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Abstract

The machine learning community has become increasingly concerned with the
potential for bias and discrimination in predictive models. This has motivated a
growing line of work on what it means for a classification procedure to be “fair.”
In this paper, we investigate the tension between minimizing error disparity across
different population groups while maintaining calibrated probability estimates. We
show that calibration is compatible only with a single error constraint (i.e. equal
false-negatives rates across groups), and show that any algorithm that satisfies this
relaxation is no better than randomizing a percentage of predictions for an existing
classifier. These unsettling findings, which extend and generalize existing results,
are empirically confirmed on several datasets.

1 Introduction

Recently, there has been growing concern about errors of machine learning algorithms in sensitive
domains – including criminal justice, online advertising, and medical testing [33] – which may
systematically discriminate against particular groups of people [2, 4, 8]. A recent high-profile
example of these concerns was raised by the news organization ProPublica, who studied a risk-
assessment tool that is widely used in the criminal justice system. This tool assigns to each criminal
defendant an estimated probability that they will commit a future crime. ProPublica found that the
risk estimates assigned to defendants who did not commit future crimes were on average higher
among African-American defendants than Caucasian defendants [1]. This is a form of false-positive
error, and in this case it disproportionately affected African-American defendants. To mitigate issues
such as these, the machine learning community has proposed different frameworks that attempt
to quantify fairness in classification [2, 4, 8, 19, 26, 34, 37]. A recent and particularly noteworthy
framework is Equalized Odds [19] (also referred to as Disparate Mistreatment [37]),1 which constrains
classification algorithms such that no error type (false-positive or false-negative) disproportionately
affects any population subgroup. This notion of non-discrimination is feasible in many settings, and
researchers have developed tractable algorithms for achieving it [17, 19, 34, 37].

When risk tools are used in practice, a key goal is that they are calibrated: if we look at the set of
people who receive a predicted probability of p, we would like a p fraction of the members of this
set to be positive instances of the classification problem [11]. Moreover, if we are concerned about
fairness between two groups G1 and G2 (e.g. African-American defendants and white defendants)
then we would like this calibration condition to hold simultaneously for the set of people within each
of these groups as well [16]. Calibration is a crucial condition for risk tools in many settings. If a
risk tool for evaluating defendants were not calibrated with respect to groups defined by race, for
example, then a probability estimate of p could carry different meaning for African-American and
white defendants, and hence the tool would have the unintended and highly undesirable consequence
of incentivizing judges to take race into account when interpreting its predictions. Despite the

∗Equal contribution, alphebetical order.
1 For the remainder of the paper, we will use Equalized Odds to refer to this notion of non-discrimination.
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importance of calibration as a property, our understanding of how it interacts with other fairness
properties is limited. We know from recent work that, except in the most constrained cases, it is
impossible to achieve calibration while also satisfying Equalized Odds [8, 26]. However, we do not
know how best to achieve relaxations of these guarantees that are feasible in practice.

Our goal is to further investigate the relationship between calibration and error rates. We show
that even if the Equalized Odds conditions are relaxed substantially – requiring only that weighted
sums of the group error rates match – it is still problematic to also enforce calibration. We provide
necessary and sufficient conditions under which this calibrated relaxation is feasible. When feasible,
it has a unique optimal solution that can be achieved through post-processing of existing classifiers.
Moreover, we provide a simple post-processing algorithm to find this solution: withholding predic-
tive information for randomly chosen inputs to achieve parity and preserve calibration. However,
this simple post-processing method is fundamentally unsatisfactory: although the post-processed
predictions of our information-withholding algorithm are “fair” in expectation, most practitioners
would object to the fact that a non-trivial portion of the individual predictions are withheld as a result
of coin tosses – especially in sensitive settings such as health care or criminal justice. The optimality
of this algorithm thus has troubling implications and shows that calibration and error-rate fairness are
inherently at odds (even beyond the initial results by [8] and [26]).

Finally, we evaluate these theoretical findings empirically, comparing calibrated notions of non-
discrimination against the (uncalibrated) Equalized Odds framework on several datasets. These
experiments further support our conclusion that calibration and error-rate constraints are in most
cases mutually incompatible goals. In practical settings, it may be advisable to choose only one of
these goals rather than attempting to achieve some relaxed notion of both.

2 Related Work

Calibrated probability estimates are considered necessary for empirical risk analysis tools [4, 10,
12, 16]. In practical applications, uncalibrated probability estimates can be misleading in the sense
that the end user of these estimates has an incentive to mistrust (and therefore potentially misuse)
them. We note however that calibration does not remove all potential for misuse, as the end user’s
biases might cause her or him to treat estimates differently based on group membership. There
are several post-processing methods for producing calibrated outputs from classification algorithms.
For example, Platt Scaling [31] passes outputs through a learned sigmoid function, transforming
them into calibrated probabilities. Histogram Binning and Isotonic Regression [35] learn a general
monotonic function from outputs to probabilities. See [30] and [18] for empirical comparisons of
these methods.

Equalized Odds [19], also referred to as Disparate Mistreatment [37], ensures that no error type
disproportionately affects any particular group. Hardt et al. [19] provide a post-processing technique
to achieve this framework, while Zafar et al. [37] introduce optimization constraints to achieve
non-discrimination at training time. Recently, this framework has received significant attention
from the algorithmic fairness community. Researchers have found that it is incompatible with other
notions of fairness [8, 9, 26]. Additionally, Woodworth et al. [34] demonstrate that, under certain
assumptions, post-processing methods for achieving non-discrimination may be suboptimal.

Alternative fairness frameworks exist and are continuously proposed. We highlight several of these
works, though by no means offer a comprehensive list. (More thorough reviews can be found in
[2, 4, 32]). It has been shown that, under most frameworks of fairness, there is a trade-off between
algorithmic performance and non-discrimination [4, 9, 19, 39]. Several works approach fairness
through the lens of Statistical Parity [6, 7, 14, 20, 22, 23, 29, 38]. Under this definition, group
membership should not affect the prediction of a classifier, i.e. members of different groups should
have the same probability of receiving a positive-class prediction. However, it has been argued that
Statistical Parity may not be applicable in many scenarios [8, 13, 19, 26], as it attempts to guarantee
equal representation. For example, it is inappropriate in criminal justice, where base rates differ across
different groups. A related notion is Disparate Impact [15, 36], which states that the prediction rates
for any two groups should not differ by more than 80% (a number motivated by legal requirements).
Dwork et al. [13] introduce a notion of fairness based on the idea that similar individuals should
receive similar outcomes, though it challenging to achieve this notion in practice. Fairness has also
been considered in online learning [21, 24], unsupervised learning [5], and causal inference [25, 27].
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3 Problem Setup

The setup of our framework most follows the Equalized Odds framework [19, 37]; however, we
extend their framework for use with probabilistic classifiers. Let P ⊂ R

k × {0, 1} be the input space
of a binary classification task. In our criminal justice example, (x, y) ∼ P represents a person, with x

representing the individual’s history and y representing whether or not the person will commit another
crime. Additionally, we assume the presence of two groups G1, G2 ⊂ P , which represent disjoint
population subsets, such as different races. We assume that the groups have different base rates µt, or
probabilities of belonging to the positive class: µ1 = P(x,y)∼G1

[y = 1] 6= P(x,y)∼G2
[y = 1] = µ2.

Finally, let h1, h2 : Rk → [0, 1] be binary classifiers, where h1 classifies samples from G1 and h2

classifies samples from G2.2 Each classifier outputs the probability that a given sample x belongs to
the positive class. The notion of Equalized Odds non-discrimination is based on the false-positive and
false-negative rates for each group, which we generalize here for use with probabilistic classifiers:

Definition 1. The generalized false-positive rate of classifier ht for group Gt is cfp(ht) =

E(x,y)∼Gt

[

ht(x) | y = 0
]

. Similarly, the generalized false-negative rate of classifier ht is

cfn(ht) = E(x,y)∼Gt

[

(1− ht(x)) | y=1
]

.

If the classifier were to output either 0 or 1, this represents the standard notions of false-positive and
false-negative rates. We now define the Equalized Odds framework (generalized for probabilistic
classifiers), which aims to ensure that errors of a given type are not biased against any group.

Definition 2 (Probabilistic Equalized Odds). Classifiers h1 and h2 exhibit Equalized Odds for groups
G1 and G2 if cfp(h1) = cfp(h2) and cfn(h1) = cfn(h2).

Calibration Constraints. As stated in the introduction, these two conditions do not necessarily
prevent discrimination if the classifier predictions do not represent well-calibrated probabilities.
Recall that calibration intuitively says that probabilities should carry semantic meaning: if there are
100 people in G1 for whom h1(x) = 0.6, then we expect 60 of them to belong to the positive class.

Definition 3. A classifier ht is perfectly calibrated if ∀p ∈ [0, 1], P(x,y)∼Gt

[

y=1 | ht(x)=p
]

= p.

It is commonly accepted amongst practitioners that both classifiers h1 and h2 should be calibrated
with respect to groups G1 and G2 to prevent discrimination [4, 10, 12, 16]. Intuitively, this prevents
the probability scores from carrying group-specific information. Unfortunately, Kleinberg et al. [26]
(as well as [8], in a binary setting) prove that a classifier cannot achieve both calibration and Equalized
Odds, even in an approximate sense, except in the most trivial of cases.

3.1 Geometric Characterization of Constraints

We now will characterize the calibration and error-rate constraints with simple geometric intuitions.
Throughout the rest of this paper, all of our results can be easily derived from this interpretation. We
begin by defining the region of classifiers which are trivial, or those that output a constant value for
all inputs (i.e. hc(x) = c, where 0 ≤ c ≤ 1 is a constant). We can visualize these classifiers on a
graph with generalized false-positive rates on one axis and generalized false-negatives on the other. It
follows from the definitions of generalized false-positive/false-negative rates and calibration that all
trivial classifiers h lie on the diagonal defined by cfp(h) + cfn(h) = 1 (Figure 1a). Therefore, all
classifiers that are “better than random” must lie below this diagonal in false-positive/false-negative
space (the gray triangle in the figure). Any classifier that lies above the diagonal performs “worse
than random,” as we can find a point on the trivial classifier diagonal with lower false-positive and
false-negative rates.

Now we will characterize the set of calibrated classifiers for groups G1 and G2, which we denote as
H∗

1 and H∗

2. Kleinberg et al. show that the generalized false-positive and false-negative rates of a
calibrated classifier are linearly related by the base rate of the group:3

cfn(ht) = (1− µt)/µt cfp(ht). (1)

2 In practice, h1 and h2 can be trained jointly (i.e. they are the same classifier).
3 Throughout this work we will treat the calibration constraint as holding exactly; however, our results

generalize to approximate settings as well. See the Supplementary Materials for more details.
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Figure 1: Calibration, trivial classifiers, and equal-cost constraints – plotted in the false-pos./false-neg.
plane. H∗

1,H
∗

2 are the set of cal. classifiers for the two groups, and hµ1 , hµ2 are trivial classifiers.
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Figure 2: Calibration-Preserving Parity through interpolation.

In other words, h1 lies on a line with slope (1− µ1)/µ1 and h2 lies on a line with slope (1− µ2)/µ2

(Figure 1a). The lower endpoint of each line is the perfect classifier, which assigns the correct
prediction with complete certainty to every input. The upper endpoint is a trivial classifier, as no
calibrated classifier can perform “worse than random” (see Lemma 3 in Section S2). The only trivial
classifier that satisfies the calibration condition for a group Gt is the one that outputs the base rate µt.
We will refer to hµ1 and hµ2 as the trivial classifiers, calibrated for groups G1 and G2 respectively. It
follows from the definitions that cfp(h

µ1) = µ1 and cfn(h
µ1) = 1− µ1, and likewise for hµ2 .

Finally, it is worth noting that for calibrated classifiers, a lower false-positive rate necessarily
corresponds to a lower false-negative rate and vice-versa. In other words, for a given base rate, a
“better” calibrated classifier lies closer to the origin on the line of calibrated classifiers.

Impossibility of Equalized Odds with Calibration. With this geometric intuition, we can provide
a simplified proof of the main impossibility result from [26]:

Theorem (Impossibility Result [26]). Let h1 and h2 be classifiers for groups G1 and G2 with
µ1 6= µ2. h1 and h2 satisfy the Equalized Odds and calibration conditions if and only if h1 and h2

are perfect predictors.

Intuitively, the three conditions define a set of classifiers which is overconstrained. Equalized Odds
stipulates that the classifiers h1 and h2 must lie on the same coordinate in the false-positive/false-
negative plane. As h1 must lie on the blue line of calibrated classifiers for H∗

1 and h2 on the red line
H∗

2 they can only satisfy EO at the unique intersection point — the origin (and location of the perfect
classifier). This implies that unless the two classifiers achieve perfect accuracy, we must relax the
Equalized Odds conditions if we want to maintain calibration.

4 Relaxing Equalized Odds to Preserve Calibration

In this section, we show that a substantially simplified notion of Equalized Odds is compatible with
calibration. We introduce a general relaxation that seeks to satisfy a single equal-cost constraint
while maintaining calibration for each group Gt. We begin with the observation that Equalized
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Odds sets constraints to equalize false-positives cfp(ht) and false-negatives cfn(ht). To capture
and generalize this, we define a cost function gt to be a linear function in cfp(ht) and cfn(ht) with
arbitrary dependence on the group’s base rate µt. More formally, a cost function for group Gt is

gt(ht) = atcfp(ht) + btcfn(ht) (2)

where at and bt are non-negative constants that are specific to each group (and thus may depend
on µt): see Figure 1d. We also make the assumption that for any µt, at least one of at and bt is
nonzero, meaning gt(ht) = 0 if and only if cfp(ht) = cfn(ht) = 0.4 This class of cost functions
encompasses a variety of scenarios. As an example, imagine an application in which the equal
false-positive condition is essential but not the false-negative condition. Such a scenario may arise
in our recidivism-prediction example, if we require that non-repeat offenders of any race are not
disproportionately labeled as high risk. If we plot the set of calibrated classifiers H∗

1 and H∗

2 on
the false-positive/false-negative plane, we can see that ensuring the false-positive condition requires
finding classifiers h1 ∈ H∗

1 and h2 ∈ H∗

2 that fall on the same vertical line (Figure 1b). Conversely,
if we instead choose to satisfy only the false-negative condition, we would find classifiers h1 and h2

that fall on the same horizontal (Figure 1c). Finally, if both false-positive and false-negative errors
incur a negative cost on the individual, we may choose to equalize a weighted combination of the
error rates [3, 4, 8], which can be graphically described by the classifiers lying on a convex and
negatively-sloped level set (Figure 1d). With these definitions, we can formally define our relaxation:

Definition 4 (Relaxed Equalized Odds with Calibration). Given a cost function gt of the form in (2),
classifiers h1 and h2 achieve Relaxed Equalized Odds with Calibration for groups G1 and G2 if both
classifiers are calibrated and satisfy the constraint g1(h1) = g2(h2).

It is worth noting that, for calibrated classifiers, an increase in cost strictly corresponds to an increase
in both the false-negative and false-positive rate. This can be interpreted graphically, as the level-order
cost curves lie further away from the origin as cost increases (Figure 2a). In other words, the cost
function can always be used as a proxy for either error rate.5

Feasibility. It is easy to see that Definition 4 is always satisfiable – in Figures 1b, 1c, and 1d we see
that there are many such solutions that would lie on a given level-order cost curve while maintaining
calibration, including the case in which both classifiers are perfect. In practice, however, not all
classifiers are achievable. For the rest of the paper, we will assume that we have access to “optimal”
(but possibly discriminatory) calibrated classifiers h1 and h2 such that, due to whatever limitations
there are on the predictability of the task, we are unable to find other classifiers that have lower
cost with respect to gt. We allow h1 and h2 to be learned in any way, as long as they are calibrated.
Without loss of generality, for the remainder of the paper, we will assume that g1(h1) ≥ g2(h2).

Since by assumption we have no way to find a classifier for G1 with lower cost than h1, our goal

is therefore to find a classifier h̃2 with cost equal to h1. This pair of classifiers would represent
the lowest cost (and therefore optimal) set of classifiers that satisfies calibration and the equal cost
constraint. For a given base rate µt and value of the cost function gt, a calibrated classifier’s position
in the generalized false-positive/false-negative plane is uniquely determined (Figure 2a). This is
because each level-order curve of the cost function gt has negative slope in this plane, and each level
order curve only intersects a group’s calibrated classifier line once. In other words, there is a unique

solution in the false-positive/false-negative plane for classifier h̃2 (Figure 2b).

Consider the range of values that gt can take. As noted above, gt(ht) ≥ 0, with equality if and only if
ht is the perfect classifier. On the other hand, the trivial classifier (again, which outputs the constant
µt for all inputs) is the calibrated classifier that achieves maximum cost for any gt (see Lemma 3 in
Section S2). As a result, the cost of a classifier for group Gt is between 0 and gt(h

µt). This naturally
leads to a characterization of feasibility: Definition 4 can be achieved if and only if h1 incurs less
cost than group G2’s trivial classifier hµ2 ; i.e. if g1(h1) ≤ g2(h

µ2). This can be seen graphically in
Figure 2c, in which the level-order curve for g1(h1) does not intersect the set of calibrated classifiers
for G2. Since, by assumption, we cannot find a calibrated classifier for G1 with strictly smaller cost
than h1, there is no feasible solution. On the other hand, if h1 incurs less cost than hµ2 , then we will
show feasibility by construction with a simple algorithm.

An Algorithm. While it may be possible to encode the constraints of Definition 4 into the training
procedure of h1 and h2, it is not immediately obvious how to do so. Even naturally probabilistic

4 By calibration, we cannot have one of cfp(ht) = 0 or cfn(ht) = 0 without the other, see Figure 1a.
5 This holds even for approximately calibrated classifiers — see Section S3.
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algorithms, such as logistic regression, can become uncalibrated in the presence of optimization
constraints (as is the case in [37]). It is not straightforward to encode the calibration constraint if
the probabilities are assumed to be continuous, and post-processing calibration methods [31, 35]
would break equal-cost constraints by modifying classifier scores. Therefore, we look to achieve the
calibrated Equalized Odds relaxation by post-processing existing calibrated classifiers.

Again, given h1 and h2 with g1(h1) ≥ g2(h2), we want to arrive at a calibrated classifier h̃2 for

group G2 such that g1(h1) = g2(h̃2). Recall that, under our assumptions, this would be the best
possible solution with respect to classifier cost. We show that this cost constraint can be achieved by
withholding predictive information for a randomly chosen subset of group G2. In other words, rather
than always returning h2(x) for all samples, we will occasionally return the group’s mean probability
(i.e. the output of the trivial classifier hµ2 ). In Lemma 4 in Section S2, we show that if

h̃2(x) =

{

hµ2(x) = µ2 with probability α

h2(x) with probability 1− α
(3)

then the cost of h̃2 is a linear interpolation between the costs of h2 and hµ2 (Figure 2d). More formally,

we have that g2(h̃2) = (1 − α)g2(h2) + αg2(h
µ2)), and thus setting α = g1(h1)−g2(h2)

g2(hµ2 )−g2(h2)
ensures

that g2(h̃2) = g1(h1) as desired (Figure 2b). Moreover, this randomization preserves calibration (see
Section S4). Algorithm 1 summarizes this method.

Algorithm 1 Achieving Calibration and an Equal-Cost Constraint via Information Withholding

Input: classifiers h1 and h2 s.t. g2(h2) ≤ g1(h1) ≤ g2(h
µ2), holdout set Pvalid.

• Determine base rate µ2 of G2 (using Pvalid) to produce trivial classifier hµ2 .

• Construct h̃2 using with α = g1(h1)−g2(h2)
g2(hµ2 )−g2(h2)

, where α is the interpolation parameter.

return h1, h̃2 — which are calibrated and satisfy g1(h1) = g2(h̃2).

Implications. In a certain sense, Algorithm 1 is an “optimal” method because it arrives at the unique

false-negative/false-positive solution for h̃2, where h̃2 is calibrated and has cost equal to h1. Therefore
(by our assumptions) we can find no better classifiers that satisfy Definition 4. This simple result
has strong consequences, as the tradeoffs to satisfy both calibration and the equal-cost constraint are
often unsatisfactory — both intuitively and experimentally (as we will show in Section 5).

We find two primary objections to this solution. First, it equalizes costs simply by making a classifier
strictly worse for one of the groups. Second, it achieves this cost increase by withholding information
on a randomly chosen population subset, making the outcome inequitable within the group (as
measured by a standard measure of inequality like the Gini coefficient). Due to the optimality of
the algorithm, the former of these issues is unavoidable in any solution that satisfies Definition 4.
The latter, however, is slightly more subtle, and brings up the question of individual fairness (what
guarantees we would like an algorithm to make with respect to each individual) and how it interacts
with group fairness (population-level guarantees). While this certainly is an important issue for future
work, in this particular setting, even if one could find another algorithm that distributes the burden of
additional cost more equitably, any algorithm will make at least as many false-positive/false-negative
errors as Algorithm 1, and these misclassifications will always be tragic to the individuals whom
they affect. The performance loss across the entire group is often significant enough to make this
combination of constraints somewhat worrying to use in practice, regardless of the algorithm.

Impossibility of Satisfying Multiple Equal-Cost Constraints. It is natural to argue there might be
multiple cost functions that we would like to equalize across groups. However, satisfying more than
one distinct equal-cost constraint (i.e. different curves in the F.P./F.N. plane) is infeasible.

Theorem 1 (Generalized impossibility result). Let h1 and h2 be calibrated classifiers for G1 and
G2 with equal cost with respect to gt. If µ1 6= µ2, and if h1 and h2 also have equal cost with respect
to a different cost function g′t, then h1 and h2 must be perfect classifiers.

(Proof in Section S5). Note that this is a generalization of the impossibility result of [26]. Furthermore,
we show in Theorem 9 (in Section S5) that this holds in an approximate sense: if calibration and
multiple distinct equal-cost constraints are approximately achieved by some classifier, then that
classifier must have approximately zero generalized false-positive and false-negative rates.
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(c) Recidivism Prediction.
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Figure 3: Generalized F.P. and F.N. rates for two groups under Equalized Odds and the calibrated
relaxation. Diamonds represent post-processed classifiers. Points on the Equalized Odds (trained)
graph represent classifiers achieved by modifying constraint hyperparameters.

5 Experiments

In light of these findings, our goal is to understand the impact of imposing calibration and an equal-
cost constraint on real-world datasets. We will empirically show that, in many cases, this will result
in performance degradation, while simultaneously increasing other notions of disparity. We perform
experiments on three datasets: an income-prediction, a health-prediction, and a criminal recidivism
dataset. For each task, we choose a cost function within our framework that is appropriate for the
given scenario. We begin with two calibrated classifiers h1 and h2 for groups G1 and G2. We
assume that these classifiers cannot be significantly improved without more training data or features.

We then derive h̃2 to equalize the costs while maintaining calibration. The original classifiers are
trained on a portion of the data, and then the new classifiers are derived using a separate holdout
set. To compare against the (uncalibrated) Equalized Odds framework, we derive F.P./F.N. matching
classifiers using the post-processing method of [19] (EO-Derived). On the criminal recidivism
dataset, we additionally learn classifiers that directly encode the Equalized Odds constraints, using the
methods of [37] (EO-Trained). (See Section S6 for detailed training and post-processing procedures.)
We visualize model error rates on the generalized F.P. and F.N. plane. Additionally, we plot the
calibrated classifier lines for G1 and G2 to visualize model calibration.

Income Prediction. The Adult Dataset from UCI Machine Learning Repository [28] contains 14
demographic and occupational features for various people, with the goal of predicting whether a
person’s income is above $50, 000. In this scenario, we seek to achieve predictions with equalized
cost across genders (G1 represents women and G2 represents men). We model a scenario where the
primary concern is ensuring equal generalized F.N. rates across genders, which would, for example,
help job recruiters prevent gender discrimination in the form of underestimated salaries. Thus, we
choose our cost constraint to require equal generalized F.N. rates across groups. In Figure 3a, we
see that the original classifiers h1 and h2 approximately lie on the line of calibrated classifiers. In
the left plot (EO-Derived), we see that it is possible to (approximately) match both error rates of the
classifiers at the cost of heo

1 deviating from the set of calibrated classifiers. In the right plot, we see

that it is feasible to equalize the generalized F.N. rates while maintaining calibration. h1 and h̃2 lie on
the same level-order curve of gt (represented by the dashed-gray line), and simultaneously remain on
the “line” of calibrated classifiers. It is worth noting that achieving either notion of non-discrimination
requires some cost to at least one of the groups. However, maintaining calibration further increases
the difference in F.P. rates between groups. In some sense, the calibrated framework trades off one
notion of disparity for another while simultaneously increasing the overall error rates.
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Health Prediction. The Heart Dataset from the UCI Machine Learning Repository contains 14
processed features from 906 adults in 4 geographical locations. The goal of this dataset is to
accurately predict whether or not an individual has a heart condition. In this scenario, we would
like to reduce disparity between middle-aged adults (G1) and seniors (G2). In this scenario, we
consider F.P. and F.N. to both be undesirable. A false prediction of a heart condition could result in
unnecessary medical attention, while false negatives incur cost from delayed treatment. We therefore
utilize the following cost function gt(ht) = rfpht(x) (1− y) + rfn (1− ht(x)) y, which essentially
assigns a weight to both F.N. and F.P. predictions. In our experiments, we set rfp = 1 and rfn = 3.
In the right plot of Figure 3b, we can see that the level-order curves of the cost function form a curved
line in the generalized F.P./F.N. plane. Because our original classifiers lie approximately on the

same level-order curve, little change is required to equalize the costs of h1 and h̃2 while maintaining
calibration. This is the only experiment in which the calibrated framework incurs little additional
cost, and therefore could be considered a viable option. However, it is worth noting that, in this
example, the equal-cost constraint does not explicitly match either of the error types, and therefore
the two groups will in expectation experience different types of errors. In the left plot of Figure 3b
(EO-Derived), we see that it is alternatively feasible to explicitly match both the F.P. and F.N. rates
while sacrificing calibration.

Criminal Recidivism Prediction. Finally, we examine the frameworks in the context of our motivat-
ing example: criminal recidivism. As mentioned in the introduction, African Americans (G1) receive
a disproportionate number of F.P. predictions as compared with Caucasians (G2) when automated risk
tools are used in practice. Therefore, we aim to equalize the generalized F.P. rate. In this experiment,
we modify the predictions made by the COMPAS tool [12], a risk-assessment tool used in practice
by the American legal system. Additionally, we also see if it is possible to improve the classifiers
with training-time Equalized Odds constraints using the methods of Zafar et al. [37] (EO-Trained).
In Figure 3c, we first observe that the original classifiers h1 and h2 have large generalized F.P. and
F.N. rates. Both methods of achieving Equalized Odds — training constraints (left plot) and post-
processing (middle plot) match the error rates while sacrificing calibration. However, we observe that,
assuming h1 and h2 cannot be improved, it is infeasible to achieve the calibrated relaxation (Figure 3c
right). This is an example where matching the F.P. rate of h1 would require a classifier worse than the
trivial classifier hµ2 . This example therefore represents an instance in which calibration is completely
incompatible with any error-rate constraints. If the primary concern of criminal justice practitioners
is calibration [12, 16], then there will inherently be discrimination in the form of F.P. and F.N. rates.
However, if the Equalized Odds framework is adopted, the miscalibrated risk scores inherently cause
discrimination to one group, as argued in the introduction. Therefore, the most meaningful change in
such a setting would be an improvement to h2 (the classifier for African Americans) either through
the collection of more data or the use of more salient features. A reduction in overall error to the
group with higher cost will naturally lead to less error-rate disparity.

6 Discussion and Conclusion

We have observed cases in which calibration and relaxed Equalized Odds are compatible and cases
where they are not. When it is feasible, the penalty of equalizing cost is amplified if the base rates
between groups differ significantly. This is expected, as base rate differences are what give rise
to cost-disparity in the calibrated setting. Seeking equality with respect to a single error rate (e.g.
false-negatives, as in the income prediction experiment) will necessarily increase disparity with
respect to the other error. This may be tolerable (in the income prediction case, some employees will
end up over-paid) but could also be highly problematic (e.g. in criminal justice settings). Finally, we
have observed that the calibrated relaxation is infeasible when the best (discriminatory) classifiers are
not far from the trivial classifiers (leaving little room for interpolation). In such settings, we see that
calibration is completely incompatible with an equalized error constraint.

In summary, we conclude that maintaining cost parity and calibration is desirable yet often difficult
in practice. Although we provide an algorithm to effectively find the unique feasible solution to both
constraints, it is inherently based on randomly exchanging the predictions of the better classifier with
the trivial base rate. Even if fairness is reached in expectation, for an individual case, it may be hard
to accept that occasionally consequential decisions are made by randomly withholding predictive
information, irrespective of a particular person’s feature representation. In this paper we argue that,
as long as calibration is required, no lower-error solution can be achieved.
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