CORRECTION TO "ON FACTORS OF $C([0,1])$ WITH NONSEPARABLE DUAL"

Israel Journal of Mathematics 13 (1972), 361-378
BY

HASKELL P. ROSENTHAL

I am indebted to Professor T. Ito for pointing out that the statement of Proposition 2 is incorrect. Let us introduce the following notation; if Y is a linear space of real-valued functions defined on some set Ω, and θ is a real-valued function defined on Ω, let $\theta \cdot Y=\{\theta \cdot y ; y \in Y\}$. As noted by Professor Ito, the correct statement of Proposition 2 is as follows:

Let Ω be a compact Hausdorff space, let $C(\Omega)^{*}$ be identified with the space of all regular scalar-valued Borel measures on Ω, and let Z be a subspace of $C(\Omega)^{*}$ isometric to L^{1}. Then there exists a regular Borel probablity measure μ on Ω, a Borel measurable function θ such that $|\theta| \equiv 1$, and a σ algebra \mathscr{S} of the Borel subsets of Ω such that $(\Omega, \mathscr{P}, \mu \mid \mathscr{S})$ is a purely non-atomic measure space and $Z=\theta \cdot L^{1}(\mu \mid \mathscr{P})$.

The function θ was omitted from the original statement of Proposition 2. The proof on page 370 does indeed yield the above (essentially known) result; the " μ " produced there is a signed measure with the property that $d \mu=\theta d \tilde{\mu}$ for a certain Borel probability measure $\hat{\mu}$, where θ is as above.

The proof of the results may be modified with very little change to give a correct proof of the main result, Theorem 1. I shall simply indicate the necessary changes.

Page 364 - again insert the function θ (as above) in the description of Z.
Page 365 - line 8 from the top: insert the words " θ a Borel measurable real-valued function defined on Ω with $|\theta| \equiv 1$," after "measure on Ω,".

Page 365 - line 15 from the top: insert an additional line as follows: "(v) $\theta \mid K_{1}^{0}$ is continuous relative to $K_{1}^{0 "}$.

Page 365 - line 19 from the top: insert the phrase ", hence $\theta \cdot A$ is a subspace of $C(K)$ isometric to $C(\Delta)$ " after " $C(\Delta)$ ".
Page 365 - line 9 from the bottom: replace by

$$
" \varphi=\sum_{i=1}^{n} c_{i} X_{K \eta} \cdot \theta^{\prime \prime} .
$$

Page 365 - line 8 from the bottom: replace " A " by " $\theta \cdot A$ ".
Page 365 - line 4 from the bottom: replace the three occurrences of " f " by " θf "; also replace " F_{i}^{n} " by " F_{i}^{n} ".

Page 366 - line 1 from the top: replace " $L^{1}(\mu \mid \mathscr{P})$ " by " $\theta \cdot L^{1}(\mu \mid \mathscr{P})$ ".
Page 366 - line 8 from the top: insert an additional line as follows: "(c) $\theta \mid K$ is continuous relative to K.".

Page 366 - line 9 from the top: insert "Lusin's theorem and" after "By"; insert " $\theta \mid K$ continuous and" after "with".

Page 367 - line 8 from the top: insert the following additional line: "(vi') $\theta \mid\left(\tilde{K}_{1}^{1} \cup \tilde{K}_{2}^{1}\right)$ is continuous relative to $\tilde{K}_{1}^{1} \cup \tilde{K}_{2}^{1}$,".

Page 367 - line 5 from the bottom: insert at the end, " $\theta \mid K_{i}$ is continuous relative to K_{j} (necessary only when $n=0$),".

Page 369 - restate Proposition 2 as above.
Page 370 - line 11 from the bottom: replace by the following: "let μ be the measure on Ω such that $d \mu=\left|f_{1}^{0}\right| d \nu$ and $\tilde{\mu}$ the signed measure on Ω such that $d \tilde{\mu}=f_{1}^{0} d \nu$; let θ be defined by $\theta(t)=1$ if $f_{1}^{0}(t)=0$ and $\theta(t)=f_{1}^{0}(t) t\left|f_{1}^{0}(t)\right|$ otherwise".

Page 370 - lines 10 and 8 from the bottom: replace " μ " by " μ ".
Page 370 - lines 7,6 , and 3 from the bottom: replace " $L^{1}(\mu \mid \mathscr{F})$ " by " $\theta \cdot L^{1}(\mu \mid \mathscr{P})$ ".

Page 375, line 7 from the bottom: insert ", a Borel measurable function θ with $|\theta| \equiv 1$ " after " K ".

Page 375 - line 6 from the bottom: replace " L ' $(\mu \mid \mathscr{S})$ " by $" \theta \cdot L^{1}(\mu \mid \mathscr{S}) "$.

Page 375 - line 5 from the bottom: replace "(iv)" by "(v)".
Page 376 - line 2 from the top: replace both occurrences of " A " by " $\theta \cdot A$ ".

Department of Mathematics
University of Illinois at Urbana
Champaign, Illinois, U.S.A.

