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Abstract

By a representation of a semigroup S of degree n over a field F we
mean a homomorphism γ of S into the multiplicative semigroup of the
algebra Mn(F) of all n× n matrices with entries in F. A representation
is called faithful if it is injective. In this paper we focus our attention
to the dimension of the subalgebra of Mn(F) generated by γ(S), where
S is an n-element semigroup and γ is a faithful representation of S of
degree n over a field F. In Section 2 we deal with the case when S and
γ are arbitrary; in Section 3 we focus our attention to the case when S
is left reductive and γ is the right regular representation of S.
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1 Introduction

The representation of semigroups by matrices is a central problem in the theory
of semigroups. The literature of this topic is very rich, but here we refer to
only the books [1], [6] and the survey [4].

Let S be a semigroup and F a field. By a representation of S of degree n
over F we mean a homomorphism γ of S into the multiplicative semigroup of
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the algebra Mn(F) of all n×n matrices with entries in F. If γ is injective then
the representation is said to be faithful.

In this paper we focus our attention to representations of finite semigroups
S of degree |S|. We prove theorems about the dimension of the subalgebra
of Mn(F) generated by γ(S), where S is an n-element semigroup and γ is
a faithful representation of S of degree n. We also present some results on
couples (k, n) of positive integers k and n with k ≤ n which satisfy, for a
fixed field F, the following condition: there is an n-element semigroup S and
a faithful representation γ of S of degree n over F such that the dimension
of the subalgebra of Mn(F) generated by γ(S) equals k. This is equivalent to
the condition that the dimension of the kernel of the extension γ∗ of γ to the
semigroup algebra F[S] is n − k (see [1]).

In Section 2, we deal with the general case: the considered finite semigroups
S are arbitrary and the representations are their arbitrary faithful representa-
tion of degree |S|.

In Section 3 we consider a special case: the semigroups S are the finite left
reductive semigroups and the representations are their right regular represen-
tation.

For notations and notions not defined here, we refer to [1], [3], [5], [6] and
[7].

2 The case of arbitrary representations

Definition 2.1 Let k and n be positive integers. We say that k is rep-
resentable by n (or n represents k) over a field F if k ≤ n and there is an
n-element semigroup S and a faithful representation γ of S of degree n over F

such that the dimension of the subalgebra A(γ(S)) of the matrix algebra Mn(F)
generated by γ(S) is k.

It is clear that k is representable by n if and only if there is an n-element
semigroup of the multiplicative semigroup of the matrix algebra Mn(F) such
that the dimension of the subalgebra of Mn(F) generated by S is k.

Theorem 2.2 Let n be a positive integer. Then every positive integer k
with n

2
≤ k ≤ n is representable by n over every field F with char(F) �= 2.

Proof. Let F be a field with char(F) �= 2. Let n and k be positive integers
with n

2
≤ k ≤ n. Denote Ei (i = 1, . . . , k) the matrix of Mn(F) defined by the

following way: Ei is a diagonal matrix, in which the first i upper elements in
the diagonal equal the identity element of the field F and the other elements
are the zero of F. It is easy to see that

EiEj = Emin{i,j}
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for every i, j ∈ {1, . . . , k}. Let A denote the subalgebra of the algebra Mn(F)
generated by the matrices

E1, . . . ,Ek.

As the matrices E1, . . . ,Ek are linearly independent over F,

dim(A) = k.

Since n
2
≤ k, that is, n − k ≤ k then the matrices

−E1, . . . ,−En−k

are in A. As char(F) �= 2, the matrices

E1, . . . ,Ek,−E1, . . . ,−En−k

are pairwise distinct and

S = {E1, . . . ,Ek,−E1, . . . ,−En−k}
is an n-element subset of Mn(F). As

(±Ei)(±Ej) ∈ {Emin{i,j},−Emin{i,j}}
for every i, j ∈ {1, . . . , k},

S = {E1, . . . ,Ek,−E1, . . . ,−En−k}
is an n-element subsemigroup of the multiplicative semigroup of the algebra
Mn(F) such that S generates the subalgebra A of Mn(F). Since dim(A) = k
then k is representable by n over F. �

Problem 1. Is Theorem 2.2 true for arbitrary field?

Theorem 2.3 If k is a positive integer which is representable by a positive
integer n over a finite field F then log|�|n ≤ k.

Proof. Let F be a finite field and k a positive integer which is representable
by a positive integer n. Then there is an n-element semigroup S in the multi-
plicative semigroup of the full matrix algebra Mn(F) such that the dimension
of the subalgebra A of Mn(F) generated by S is k. Then n = |S| ≤ |A| = |F|k.
Thus log|�|n ≤ k. �

Let n be a positive integer and F a finite field with char(F) �= 2. By
Theorem 2.2, the integers belonging to the interval [n

2
, n] are representable by

n over F. By Theorem 2.3, the positive integers k with k < log|�|n are not
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representable by n. What can we say about the positive integers belonging to
the interval [log|�|n, n

2
].

Problem 2. Let n be a positive integer and F a finite field with the
condition char(F) �= 2. Is every positive integer k belonging to the interval
[log|�|n, n

2
] representable by n?

If the answer was yes, then a positive integer k would be representable by
a positive integer n over a finite field F with char(F) �= 2 if and only if k would
be in the interval [log|�|n, n].

Problem 3. Is it true that, for a fixed positive integer n and an arbitrary
field F, there is a positive integer k0(n, F) ≤ n depending on F and n such that
a positive integer k is representable by n over F if and only if k belongs to the
interval [k0(n, F), n]?

3 The case of the right regular representation

Let S be a finite semigroup and F a field. By an S-matrix over F we mean a
single valued mapping A of the descartes product S × S into F. If we fix an
ordering of the elements of S, for example, S = {s1, . . . , sn}, then an S-matrix
A can be written in the usual form: the element of A being in the ith row and
the jth column equals A((si, sj)). In most of our proofs we will consider the
semigroups S with a fixed ordering, and the S-matrices will be written in the
usual form detailed above.

Let e and 0 denote the identity element and the zero element of a field F,
respectively. For an arbitrary element s of a finite semigroup S = {s1, . . . , sn},
consider the S-matrix

R(s) = [r
(s)
i,j ]n×n,

where

r
(s)
i,j =

{
e if sis = sj ,

0 otherwise.

This matrix will be called the right matrix of s over F.
It is known (see, for example, Exercise 4(b) of §3.5 of [1]) that if S is a

finite n-element semigroup then

R� : s �→ R(s)

is a representations of S of degree n over F. This representation (which is
called the right regular representation of S) is faithful if and only if S is left
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reductive, that is, for every a, b ∈ S, the assumption ”xa = xb for all x ∈ S”
implies a = b.

For an arbitrary n-element semigroup S and an arbitrary field F, let A(R�(S))
denote the subalgebra of the matrix algebra Mn(F) generated by R�(S).

Definition 3.1 Let k and n be positive integers. We say that k is repre-
sentable by n (or n represents k) over a field F under the right regular rep-
resentation R� if k ≤ n and there is an n-element left reductive semigroup
S such that the dimension of the subalgebra A(R�(S)) of the matrix algebra
Mn(F) generated by R�(S) is k.

Theorem 3.2 If a positive integer n ≤ 4 represents a positive integer k
under the right regular representation R�(S) then k = n.

Proof. In [2], we can find the Cayley-table of all nonisomorphic and nonanti-
isomorphic semigroups containing n elements for 2 ≤ n ≤ 5. It is a matter of
checking to see that the dimension of the subalgebra of Mn(F) generated by
R�(S) equals |S| for every left reductive semigroup S with |S| ≤ 4. �

The next example shows that Theorem 3.2 is not true in case n ≥ 5.

Example 2. Let S = {1, 2, 3, 4, 5} be a semigroup defined by the following
Cayley table:

1 2 3 4 5
1 2 2 1 1 2
2 2 2 2 2 2
3 2 2 3 3 2
4 2 2 4 4 2
5 1 2 1 2 5

(see the Cayley table in the 7th row and the 10th column on page 167 of [2]).
As the columns of the table are pairwise distinct, S is left reductive. It is

a matter of checking to see that, for every field F,

R(4) = −R(1) + R(2) + R(3) + 0R(5)

and the matrices

R(1),R(2),R(3),R(5)

are linearly independent over F. Thus dimA(R�(S)) = 4 and so 4 is repre-
sentable by 5 over every field F under the right regular representation R� .
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Theorem 3.3 Let F be a field and S1, S2 arbitrary left reductive finite semi-
groups. Then

dim[A(R�(S1))]dim[A(R�(S2))] = dim[A(R�(S1 × S2))].

Proof. Let S1 = {ai : i = 1, . . . , |S1|} and S2 = {bj : j = 1, . . . , |S2|} be
arbitrary finite semigroups and F an arbitrary field. Consider the right regular
representations of S1 and S2, respectively. Let A(ai) and B(bj) denote the right
matrices of the elements ai ∈ S1 and bj ∈ S2 (corresponding to the above
orderings of S1 and S2), respectively. Assume

dimA(R�(S1)) = m and dimA(R�(S2)) = n.

Let B1 and B2 denote a bases of A(R�(S1)) and A(R�(S2)), respectively. We
can suppose that B1 = {A(a1), . . . ,A(am)} and B2 = {B(b1), . . . ,B(bn)}.

It is clear that the direct product S1 × S2 is also left reductive. Thus
the right regular representation of S1 × S2 is faithful. Consider the following
ordering of the elements of S1 × S2:

S1 × S2 = {(a1, b1); . . . , ; (a1, b|S2|); . . . ; (a|S1|, b1); . . . ; (a|S1|, b|S2|)}.
It is a matter of checking to see that the right matrix C(ai,bj) of the element
(ai, bj) ∈ S1 × S2 (corresponding to the above ordering of S1 × S2 )is a matrix

of blocks C
(ai,bj)
k,t (k, t ∈ {1, . . . , |S1|}) such that

C
(i,j)
k,t = a

(ai)
k,t B(bj),

where a
(ai)
k,t (k, t = 1, . . . , |S1|) are the elements of the right matrix A(ai). We

show that the right matrices C(ai,bj) (i = 1, . . .m; j = 1, . . . n) form a basis of
A(R�(S1 × S2)).

To show that the matrices C(ai,bj) (i = 1, . . .m; j = 1, . . . n) are linearly
independent (over F), assume

Σn
j=1Σ

m
i=1γj,iC

(ai,bj) = 0mn×mn

for some γj,i ∈ F. Then, for every k, t ∈ {1, . . . |S1|},

Σn
j=1Σ

m
i=1γj,iC

(ai,bj)
k,t = 0n×n,

that is,

Σn
j=1Σ

m
i=1γj,ia

(ai)
k,t B(bj) = 0n×n.

Then

Σn
j=1(Σ

m
i=1γj,ia

(ai)
k,t )B(bj) = 0n×n
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from which we obtain that, for every j = 1, . . . , n (and every k, t = 1, . . . , |S1|),
Σm

i=1γj,ia
(ai)
k,t = 0,

because the matrices B(b1), . . . ,B(bn) are linearly independent. As the coeffi-
cients γj,i do not depend on k and t, we have

Σm
i=1γj,iA

(ai) = 0m×m

for every j = 1, . . . , n. As the matrices A(a1), . . . ,A(am) are linearly indepen-
dent, we get γj,i = 0 for every j = 1, . . . , n and i = 1, . . . , m.

In the next, we show that the matrices C(ai,bj) (i = 1, . . .m; j = 1, . . . n)
generate A(R�(S1 × S2)). Let (x, y) ∈ S1 × S2 be arbitrary. As B2 is a basis
of A(R�(S2)), there are βj ∈ F (j = 1, . . . , n) such that

B(y) = Σn
j=1βjB

(bj).

Then, for every k, t ∈ {1, . . . , |S1|},
a

(x)
k,t B

(y) = Σn
j=1βja

(x)
k,t B

(bj).

As B1 is a basis of A(R�(S1)), there are αi ∈ F (i = 1, . . . , m) such that

A(x) = Σm
i=1αiA

(ai),

that is,

a
(x)
k,t = Σm

i=1αia
(ai)
k,t

for every k, t = 1, . . . , |S1|. Then

a
(x)
k,t B

(y) = Σn
j=1βj(Σ

m
i=1αia

(ai)
k,t )B(bj) =

Σn
j=1Σ

m
i=1(βjαi)(a

(ai)
k,t B(bj))

and so

C
(x,y)
k,t = Σn

j=1Σ
m
i=1(βjαi)C

(ai,bj)
k,t

for every k, t = 1, . . . , |S1|. As the coefficients αi (i = 1, . . . , m) and βj (j =
1, . . . , n) do not depend on k and t,

C(x,y) = Σn
j=1Σ

m
i=1(βjαi)C

(ai,bj).

Thus the theorem is proved. �
On the set of all positive integers consider the following binary relation:

k ∼R�
n if and only if k is representable by n over the field F under the right

regular representation R� .
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Corollary 3.4 If k ∼R�
n and t ∼R�

m for some positive integers k, t, n, m
then kt ∼R�

nm.

Proof. Assume

k ∼R�
n and t ∼R�

m

for some positive integers k, t, n, m. Then there are left reductive semigroups
S1 and S2 such that

|S1| = n and |S2| = m

and

dimA(R�(S1)) = k and dimA(R�(S2)) = t.

By Theorem 3.3,

dimA(R�(S1 × S2)) = kt.

Thus kt ∼� nm. �

Theorem 3.5 Let F be a field and S1, S2 be arbitrary finite left reductive
semigroups. Then

A(R�(S1))
⊗

A(R�(S2)) ∼=Alg A(R�(S1 × S2)),

where
⊗

denotes the tensor product and ∼=Alg denotes the algebra isomorphism.

Proof. We use the notations of the proof of Theorem 3.3. Consider the tensor
product

A(R�(S1))
⊗

A(R�(S2))

of the vector spaces A(R�(S1)) and A(R�(S2)). The tensors

A(ai) ⊗ B(bj) (i = 1, . . . , m; j = 1, . . . n)

form a basis of A(R�(S1))
⊗A(R�(S2)) and the product between them is

(A(ai) ⊗ B(bj))(A(ak) ⊗ B(bt)) = (A(aiak) ⊗ B(bjbt)).

By the proof of Theorem 3.3,

{C(ai,bj) : i = 1, . . .m; j = 1, . . . , n}
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is a basis of the algebra A(R�(S1 × S2)). The product between the elements
of this basis is the following:

C(ai,bj)C(ak ,bt) = C(aiak,bjbt).

As

dim(A(R�(S1))
⊗

A(R�(S2)) = dim(A(R�(S1 × S2)))

by Theorem 3.3, the mapping

φ : (A(ai) ⊗B(bj)) �→ C(ai,bj) i = 1, . . .m; j = 1, . . . n

is an isomorphism of the vector space A(R�(S1))
⊗A(R�(S2)) onto the vector

space A(R�(S1 × S2)). As

φ((A(ai) ⊗ B(bj))(A(ak) ⊗ B(bt))) = φ((A(ai,ak) ⊗ B(bj ,bt))) =

= C(aiak ,bjbt) = C(ai,bj)(ak ,bt) = C(ai,bj)C(ak ,bt) =

= φ((A(ai) ⊗ B(bj)))φ((A(ak) ⊗ B(bt))),

φ is an algebra isomorphism of the tensor product A(R�(S1))
⊗A(R�(S2))

onto the algebra A(R�(S1 × S2)). �
A congruence σ on a semigroup S is called a semilattice congruence if the

factor semigroup Y = S/σ is a semilattice (a commutative semigroup in which
every element is idempotent). If σ is a semilattice congruence of a semigroup
S then the σ-classes Sα (α ∈ Y ) of S are subsemigroups of S. We say that
a semigroup S is a semilattice Y of subsemigroups Sα (α ∈ Y ) of S if there
is a semilattice congruence σ on S such that S/σ is isomorphic to Y and the
σ-classes of S are the subsemigroups Sα (α ∈ Y ).

Theorem 3.6 Let S be a finite semigroup which is a semilattice of two left
reductive subsemigroups A and B of S. Then

dimA(R�(S)) ≥ dimA(R�(A)) + dimA(R�(B)).

Proof. It is clear that one of A and B, for example, A is an ideal of S. If
c, d ∈ S be arbitrary elements such that xc = xd holds for all x ∈ S then
c2 = cd = d2 and so both of c and d are in either A or B. As A and B are
left reductive, we get c = d. Thus S is left reductive and so the right regular
representation of S is faithful. Let A = {a1, . . . , an} and B = {b1, . . . , bm}.
Let

A(ai) (i = 1, . . . n) and B(bj) (j = 1, . . . , m)
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denote the right matrices of the elements ai ∈ A and bj ∈ B corresponding to
the above ordering of A and B, respectively.

Consider the followin ordering of S:

S = {a1, . . . , an, b1, . . . bm}.
The right matrices C(s) of the elements s of S corresponding to the above
ordering of S are matrices of blocks

C
(s)
k,t (k, t ∈ {1, 2})

such that the type of C
(s)
1,1 is n × n and the type of C

(s)
2,2 is m × m. Moreover,

C
(ai)
1,1 = A(ai), C

(ai)
2,2 = 0m×m for every ai ∈ A, and C

(bj)
2,2 = B(bj) for every

bj ∈ B. Assume

dimA(R�(A)) = k and dimA(R�(B)) = t.

We can suppose that A(ai) (i = 1, . . . , k) and B(bi) (j = 1, . . . , t) are the basis
of A(R�(A) and A(R�(B), respectively. We show that the system of matrices
C(ai) and C(bj) (i = 1, . . . k; j = 1, . . . t) is linearly independent. Assume

Σk
i=1αiC

(ai) + Σt
j=1βjC

(bj) = 0(n+m)×(n+m).

Then

Σk
i=1αiC

(ai)
2,2 + Σt

j=1βjC
(bj)
2,2 = 0m×m

and so

Σt
j=1βjB

(bj) = 0m×m,

because C
(ai)
2,2 = 0m×m and C

(bj)
2,2 = B(bj) for every ai ∈ A and bj ∈ B. As the

matrices B(bj) (j = 1, . . . t) are linearly independent, we get βj = 0 for every
j = 1, . . . , t. Then

Σk
i=1αiC

(ai) = 0(n+m)×(n+m)

and so

0n×n = Σk
i=1αiC

(ai)
1,1 = Σk

i=1αiA
(ai).

As the matrices A(ai) (i = 1, . . . k) are linearly independent, we get αi = 0 for
every i = 1, . . . , k. Thus the matrices

C(a1), . . . ,C(ak),C(b1), . . . ,C(bt)
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are linearly independent. From this it follows that

dimA(R�(S)) ≥ dimA(R�(A)) + dimA(R�(B)).

�
Let a semigroup S be a semilattice Y of semigroups Sα, α ∈ Y . Assume

that, for every α, β ∈ Y with α ≥ β, there is a homomorphism ( )fα,β of Sα

into Sβ such that the following are satisfied.

(1) For each α ∈ Y , fα,α is the identity mapping of Sα.

(2) If α ≥ β ≥ γ then fα,βfβ,γ = fα,γ .

(3) If a ∈ Sα and b ∈ Sβ then ab = (a)fα,αβ(b)fβ,αβ .

In such a case S is called a strong semilattice Y of semigroups Sα (α ∈ Y ).

Theorem 3.7 Let S be a finite semigroup which is a strong semilattice of
two left reductive subsemigroups A and B of S with AB ⊆ A. If dimA(R�(B)) =
|B| then

dimA(R�(S)) = dimA(R�(A)) + dimA(R�(B)).

Proof. We use the notations of the proof of Theorem 3.6. As S is a strong
semilattice of subsemigroups A = {a1, . . . , an} and B = {b1, . . . , bm} such
that A is an ideal of S, there is a homomorphism ϕ of B into A such that
bjai = ϕ(bj)ai for every bj ∈ B and ai ∈ A. This homomorphism induces a
mapping ϕ∗ of {1, . . . , m} into {1, . . . , n} with the following way: ϕ∗(j) = i if

and only if ϕ(bj) = ai. From this it follows that the jth row of the matrix C
(ai)
2,1

(j = 1, . . .m) equals the (ϕ∗(j))th row of the right matrix A(ai) for every ai ∈ A.
Thus if a linear combination

∑k
i=1 βiA

(ai) equal a right matrix A(a) (a ∈ A)

then
∑k

i=1 βiC
(ai)
2,1 equals the matrix C

(a)
2,1. As dimA(R�(B)) = |B| = m,

Theorem 3.6 implies that the matrices

C(a1), . . . ,C(ak),C(b1), . . . ,C(bm)

are linearly independent. We show that they form a basis of the subalgebra
A(R�(S)) of the matrix algebra F(n+m)×(n+m). It is sufficient to show that every
matrix C(aj ) (j = k + 1, . . . , n) can be expressed as a linearly combination of
the matrices C(a1), . . . ,C(ak),C(b1), . . . ,C(bm). Let C(a), a ∈ {aj+1, . . . , an} be
an arbitrary matrix. Then

A(a) =
k∑

i=1

βiA
(ai)
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for some βi ∈ F. By the above result, this equation implies

C
(a)
2,1 =

k∑
i=1

βiC
(ai)
2,1

and so

C(a) =

k∑
i=1

βiC
(ai).

Thus the matrices

C(a1), . . . ,C(ak),C(b1), . . . ,C(bm)

form a basis of the subalgebra A(R�(S)). Hence

dimA(R�(S)) = dimA(R�(A)) + dimA(R�(B)).

�

Theorem 3.8 If a finite semigroup S is a semilattice Y of left reductive
semigroups Sα (α ∈ Y ) then

dimA(R�(S)) ≥
∑
α∈Y

dimA(R�(Sα)).

Proof. The assertion will be proved by induction on n = |Y |. If n = 1 then
the assertion is obvious. If n = 2 then the assertion follows from Theorem 3.6.
Let n ≥ 3. Assume that the assertion is true for all semilattice of order less
then n. Let Y be a semilattice such that |Y | = n. Let S be a semigroup which
is a semilattice Y of left reductive semigroups Sα, α ∈ Y . As Y is a semilattice
and |Y | ≥ 3, there are elements α, β ∈ Y such that

αβ �= β.

Let Iβ denote the ideal of Y generated by β. It is known that

Iβ = {ξ ∈ Y : ξβ = ξ}.
As

β, αβ ∈ Iβ,

αβ �= β implies

|Iβ| ≥ 2.



On faithful representations of finite semigroups... 127

First consider the case when Iβ �= Y . Then |Y \ Iβ | ≤ n − 2. As Iβ

is a subsemigroup of Y , the union Aβ of subsemigroups Sξ (ξ ∈ Iβ) form a
subsemigroup of S. As Iβ ⊂ Y , we get

dimA(R�(Aβ)) ≥
∑
ξ∈Iβ

dimA(R�(Sξ))

by induction. As Iβ is an ideal of Y , the semigroup S is a semilattice of the
semigroups Sη (η ∈ Y \ Iβ) and the subsemigroup Aβ . As |Y \ Iβ|+ 1 ≤ n− 1,
we get

dimA(R�(S)) ≥ dimA(R�(Aβ)) +
∑

η∈Y \Iβ

dimA(R�(Sη))

by induction. This and the above

dimA(R�(Aβ)) ≥
∑
ξ∈Iβ

dimA(R�(Sξ))

together imply

dimA(R�(S)) ≥
∑
α∈Y

dimA(R�(Sα)).

In the next consider the case when Iβ = Y . It means that β is the identity
element of Y . In this case ξη �= β for every β /∈ {ξ, η}. Indeed, if there were
elements ξ, η ∈ Y with ξ �= β and η �= β such that ηξ = β then, for every
α ∈ Y , we would have αηξ = αβ = α and so αξ = α. It would imply that ξ is
an identity element of Y which would contradicts ξ �= β.

Thus X = Y \{β} is a subsemilattice of Y . Let S∗ denote the subsemigroup
of S which is a semilattice X of semigroups Sτ , τ ∈ X. Then S is a semilattice
of S∗ and Sβ and so

dimA(R�(S)) ≥ dimA(R�(S
∗)) + dimA(R�(Sβ))

by Theorem 3.6. As |X | = |Y | − 1,

dimA(R�(S
∗)) =

∑
τ∈X

dimA(R�(Sτ ))

by induction. Consequently

dimA(R�(S)) ≥
∑
α∈Y

dimA(R�(Sα)).

�
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Theorem 3.9 Let S be a semigroup which is a semilattice Y of left reduc-
tive finite semigroups Sα (α ∈ Y ) such that dimA(R�(Sα)) = |Sα| for every
α ∈ Y . Then dimA(R�(S)) = |S|.

Proof. Applying Theorem 3.8 and the assumptions of this theorem, we get∑
α∈Y

|Sα| = |S| ≥ dimA(R�(S)) ≥
∑
α∈Y

dimA(R�(Sα)) =
∑
α∈Y

|Sα|

and so dimA(R�(S)) = |S|. �

Theorem 3.10 If a finite semigroup S is a semilattice Y of monoids Sα

(α ∈ Y ) α ∈ Y then dimA(R�(S)) = |S|.

Proof. It is easy to see that every monoid M is left reductive and dimA(R�(M)) =
|M |. Thus our assertion follows from Theorem 3.9. �

Theorem 3.11 If S is a finite Clifford semigroup then dimA(R�(S)) =
|S|.

Proof. It is known that a semigroup is a Clifford semigroup if and only if it
is a semilattice of groups (see Theorem 2.1 of [3]). Thus our assertion follows
from Theorem 3.10. �

Theorem 3.12 If S is a finite semilattice then dimA(R�(S)) = |S|.

Proof. As a semilattice is a semilattice of one-element monoids, our assertion
follows from Theorem 3.10. �

Corollary 3.13 If k ∼R�
n then, for every positive integer t, k+t ∼R�

n+t.

Proof. Assume k ∼R�
n for some positive integers k and n. Then there is an n-

element semigroup A such that dimA(R�(A)) = k. Let t be a positive integer
and B a t-element semilattice. As A is a finite semigroup, it has an idempotent
element e. Let ϕ denote the mapping of B into A such that ϕ(b) = e for every
b ∈ B. It is easy to see that ϕ is a homomorphism. On the set S = A ∪ B
define the following multiplication. Let the new multiplication on A and B
is the old multiplication, respectively. For arbitrary a ∈ A and b ∈ B, let
ab = aϕ(b) = ae and ba = ϕ(b)a = ea. Then S is a strong semilattice of A
and B with AB ⊆ A. By Theorem 3.12, dimA(R�(B)) = |B| = t and so
Theorem 3.6 implies dimA(R�(S)) = k + t. Thus k + t ∼R�

n + t. �
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