CORRECTION TO "ON FACTORS OF C([0, 1]) WITH NONSEPARABLE DUAL"

Israel Journal of Mathematics 13 (1972), 361–378

BY

HASKELL P. ROSENTHAL

I am indebted to Professor T. Ito for pointing out that the statement of Proposition 2 is incorrect. Let us introduce the following notation; if Y is a linear space of real-valued functions defined on some set Ω , and θ is a real-valued function defined on Ω , let $\theta \cdot Y = \{\theta \cdot y; y \in Y\}$. As noted by Professor Ito, the correct statement of Proposition 2 is as follows:

Let Ω be a compact Hausdorff space, let $C(\Omega)^*$ be identified with the space of all regular scalar-valued Borel measures on Ω , and let Z be a subspace of $C(\Omega)^*$ isometric to L^1 . Then there exists a regular Borel probability measure μ on Ω , a Borel measurable function θ such that $|\theta| \equiv 1$, and a σ algebra \mathcal{S} of the Borel subsets of Ω such that $(\Omega, \mathcal{S}, \mu | \mathcal{S})$ is a purely non-atomic measure space and $Z = \theta \cdot L^1(\mu | \mathcal{S})$.

The function θ was omitted from the original statement of Proposition 2. The proof on page 370 does indeed yield the above (essentially known) result; the " μ " produced there is a signed measure with the property that $d\mu = \theta d\tilde{\mu}$ for a certain Borel probability measure $\hat{\mu}$, where θ is as above.

The proof of the results may be modified with very little change to give a correct proof of the main result, Theorem 1. I shall simply indicate the necessary changes.

Page 364 — again insert the function θ (as above) in the description of Z.

Page 365 — line 8 from the top: insert the words " θ a Borel measurable real-valued function defined on Ω with $|\theta| \equiv 1$," after "measure on Ω ,".

Page 365 — line 15 from the top: insert an additional line as follows: "(v) $\theta \mid K_1^0$ is continuous relative to K_1^0 ".

Page 365 — line 19 from the top: insert the phrase ", hence $\theta \cdot A$ is a subspace of C(K) isometric to $C(\Delta)$ " after " $C(\Delta)$ ".

Page 365 — line 9 from the bottom: replace by

$$``\varphi = \sum_{i=1}^{n} c_i X_{K_i^n} \cdot \theta ''.$$

Page 365 — line 8 from the bottom: replace "A" by " $\theta \cdot A$ ".

Page 365 — line 4 from the bottom: replace the three occurrences of "f" by " θf "; also replace " F_i^n " by " F_i^n ".

Page 366 — line 1 from the top: replace " $L^{1}(\mu | \mathscr{S})$ " by " $\theta \cdot L^{1}(\mu | \mathscr{S})$ ".

Page 366 — line 8 from the top: insert an additional line as follows: "(c) $\theta \mid K$ is continuous relative to K.".

Page 366 — line 9 from the top: insert "Lusin's theorem and" after "By"; insert " $\theta \mid K$ continuous and" after "with".

Page 367 — line 8 from the top: insert the following additional line: "(vi') $\theta \mid (\tilde{K}_1^1 \cup \tilde{K}_2^1)$ is continuous relative to $\tilde{K}_1^1 \cup \tilde{K}_2^1$.".

Page 367 – line 5 from the bottom: insert at the end, " $\theta \mid K_i$ is continuous relative to K_i (necessary only when n = 0),".

Page 369 — restate Proposition 2 as above.

Page 370 — line 11 from the bottom: replace by the following: "let μ be the measure on Ω such that $d\mu = |f_1^0| d\nu$ and $\tilde{\mu}$ the signed measure on Ω such that $d\tilde{\mu} = f_1^0 d\nu$; let θ be defined by $\theta(t) = 1$ if $f_1^0(t) = 0$ and $\theta(t) = f_1^0(t)/|f_1^0(t)|$ otherwise".

Page 370 — lines 10 and 8 from the bottom: replace " μ " by " $\tilde{\mu}$ ".

Page 370 — lines 7, 6, and 3 from the bottom: replace " $L^{1}(\mu | \mathscr{S})$ " by " $\theta \cdot L^{1}(\mu | \mathscr{S})$ ".

Page 375, line 7 from the bottom: insert ", a Borel measurable function θ with $|\theta| \equiv 1$ " after "K".

Page 375 — line 6 from the bottom: replace " $L^{1}(\mu | \mathscr{G})$ " by " $\theta \cdot L^{1}(\mu | \mathscr{G})$ ".

Page 375 — line 5 from the bottom: replace "(iv)" by "(v)".

Page 376 — line 2 from the top: replace both occurrences of "A" by " $\theta \cdot A$ ".

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN, ILLINOIS, U.S.A.