrent Kenmotsu manifold (M2n+1, g), n > 1, is a manifold of constant curvature
−1, i.e., it is locally a hyperbolic space.

Proof. From (2.12), we have

(∇W R)(X, Y )ξ = g(W, X)Y − g(W, Y )X − R(X, Y )W. (3.30)

By virtue of (2.8), it follows from (3.30) that

η((∇W R)(X, Y )ξ) = 0. (3.31)

In view of (3.30) and (3.31), we obtain from (3.16)

−(∇WR)(X, Y )ξ = A(W )R(X, Y )ξ, (3.32)

from which by using (2.12), it follows that

−g(X, W )Y + g(Y, W )X + R(X, Y )W = A(W )R(X, Y )ξ.

Hence if X and Y are orthogonal to ξ, then we get from (2.9)

R(X, Y )ξ = 0.

Thus, we obtain
R(X, Y )W = −[g(Y, W )X − g(X, W )Y ],

for all X, Y, W. �

Remark. It may be mentioned that a semi-symmetric (R(X, Y ).R = 0) Kenmotsu manifold and a conformally

flat Kenmotsu manifold of dimension > 3 are of constant sectional curvature [11]. Also De and Pathak [5]

proved that three dimensional Ricci semi-symmetric (R(X, Y ) · S = 0) Kenmotsu manifold is of constant
sectional curvature.

4. Three-Dimensional Kenmotsu Manifolds

It is known that in a three-dimensional Kenmotsu manifold the curvature tensor has the following form
[5]

R(X, Y )Z = (
r + 4

2
)[g(Y, Z)X − g(X, Z)Y ]

−(
r + 6

2
)[g(Y, Z)η(X)ξ − g(X, Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ]. (4.33)
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Taking the covariant differentiation of the equation (4.33), we have

(∇W R)(X, Y )Z =
dr(W )

2
[g(Y, Z)X − g(X, Z)Y ] − dr(W )

2
[g(Y, Z)η(X)ξ − g(X, Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y ] − (
r + 6

2
)[g(Y, Z)(∇W η)(X)ξ + g(Y, Z)η(X)∇W ξ (4.34)

−g(X, Z)(∇W η)(Y )ξ − g(X, Z)η(Y )∇W ξ + (∇Wη)(Y )η(Z)X + η(Y )(∇Wη)(Z)X

−(∇W η)(X)η(Z)Y − η(X)(∇W η)(Z)Y ]

Now applying φ2 to the both sides of (4.34) , we obtain

φ2(∇WR)(X, Y )Z =
−dr(W )

2
[g(Y, Z)X − g(X, Z)Y − g(Y, Z)η(X)ξ + g(X, Z)η(Y )ξ + η(X)η(Z)Y

−η(Y )η(Z)X] + (
r + 6

2
)[(∇W η)(Y )η(Z)X + η(Y )(∇W η)(Z)X − (∇Wη)(X)η(Z)Y

−η(X)(∇W η)(Z)Y − (∇W η)(Y )η(Z)η(X)ξ + (∇Wη)(X)η(Z)η(Y )ξ]. (4.35)

Taking X, Y, Z, W orthogonal to ξ and using (2.14), we finally get from (4.35)

A(W )R(X, Y )Z =
−dr(W )

2
[g(Y, Z)X − g(X, Z)Y ]. (4.36)

Putting W = {ei} in (4.36), where {ei}, i = 1, 2, 3, is an orthonormal basis of the tangent space at any point
of the manifold and taking summation over i, 1 ≤ i ≤ 3, we obtain

R(X, Y )Z = λ[g(Y, Z)X − g(X, Z)Y ],

where λ = −dr(ei)
2A(ei)

is a scalar , since A is a non-zero 1-form. Then by Schur’s theorem λ will be a constant on

the manifold. Therefore, M3 is of constant curvature λ. Thus we get the following theorem.

Theorem 3 A three-dimensional locally φ-recurrent Kenmotsu manifold is of constant curvature.

5. Locally φ-Recurrent Kenmotsu Spacetime

In this section we consider locally φ -recurrent Kenmotsu spacetime. By a spacetime, we mean a 4-
dimensional semi-Riemannian manifold endowed with Lorentzain metric of signature (− + ++). In a recent

paper one of the authors De and Pathak [6] prove that the characteristic vector field ξ in a Kenmotsu manifold is

a concircular vector field [18]. Also from Theorem 2, we can easily prove that a locally φ -recurrent Kenmotsu
manifold is conformally flat. Hence divC = 0, where C denotes the conformal curvature tensor and “div”
denotes divergence.

Hence, we have

(∇XS)(Y, Z) − (∇Y S)(X, Z) =
1

2(n − 1)
[g(Y, Z)dr(X) − g(X, Z)dr(Y )]. (5.37)
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Yano [17], prove that, in order that a Riemannian space admits a concircular vector field, it is necessary and
sufficient that there exists a coordinate system with respect to which the fundamental quadratic differential
form may be written in the form

ds2 = (dx1)2 + eqg∗αβ dxαdxβ,

where g∗αβ = g∗αβ(xr) are the functions of xr only (α, β, r = 2, 3, ..., n) and q = q(x′) �= constant is a function

of x1 only. In the semi-Riemannian space, we can prove that

ds2 = −(dx1)2 + eqg∗αβ dxαdxβ.

Thus a Kenmotsu spacetime can be expressed as a warped product −I×eq M∗, where M∗ is a three-dimensional
Riemannian manifold. But Gebarowski [9] prove that warped product −I ×eq M∗ satisfies (5.37) if and only
if M∗ is an Einstein manifold. Thus a locally φ -recurrent Kenmotsu spacetime must be warped product
−I ×eq M∗, where M∗ is an Einstein manifold. Since we consider a 4-dimensional manifold, M∗ is a three-
dimensional Einstein manifold. It is known that a three– dimensional Einstein manifold is a manifold of constant
curvature. Hence a locally φ -recurrent Kenmotsu spacetime is the warped product −I ×eq M∗, where M∗ is
a manifold of constant curvature. But such a warped product is the Robertson-Walker spacetime [12].

Thus we have the following theorem.

Theorem 4 A locally φ-recurrent Kenmotsu spacetime is the Robertson-Walker spacetime.

6. Example of a Three-Dimensional Kenmotsu Manifold

We consider the three-dimensional manifold M = {(x, y, z) ∈ R
3}, z �= 0 where (x, y, z) are the standard

coordinates of R
3. The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z
,

are linearly indepent at each point of M . Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2 , e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3 , e3) = 1.

That is, the form of the metric becomes

g =
(dx2 + dy2 + dz2)

z2
.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be the (1, 1)-tensor field
defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3 ,

g(φZ, φW ) = g(Z, W ) − η(Z)η(W ),
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for any Z, W ∈ χ(M). Then for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact metric structure on
M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z, X) − Zg(X, Y ) − g(X, [Y, Z]) − g(Y, [X, Z]) + g(Z, [X, Y ]),

which is known as Koszul’s formula. Using this formula we obtain

∇e1e3 = e1, ∇e2e3 = e2,

∇e1e2 = 0, ∇e2e2 = −e3,

∇e2e2 = −e3, ∇e2e2 = −e3 ,

∇e1e1 = −e3, ∇e2e1 = 0,

∇e3e1 = 0, ∇e3e2 = 0,

∇e3e3 = 0.

Thus (2.6) is satisfied. It is straightforward computation to verify that the manifold under consideration is a
three-dimensional Kenmotsu manifold.
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