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ON FALSE DISCOVERY CONTROL UNDER DEPENDENCE

BY WEI BIAO WU

University of Chicago

A popular framework for false discovery control is the random effects
model in which the null hypotheses are assumed to be independent. This pa-
per generalizes the random effects model to a conditional dependence model
which allows dependence between null hypotheses. The dependence can be
useful to characterize the spatial structure of the null hypotheses. Asymptotic
properties of false discovery proportions and numbers of rejected hypotheses
are explored and a large-sample distributional theory is obtained.

1. Introduction. Since the seminal work of Benjamini and Hochberg
(BH) [2], the paradigm of false discovery control has been widely used in mul-
tiple hypothesis testing problems and it is often more useful than the classical
Bonferroni-type method. Suppose that we want to test n hypotheses Hi , 1 ≤ i ≤ n.
Write Hi = 0 if the ith null hypothesis is true and Hi = 1 if otherwise. Let V be
the number of erroneously rejected null hypotheses which are actually true and
let R be the total number of rejected hypotheses. The false discovery proposition
(FDP) is defined as

FDP = V

R ∨ 1
where a ∨ b = max(a, b),(1)

and the false discovery rate (FDR) is defined as the expected value E(FDP).
We now briefly describe the BH procedure. Let Xi be the marginal p-value

of the ith test, 1 ≤ i ≤ n, and let X(1) ≤ · · · ≤ X(n) be the order statistics of
X1, . . . ,Xn. Given a control level α ∈ (0,1), let

R = max
{
i ∈ {0,1, . . . , n + 1} :X(i) ≤ αi/n

}
,(2)

where X(0) = 0 and X(n+1) = 1. The BH procedure rejects all hypotheses for
which X(i) ≤ X(R). If R = 0, then all hypotheses are accepted. Assume that Xi ,
1 ≤ i ≤ n, are independent and the p-value distribution is continuous; BH [2]
proved that, if there are N0 true null hypotheses, then E[V/(R ∨ 1)] = αN0/n.
A popular framework for the false discovery control is the random effects model
or the two-component mixture model (McLachlan and Peel [12]) in which the
null hypotheses Hi,1 ≤ i ≤ n, are assumed to be independent Bernoulli random
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variables. In particular, one assumes that (Xi,Hi) are independent and identically
distributed (i.i.d.) with

P(Xi ≤ x|Hi = 0) = x, P(Xi ≤ x|Hi = 1) = G(x), 0 ≤ x ≤ 1,(3)

and Hi ∼ Bernoulli(π1) [viz., P(Hi = 1) = π1 and π0 = 1 − π1 = P(Hi = 0)].
Here G is the distribution function of the p-value Xi under alternative hypotheses.
It is commonly assumed that Xi ∼ uniform(0,1) if Hi = 0.

Due to the independence assumption, the classical random effects model or the
two-component mixture model does not allow one to model spatial or location
structures of the null hypotheses. In certain applications one expects that false null
hypotheses occur in clumps, which are spatially clustered. In this case it is rea-
sonable to expect that, if Hi = 1, then the nearby hypotheses Hj , where j is close
to i, are more likely to be false. In the negative dependence case the occurrence of
Hi = 1 prevents nearby hypotheses from being false. Recently the multiple test-
ing problem under spatial dependence has been considered by Qiu et al. [16] for
microarray data and by de Castro and Singer [6] for geographical data.

In this paper we shall consider the problem of false discovery control without
the independence assumption. In particular, we propose the conditional indepen-
dence model: Let (Hi) be a 0/1-valued stationary process, and, given (Hi)

n
i=1,

Xi are independent. The dependence is imposed on the hypotheses (Hi). A sim-
ple relaxation of the independence assumption on (Hi) is to impose a Markovian
structure. In this case it is interestingly related to hidden Markov models (see Sec-
tion 3).

As demonstrated in Storey, Taylor and Siegmund [19], Genovese and Wasser-
man [9], Chi [5] and Meinshausen and Rice [13] among others, the theory of
empirical processes plays a useful role in the study of false discovery control.
Recently Wu [24] considered empirical distribution functions for a wide class of
stationary processes. In this paper we shall deal with the p-values arising from the
aforementioned conditional independence model. In particular, we shall prove the
validity of the BH procedure and present a distributional theory for R, the number
of rejected hypotheses. We shall also establish a Bahadur-type asymptotic expan-
sion for the false discovery proportion V/(R ∨ 1) and the weak convergence of
false discovery processes to Gaussian processes.

The rest of the paper is structured as follows. Our dependence structure and
main results are presented in Section 2 and proved in Section 4. Applications to
Markov models and linear processes are given in Section 3.

2. Main results. We assume that (Hs)s∈Zd is a stationary random field
and, for presentational simplicity, we shall consider testing hypotheses Hs over
d-dimensional cubes (cf. Condition 1). Results obtained in the paper can be gener-
alized without essential difficulties to other types of regions. For a random variable
ξ write ‖ξ‖ = {E(|ξ |2)}1/2. Denote by ⇒ the weak convergence and by N(μ,σ 2)

a normal distribution with mean μ and variance σ 2. Let N denote a standard nor-
mal random variable.
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CONDITION 1. Let (Hs)s∈Zd be a stationary, 0/1-valued random field. For
n1, . . . , nd ∈ N let the d-dimensional cube C = {1,2, . . . , n1}×· · ·×{1,2, . . . , nd}
and n = n1n2 · · ·nd . Write the sum NC = ∑

s∈C Hs . Let π0 = P(Hs = 0) and π1 =
1 − π0. Assume that, as mink≤d nk → ∞, ‖NC − nπ1‖ = O(

√
n), and the central

limit theorem (CLT) n−1/2(NC − nπ1) ⇒ N(0, σ 2) holds for some σ 2 < ∞.

In Section 3 we will present examples that Condition 1 is satisfied. With a slight
abuse of notation, we write (Hs)s∈C as (Hi)

n
i=1, where i = 1, . . . , n corresponds

to the lexicographic ordering of s ∈ C.
Under the conditional independence model we can have the representation

Xi = (1 − Hi)Ui + HiG
−1(Ui),(4)

where Ui are independent and identically distributed (i.i.d.) uniform(0,1) random
variables which are also independent of (Hi)

n
i=1, and G−1(u) = inf{x ∈ [0,1] :

G(x) ≥ u} is the inverse of G. Clearly (4) implies that the conditional distribution
[Xi |Hi = 0] is uniform(0,1) and [Xi |Hi = 1] is G. If (Hi) are independent, then
(4) reduces to the random effects model. Our dependence paradigm is different
from earlier ones adopted in Farcomeni [7] and Benjamini and Yekutieli [3].

Following Genovese and Wasserman [9], we consider the false discovery
process

�n(t) = n�n(t)

nFn(t) + ∏n
i=1 1Xi>t

, 0 ≤ t ≤ 1,(5)

where

�n(t) = 1

n

n∑
i=1

(1 − Hi)1Xi≤t and Fn(t) = 1

n

n∑
i=1

1Xi≤t .(6)

Then Fn is the empirical process of X1, . . . ,Xn and �n can be interpreted as a
marked empirical process. Let

�n(t) = 1

n

n∑
i=1

Hi1Xi≤t = Fn(t) − �n(t).(7)

Note that Hi1Xi≤t = Hi1G−1(Ui)≤t and (1 − Hi)1Xi≤t = (1 − Hi)1Ui≤t . Under the
conditional independence model (4), we have for 0 ≤ t ≤ 1 that

�(t) := E�n(t) = tπ0 and �(t) := E�n(t) = G(t)π1.

To obtain large-sample properties of the false discovery process �n, we need to
establish an asymptotic theory for �n(t)−�(t) and �n(t)−�(t). Theorem 1 be-
low concerns the weak convergence of

√
n[�n(t) − �(t)] and

√
n[�n(t) − �(t)]

in a functional space. Let D[0,1] be the collection of functions which are
right continuous and have left limits; let D2[0,1] = {(f1, f2) :f1, f2 ∈ D[0,1]}.
Assume throughout the paper that G has a bounded density g = G′, namely,
supx∈[0,1] g(x) < ∞. Asymptotic results in Theorems 1–4 below are meant as
mink≤d nk → ∞.
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THEOREM 1. Assume Condition 1. Then there exist tight centered Gaussian
processes W�(t) and W�(t), 0 ≤ t ≤ 1, such that the weak convergence

(√
n{�n(t) − �(t)},√n{�n(t) − �(t)}) ⇒ (W�(t),W�(t))(8)

holds in the space D2[0,1].

Since Fn is a nondecreasing function and X(j) is the j th quantile of Fn, the
value R defined in (2) satisfies R = max{0 ≤ j ≤ n : j/n ≤ Fn(αj/n)}. Let

νBH = sup{t ∈ [0,1] : t/α ≤ Fn(t)} and
(9)

ν0 = sup{t ∈ [0,1] : t/α ≤ F(t)}.
It is easily seen that R ≤ nνBH/α < R + 1. Let f (x) = F ′(x) and

α∗ = 1

f (0)
= 1

F ′(0)
= 1

π0 + π1g(0)
.(10)

If π1 and g(0) are large, then α∗ is small. Theorem 2 below describes asymptotic
behavior of νBH and suggests a dichotomous phenomenon. It gives a Bahadur rep-
resentation of νBH when α > α∗ and R = OP(1) when α < α∗. At the boundary
case α = α∗ we have an interesting nonstandard limiting distribution with a cu-
bic root normalizing constant. In the case of random effects model in which Hi

are i.i.d., Chi [5] obtained interesting results on strong convergence properties of
R for the two cases α > α∗ and α = α∗. Chi also obtained a distributional result
for R when α < α∗ and argued that the number of rejected hypotheses is bounded
even if there is a positive proportion of untrue null hypotheses. Chi’s work shows
the criticality phenomenon of false discovery rate controlling procedures.

THEOREM 2. Assume Condition 1.

(i) If α−1∗ > α−1 > f (ν0), then

νBH − ν0 = Fn(ν0) − ν0/α

α−1 − f (ν0)
+ OP(n−3/4).(11)

Consequently
√

n(νBH − ν0) ⇒ N(0, σ 2) for some σ 2 < ∞.
(ii) If α < α∗, then R = OP(1).

(iii) If α = α∗ and c0 = −f ′(0)/[2√
f (0)] > 0, then

n1/3νBH ⇒ [max(N /c0,0)]2/3.(12)

In the classical almost sure Bahadur representation theory for sample quantiles,
one has the error bound O[n−3/4(logn)1/2(log logn)1/4] (see Shorack and Well-
ner [17]). We expect that the bound OP(n−3/4) in (11) is optimal up to a multi-
plicative logarithmic factor.
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Theorem 3(i) gives asymptotic properties of FDP, which is the value of the
false discovery process �n at a random time νBH, while Theorem 3(ii) concerns
false nondiscovery proportion (FNP). FNP is the proportion of null hypotheses
being accepted which are actually false. Since G is continuous, the FDR is απ0
(BH [2]). As pointed out in Genovese and Wasserman [9], it is not easy to study
FDP since the random time νBH and the false discovery process �n(·) are depen-
dent; recall (9). The relation (13) gives an asymptotic expansion for �n(νBH)−απ0
with a good error bound OP(n−3/4) and the term �n(ν0)−�(ν0) is easier to work
with. It seems that the asymptotic expansion is new even in the special case of
independent null hypotheses.

THEOREM 3. Assume Condition 1 and α−1∗ > α−1 > f (ν0).

(i) We have

�n(νBH) − απ0 = α

ν0
[�n(ν0) − �(ν0)] + OP(n−3/4).(13)

Consequently
√

n[�n(νBH) − απ0] ⇒ N(0, σ 2
0 ) for some σ 2

0 < ∞.
(ii) Let X∗

n = maxi≤n Xi and define the false nondiscovery process


n(t) = �̃n(t)

1 − Fn(t) + 1X∗
n≤t /n

where �̃n(t) = 1

n

n∑
i=1

Hi1Xi>t .

Let c = π0(α − 1)/[1 − αf (ν0)] + 1 − ν0/α and 
(t) = π1[1 − G(t)]/[1 − F(t)].
Then


n(νBH) − 
(ν0) = c[Fn(t) − F(t)]
(1 − ν0/α)2 + �n(t) − E�n(t)

1 − ν0/α
+ OP(n−3/4),(14)

and consequently
√

n[
n(νBH) − 
(ν0)] ⇒ N(0, σ 2
1 ) for some σ 2

1 < ∞.

We shall now discuss the estimation of the proportion of false null hypothe-
ses π1 and g under dependence. When the Hi ’s are independent, Genovese
and Wasserman [9] pointed out that there is an unidentifiability issue in es-
timating π1 and g from the p-values X1, . . . ,Xn. To see this, let λ ∈ (1 −
min0≤x≤1 g(x),1/π1), π∗

1 = λπ and g∗(x) = (g(x) − 1)/λ + 1. Then we have
the identity (1 −π1) +π1g(x) = (1 −π∗

1 ) + π∗
1 g∗(x), suggesting that Xi can also

be viewed as a simple random sample from a mixture model with the two compo-
nents: uniform[0,1] and g∗. To ensure identifiability, we assume g(1) = 0. Since
f (t) = π0 + π1g(t), as in Storey [18], we estimate π0 = 1 − π1 by

π̂0 = 1 − Fn(1 − b)

b
where 0 < b < 1.(15)

If f is differentiable at 1, then in the sense of mean squared error the optimal
bandwidth b = bn � n−1/3 (cf. Lemma 2). Let π̂1 = 1 − π̂0 be the estimator of
π1 = P(Hj = 1). The BH procedure can be improved by the plug-in procedure: let

νPI = sup{t ∈ [0,1] : t π̂0/α ≤ Fn(t)}
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and reject hypotheses for which X(i) ≤ X(RPI), where RPI = �nνPIπ̂0/α�. We argue
that in the case of dependence null hypotheses, the plug-in procedure also improves
the BH procedure by increasing power while it still controls the false discovery
rate. Let

ν∗ = sup{t ∈ [0,1] : tπ0/α ≤ F(t)}.
THEOREM 4. Assume Condition 1, g(1) = 0 and α−1 > f (ν0). Further as-

sume α/π0 > α∗ and bn � n−1/3. Then we have (i)

νPI − ν∗ = ν∗(π0 − π̂0)

π0 − αf (ν∗)
+ Fn(ν∗) − F(ν∗)

π0/α − f (ν∗)
+ OP(n−2/3)(16)

and (ii) �n(νPI) − α = α(1 − π̂0/π0) + OP(n−1/2).

3. Examples and simulation studies. Section 3.1 concerns one-dimensional
processes and Section 3.2 contains an application to Ising models in Z

2. In both
cases we shall show that Condition 1 is satisfied.

3.1. One-dimensional processes. Assume that (Hi) is a stationary process of
the form

Hi = h(. . . , ηi−1, ηi, ηi+1, . . .),(17)

where ηi are i.i.d. random variables or innovations and h is a measurable function.
By allowing the dependence of Hi on ηj , we are incorporating location informa-
tion in modeling the dependence among null hypotheses. As a simple case, if h

in (17) is a function of m (m ∈ N) arguments: Hi = h(ηi−m+1, . . . , ηi), then Hi is
m-dependent. Our formulation (17) seems in line with the principle that “every-
thing is related to everything else, but near things are more related than distant
things” (Tobler [21]).

We now give a simple condition for the CLT n−1/2(Nn − nπ1) ⇒ N(0, σ 2),
where Nn = ∑n

i=1 Hi . Let Fi = (. . . , ηi−1, ηi) and define the projection operator
Pk by Pkξ = E(ξ |Fk) − E(ξ |Fk−1) if the latter exists. Assume that

c0 :=
∞∑

i=−∞
δi < ∞ where δi = ‖P0Hi‖.(18)

Then ‖Nn − nπ1‖ ≤ c0
√

n and the CLT holds (cf. Lemma 1). The quantity δi is
related to the predictive dependence measure given in Wu [23]. Condition (18) in-
dicates that the cumulative impact of η0 in predicting the whole sequence (Hi)i∈Z

is finite. In this sense (18) is a short-range dependence condition (Wu [23]). If (18)
is violated, then one enters the territory of long-range dependence and one may
have a non-Gaussian limit.

We now verify (18) for truncation indicators of linear processes. Let Hi =
1Zi≤z∗ , where z∗ ∈ R is fixed and Zk = ∑∞

i=−∞ aiηk−i . Here ηi are i.i.d. random
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variables and (ai)i∈Z are real coefficients. Let fη be the density of ηi and a0 = 1.
Assume E(|ηi |d) < ∞, d > 0, and c∗ = supz |fη(z)| < ∞. Let d ′ = min(1, d).
Then δi = O(|ai |d ′/2) and (18) holds if

∑
i∈Z |ai |d ′/2 < ∞. To this end, for i �= 0

let Yi = Zi − aiη0. Since Yi − ηi and ηi are independent, the density fYi
of Yi sat-

isfies fYi
(y) = Efη[y − (Yi − ηi)] ≤ c∗. Let FYi

be the distribution function of Yi .
Then for i �= 0,

E|1Zi≤z∗ − 1Yi≤z∗ | ≤ E
[
E

(
1z∗−|aiη0|≤Yi≤z∗+|aiη0||η0

)]
= E[FYi

(z∗ + |aiη0|) − FYi
(z∗ − |aiη0|)]

(19)
≤ E{min(1,2c∗|aiη0|)}
≤ E{(2c∗|aiη0|)d ′ } = O(|ai |d ′

).

Let η′
0, ηi, i ∈ Z, be i.i.d. and Z′

i = Yi + aiη
′
0. Then (19) implies E|1Zi≤z∗ −

1Z′
i≤z∗ | = O(|ai |d ′

). Observe that E(1Zi≤z∗ − 1Z′
i≤z∗ |F0) = P0Hi . By Jensen’s

inequality, δi = O(|ai |d ′/2).

3.2. Ising models. Markov random fields have been widely used in image
analysis and spatial statistics. Here we shall consider a false discovery control
paradigm with the null hypotheses (Hs) satisfying the Gibbs distribution in Z

2

and thus (Hs) are spatially dependent. Let Ls = 2Hs − 1. Then Ls = −1 (resp. 1)
implies that the null hypothesis Hs is true (resp. false). That Ls = 1 may imply
that a neuron is excited or a plant is infected. Here we consider the simplest Ising
model. For a site s = (j, k) ∈ Z

2, let Ns = {(j ′, k′) ∈ Z
2 : |j − j ′| + |k − k′| = 1}

be the neighborhood of s and write Z
2 \ s = {t ∈ Z

2 : t �= s}. For a set A ⊂ Z
2 write

LA = (La, a ∈ A) and lA = (la, a ∈ A), where la ∈ {−1,1}, a ∈ Z
2. Assume that

we have the Markovian structure

P[Ls = ls |LZ2\s = lZ2\s] = P[Ls = ls |LNs = lNs ]
(20)

= exp(βls
∑

t∈Ns
lt )

exp(β
∑

t∈Ns
lt ) + exp(−β

∑
t∈Ns

lt )
,

where β characterizes the interaction between pairs of nearest-neighbor spins and
it is a function of Boltzmann’s constant and the temperature. That β > 0 (resp.
β < 0) corresponds to ferromagnetic (resp. antiferromagnetic) interaction. The for-
mer is an attractive feature in dealing with situations in which one expects that
false null hypotheses occur in clumps or clusters. In the antiferromagnetic case,
one has negative dependence which prevents false null hypotheses from occurring
in clumps.

With (20), the distribution of Hs only depends on the values of H at the four
neighbors of s. For more details see Winkler [22]. Let β∗ = 2−1 log(1 + √

2) =
0.4406868 . . . be the critical value. If 0 ≤ β < β∗, then E(Ls) = 0, and we can
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apply the central limit theorem in Newman [14] or Baker and Krinsky [1]: the
covariance cov(L0,Ls) → 0 decays to zero exponentially quickly as |s| → ∞ and
n−1/2(Nn − nπ1) ⇒ N(0, σ 2). So Condition 1 is satisfied and Theorems 1–4 are
applicable.

Consider the situation that (Hs) are not directly observable and we want to
test whether Hs = 0 or Hs = 1. We conduct pixel-wise multiple hypothesis tests.
Assume that for each site s, under Hs = 0, the p-value Xs has a uniform(0, 1)
distribution while [Xs |Hs = 1] ∼ G. Since the underlying (Hi) is not observed and
one only knows p-values Xi which are calculated from test statistics, we are thus
dealing with hidden Markov models by viewing (Hi) as hidden states. Analysis of
the p-value sequence (Xi) is useful in understanding the dependence structure of
(Hi) and provides spatial information of false null hypotheses.

In our simulation we choose the lattice set {1,2, . . . ,50}2 with periodic bound-
ary conditions and choose seven levels of β: β = −0.3, 0, 0.1, 0.2, 0.3, 0.4
and 0.44. Note that β = 0 implies independent null hypotheses and larger β in-
dicates stronger dependence. The density of the alternative distribution is g(x) =
a(1 + a)2/(x + a)2 − a, x ∈ (0,1), where a = 1/98. Then g(1) = 0, g(0) = 100
and the quantity α∗ in (10) is 2/101.

Our simulation study shows that, if the dependence is relatively weaker, then
�n(νBH) is more concentrated on απ0 and the approximation (13) in Theo-
rem 3 is better. We apply the Gibbs sampler with random sweeps (Greenwood,
McKeague and Wefelmeyer [10]) and the number of iterations is 1.25 × 106.
Choose the level α = 0.1. For β < β∗, we have π0 = 1/2 and απ0 = 0.05. Write
δ1 = �n(νBH)−απ0 and δ2 = ν−1

0 α[�n(ν0)−�(ν0)]. Table 1 shows the estimated
E(δ2

1) and E(|δ1 − δ2|2) based on 100 repetitions. It suggests that δ2 approximates
δ1 reasonably well. As the dependence gets stronger, E(δ2

1) becomes larger and the
false discovery proportion �n(νBH) is less concentrated on απ0.

Genovese, Lazar and Nichols [8] showed that the false discovery rate con-
trolling procedure can be useful in the analysis of image data. Figure 1 shows

TABLE 1
The estimated E(δ2

1) and E(|δ1 − δ2|2) based on 100 repetitions

β Ê(δ2
1) Ê(|δ1 − δ2|2)

−0.3 4.2 × 10−5 6.2 × 10−7

0 4.4 × 10−5 1.1 × 10−6

0.1 5.6 × 10−5 1.7 × 10−6

0.2 5.7 × 10−5 1.5 × 10−6

0.3 6.0 × 10−5 3.4 × 10−6

0.4 9.5 × 10−5 7.6 × 10−6

0.44 7.1 × 10−4 1.1 × 10−4

Here δ1 = �n(νBH) − απ0 and δ2 = ν−1
0 α[�n(ν0) − �(ν0)].
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FIG. 1. Row 1: simulated Ising models for β = 0.3 and 0.44, respectively. Row 2: restored images
based on the p-values under the conditional independence model. Here we applied pixel-wise multi-
ple hypothesis tests with FDR-controlling procedure and the level is α = 0.1. Row 3: the differences
between the restored images and the original ones. Dots in red (resp. blue) are false positives (resp.
negatives).

image restoration based on the p-values under the conditional independence
model. In our simulation we applied pixel-wise multiple hypothesis tests with



FALSE DISCOVERY CONTROL 373

FDR-controlling procedure and the level is α = 0.1. The first row is the simu-
lated Ising images for β = 0.3 and 0.44, respectively. The second row shows the
estimated images and the third row gives the differences. The red (resp. blue) dots
are false positives (resp. negatives). With larger α (say α = 0.15), the number of
false negatives is reduced (the simulation is not reported in the paper).

Figure 1 suggests that, if the dependence is strong (e.g., β = 0.44) and the false
null hypotheses are clustered, then it is possible to improve the restored images by
incorporating the spatial dependence structure. Pacifico et al. [15] applied FDR-
thresholding to construct conservative confidence envelopes for Gaussian random
fields.

4. Proofs. This section provides proofs of results stated in Section 2. For read-
ability we list necessary notation here. Recall (6) and (7) for �n(t), Fn(t) and
�n(t). Let Nn = ∑n

i=1 Hi be the total number of false null hypotheses,

�∗
n(t) = 1

n

n∑
i=1

(1 − Hi)t = t (1 − Nn/n) and �∗
n(t) = G(t)Nn/n.(21)

Write F ∗
n = �∗

n + �∗
n. Define

�n(t) = 1

n

n∑
i=1

(1 − Hi)(1Ui≤t − t),(22)


n(t) = 1

n

n∑
i=1

Hi

[
1Ui≤G(t) − G(t)

]
.(23)

LEMMA 1. Assume (18). Then ‖Nn − nπ1‖ ≤ c0
√

n and n−1/2(Nn − nπ1) ⇒
N(0, σ 2).

PROOF. By stationarity, ‖PkNn‖ ≤ ∑n
i=1 δi−k ≤ c0. Since Pk are orthogonal,

we have

‖Nn − nπ1‖2 = ∑
k∈Z

‖PkNn‖2 ≤ ∑
k∈Z

c0

n∑
i=1

δi−k = nc2
0.

A similar version of the CLT is given in Hannan [11] and the argument therein is
applicable here. Let Dk = ∑

i∈Z PkHi and Mn = ∑n
k=1 Dk . Then Dk are stationary

martingale differences. Let uj = ∑∞
i=j δi and lj = ∑j

i=−∞ δi . Since Pk , k ∈ Z, are
orthogonal,

‖Nn − nπ1 − Mn‖2 = ∑
k∈Z

‖Pk(Nn − Mn)‖2.

If k ≤ 0, then ‖Pk(Nn − Mn)‖ = ‖PkNn‖ ≤ ∑n
i=1 δi−k . So

∑0
k=−∞ ‖PkNn‖2 ≤

c0
∑n

i=1 ui = o(n) since um → 0 as m → ∞. Similarly,
∑∞

k=n+1 ‖PkNn‖2 = o(n).
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For 1 ≤ k ≤ n, since PkMn = Dk , ‖Pk(Nn − Mn)‖ ≤ un+1−k + l−k . So we also
have

∑n
k=1 ‖Pk(Nn − Mn)‖2 = o(n). Thus ‖Nn − nπ1 − Mn‖2 = o(n). By the

martingale CLT, Mn/
√

n ⇒ N(0, σ 2) with σ = ‖Dk‖. So the lemma holds. �

LEMMA 2. Assume supx∈[0,1] g(x) < ∞. Let bn be a sequence of bandwidths
satisfying

bn → 0 and nbn → ∞.(24)

Then under Condition 1, we have√
n/bn[Fn(bn) − F(bn)] ⇒ N(0, f (0))(25)

and √
n/bn[Fn(1 − bn) − F(1 − bn)] ⇒ N(0, f (1)).(26)

PROOF. Denote by
√−1 the imaginary unit. Let

Di = (1 − Hi)(1Ui≤bn − bn) + Hi

(
1Ui≤G(bn) − G(bn)

)
and Qn = ∑n

i=1 Di . Let t ∈ R be a fixed number and tn = t/
√

nbn. Under the
conditional independence model (4), the conditional characteristic function

φn(t) := E
[
exp

(√−1tnQn

)|Hi,1 ≤ i ≤ n
]

= [
G(bn) exp

(√−1tn
(
1 − G(bn)

))

+ (
1 − G(bn)

)
exp

(−√−1tnG(bn)
)]Nn

+ [
bn exp

(√−1tn(1 − bn)
) × (1 − bn) exp

(−√−1tnbn

)]n−Nn.

By Condition 1, Nn/n → π1 in probability. Using Taylor’s expansions exp(δ) =
1+ δ + δ2/2+O(δ3), G(δ) = δg(0)+o(δ), after elementary calculations we have

φn(t) → exp{−t2/[2π0 + 2π1g(0)]} = exp{−t2/[2f (0)]} in probability.

By the Lebesgue dominated convergence theorem, E[φn(t)] → exp{−t2/[2f (0)]}
since |φn(t)| ≤ 1. So Qn/

√
nbn ⇒ N(0, f (0)). By Condition 1, since G(bn) =

O(bn), we have

|n[Fn(bn) − F(bn)] − Qn| ≤ [bn + G(bn)]|Nn − nπ1| = OP

(
bn

√
n
)
.

So (25) follows since bn → 0. The other assertion (26) can be similarly proved by
considering D′

i = (1 − Hi)(1Ui>1−bn − bn) + Hi(1Ui>1−G(bn) − G(bn)). �

LEMMA 3. Let bn be a sequence of positive numbers satisfying bn ∈ (0,1)

and nbn → ∞. Assume that supx∈[0,1] g(x) < ∞. Then we have

sup
|u|≤bn

n|�n(t + u) − �n(t)| = OP[(nbn)
1/2](27)
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and

sup
|u|≤bn

n|
n(t + u) − 
n(t)| = OP[(nbn)
1/2].(28)

PROOF. For i.i.d. uniform(0,1) random variables Ui , i ∈ Z, let Wn(u) =∑n
i=1 1Ui≤u − nu. By Lemma 2.3 in Stute [20], there exists a constant c0 such

that

P

[
sup

0≤u≤b

|Wn(u + t) − Wn(t)| > s
√

nb

]
≤ 4e−s2/16(29)

holds for all 0 < b < 1/8 and 32 ≤ s ≤ c0
√

nb. Since (Hi) is 0/1-valued and it is
independent of Ui , it is easily seen that (29) implies

P

[
sup

0≤u≤b

|n�n(t + u) − n�n(t)| > s
√

nb

]
≤ 4e−s2/16.

So we have (27) since nbn → ∞. A similar argument entails (28). �

LEMMA 4. Assume Condition 1 and supx∈[0,1] g(x) < ∞. Let bn ∈ (0,1).
Then for �∗

n(t) and �∗
n(t) defined in Lemma 3, we have

sup
|u|≤bn

n|[�∗
n(t + u) − �(t + u)] − [�∗

n(t) − �(t)]| = OP(bnn
1/2)(30)

and

sup
|u|≤bn

n|[�∗
n(t + u) − �(t + u)] − [�∗

n(t) − �(t)]| = OP(bnn
1/2).(31)

PROOF. Since �∗
n(t) = G(t)Nn/n and supx∈[0,1] g(x) < ∞, by Condition 1,

we have (31). Similarly (30) follows. �

4.1. Proof of Theorem 1. By the weak convergence theory (Billingsley [4]), it
suffices to establish (i) the finite-dimensional convergence and (ii) the tightness.

We first show that the process
√

n{�n(t) − �(t)} is tight. Let Ln(t) = �∗
n(t) −

�(t) = t (π1 − Nn/n), 0 ≤ t ≤ 1. By Condition 1,
√

n(π1 − Nn/n) = OP(1). So√
nLn(t) is trivially tight. Note that �n(t) − �(t) = �n(t) + Ln(t). Following

the tightness argument for the process n−1/2 ∑n
i=1(1Ui≤u − u), 0 ≤ u ≤ 1 (cf.

Theorem 16.4 in Billingsley [4]), since (Hi) and (Ui) are independent, we can
easily derive that the process

√
n�n(t) is also tight. Similarly, we can show that√

n{�n(t) − �(t)} is tight by noting that sup0≤t≤1 g(t) < ∞. So (
√

n{�n(t) −
�(t)},√n{�n(t) − �(t)}) is tight.

We now show the finite-dimensional convergence. Let a, b be two real numbers;
let

Tn =
n∑

i=1

(Ji − EJi) where Ji = a(1 − Hi)1Ui≤t + bHi1Ui≤G(t).(32)
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We shall calculate the characteristic function ϕn(θ) = E{exp[θ√−1Tn/
√

n]}, θ ∈
R. Let A(θ) = log E{√−1θ1U1≤t } and B(θ) = log E{√−1θ1G(U1)≤t }. Then for
small |δ|, we have

A(δ) = log
(
1 − t + te

√−1δ) = tδ
√−1 − δ2

2
t (1 − t) + O(δ3),

B(δ) = log
{
1 − G(t) + G(t)e

√−1δ}

= G(t)δ
√−1 − δ2

2
G(t)[1 − G(t)] + O(δ3).

Let v = G(t)θb− tθa, �0 = t (1− t)θ2a2/2 and �1 = G(t)[1−G(t)]θ2b2/2. With
the preceding two relations, since (Nn − nπ1)/

√
n ⇒ N(0, σ 2), as the argument

for φn(t) in the proof of Lemma 2, we have

lim
n→∞ϕn(θ) = lim

n→∞
E exp{(n − Nn)A(θa/

√
n) + NnB(θb/

√
n)}

exp{√−1θ
√

n[aπ0t + bπ1G(t)]}
= lim

n→∞ E exp
{
(Nn − nπ1)

√−1v/
√

n

(33)
− (1 − Nn/n)�0 − (Nn/n)�1

}

= E exp{−v2σ 2/2 − π0�0 − π1�1}
after elementary manipulations. Hence Tn/

√
n is asymptotically normal. Conse-

quently, by the Crámer–Wold device, the finite-dimensional convergence follows.

4.2. Proof of Theorem 2. (i) Let bn be a real sequence with bn ∈ (0,1) and
nbn → ∞. Since bn ≤ √

bn, by Lemmas 3 and 4, we have

sup
|u|≤bn

n|[Fn(t + u) − F(t + u)] − [Fn(t) − F(t)]| = OP((nbn)
1/2).(34)

We first show that
√

n(νBH − ν0) = OP(1). To this end, it suffices to show that
for any positive sequence Bn → ∞,

√
n(νBH − ν0) = OP(Bn). Without loss of

generality assume Bn ≤ logn since otherwise we can let B ′
n = min(Bn, logn).

Applying (34) with bn = Bn/
√

n, since Fn(ν0) − F(ν0) = OP(n−1/2), we have

Fn(ν0 + bn) = F(ν0 + bn) + [Fn(ν0) − F(ν0)] + OP((bn/n)1/2)
(35)

= F(ν0) + bnf (ν0) + O(b2
n) + OP(n−1/2).

Note that t > νBH if and only if t/α > Fn(t). Since 1/α > f (ν0), F(ν0) = ν0/α

and Bn → ∞, we have by (35) that

P(ν0 + bn > νBH) = P[(ν0 + bn)/α > Fn(ν0 + bn)] → 1
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as n → ∞. Similarly, P(ν0 − bn ≤ νBH) → 1. So
√

n(νBH − ν0) = OP(1), which,
by another application of (34) with bn = C/

√
n, implies

n|[Fn(νBH) − F(νBH)] − [Fn(ν0) − F(ν0)]| = OP(n1/4).(36)

Since |Fn(νBH) − νBH/α| = O(n−1) and F(νBH) = F(ν0) + (νBH − ν0)f (ν0) +
OP(n−1), (11) follows.

The CLT
√

n(νBH − ν0) ⇒ N(0, σ 2) easily follows from (11) in view of the
argument of (32) and (33) in the proof of Theorem 1: let a = b = 1 in (32), then
Ji = 1Xi≤t .

(ii) As in (i) we shall show that for any positive sequence Bn → ∞, R =
OP(Bn). To this end, let bn = Bn/n, tn = n[bn − F(αbn)]/√nbn and

Zn = n(Fn(αbn) − F(αbn))√
nbn

.

Since bn → 0 and nbn = Bn → ∞, by Taylor’s expansion, F(αbn) = f (0)αbn +
o(bn). Hence tn/

√
nbn → 1 − α/α∗ > 0. So tn → ∞. By Lemma 2, Zn ⇒

N [0, αf (0)]. Therefore

P(R < Bn) = P[Fn(αbn) < bn] = P(tn > Zn) → 1.

(iii) Let z > 0 be fixed and bn = n−1/3z. By Taylor’s expansion, F(bn) =
bnf (0) + b2

nf
′(0)/2 + o(b2

n). Hence un := √
n/bn[bn/α − F(bn)] →

−f ′(0)z3/2/2. By Lemma 2(i),

P(νBH < bn) = P[Fn(bn) < bn/α]
= P

{√
n/bn[Fn(bn) − F(bn)] < un

}

→ P

{√
f (0)N ≤ −f ′(0)

2
z3/2

}

= P{[max(N /c0,0)]2/3 ≤ z},
which proves (12).

4.3. Proof of Theorem 3. (i) By Theorem 2(i), νBH − ν0 = OP(1/
√

n). Simi-
larly as in the proof of (36), by Lemmas 3 and 4, we have

�n(νBH) = �n(ν0) + �(νBH) − �(ν0) + OP(n−3/4).(37)

Recall �(t) = tπ0. Observe that F(νBH) − F(ν0) = (νBH − ν0)f (ν0) + OP(1/n),
Fn(ν0) = F(ν0) + OP(1/

√
n) and, by (36), Fn(νBH) = F(ν0) + OP(1/

√
n). By

(36) and (37), we have

�n(νBH)F (ν0) − Fn(νBH)�(ν0) = 1

n

n∑
i=1

{Ji − E(Ji)} + OP(n−3/4),(38)
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where

Ji = F(ν0)(1 − Hi)1Xi≤ν0 − �(ν0)1Xi≤ν0

+ 1Xi≤ν0

F(ν0)�
′(ν0) − f (ν0)�(ν0)

α−1 − f (ν0)
.

Since F(ν0) = ν0/α and �′(ν0) = π0, simple calculations show Ji = F(ν0)(1 −
Hi)1Xi≤ν0 . Note that F(ν0) < ν0 and F(ν0) = π0ν0 + π1G(ν0). Then G(ν0) > ν0.
Using the property of conditional independence,

P

(
min
i≤n

Xi ≥ ν0|H1, . . . ,Hn

)
= (1 − ν0)

n−Nn
(
1 − G(ν0)

)Nn ≤ (1 − ν0)
n.

So P(mini≤n Xi ≥ ν0) ≤ (1 − ν0)
n and hence (13) follows from (38) by noting

that Fn(νBH) = F(ν0) + OP(1/
√

n). The CLT
√

n[�n(νBH) − απ0] ⇒ N(0, σ 2
0 )

follows from (33).
(ii) The argument is similar to the one in (i). We have an analog of (37) with

�n(·) therein replaced by �̃n(·) and (14) similarly holds. The CLT also follows
from (33). Details are omitted.

4.4. Proof of Theorem 4. For (16), the argument in the proof of Theorem 3
is applicable. Let Bn be a positive sequence that diverges to infinity slower than
logn; let rn = bn + (nbn)

−1/2 � n−1/3. By Lemmas 3 and 4,

Fn(ν∗ + rnBn) = F(ν∗ + rnBn)

+ [Fn(ν∗) − F(ν∗)] + OP[(rnBn/n)1/2](39)

= F(ν∗) + f (ν∗)rnBn + O(r2
nB2

n) + OP(n−1/2).

By Lemma 2,
√

nbn(π̂0 − Eπ̂0) ⇒ N(0, f (1)). Since bn � n−1/3 and Bn → ∞,
we have

P{(ν∗ + rnBn)(π̂0 − Eπ̂0) ≥ ν∗(π0 − Eπ̂0) + rnBn[αf (ν∗) − Eπ̂0]} → 1(40)

since f (ν∗) < π0/α and Eπ̂0 = π0 + O(bn). Note that F(ν∗) = π0ν∗/α. By (39)
and (40),

P[(ν∗ + rnBn)π̂0 > αFn(ν∗ + rnBn)] → 1,

which implies that P(νPI ≤ ν∗ + rnBn) → 1. Similarly, we have P(νPI ≥ ν∗ −
rnBn) → 1 and hence νPI − ν∗ = OP(rn). By Lemmas 3 and 4,

Fn(νPI) = F(νPI) + [Fn(ν∗) − F(ν∗)] + OP[(rn/n)1/2].(41)

Since |Fn(νPI)−νPIπ̂0/α| ≤ n−1 and F(νPI)−F(ν∗) = (νPI −ν∗)f (ν∗)+OP(r2
n),

(16) follows from (41) after elementary calculations.
Using the argument in the proof of Theorem 3, we can similarly obtain (ii) with

no essential difficulties. Since the calculation is lengthy, the details are omitted.
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