
On Fast and Provably Secure Message
Authentication Based on Universal Hashing

Victor Shoup

Bellrore, 445 South St. , Morristown, N J 07960
shouplbellcore.com

Abstract. There are well-knowri tcchniques for message authentication
using nniversal hash functions. This approach scc:ms very promising, as
it provides schemes t,hat, arc: both efficient and provably secure under
reasonable assumpt,ions. This paper contributes to this line of research
in two ways. First, it analyzes the basic constructioii and some variants
under more realistic and practical assumpt,ions. Second, it shows how
these schemes can be efficiently implement,ed, arid it reports on the re-
sults of empirical performance tests that demonstrate that these schemes
arc competitive with other commonly employed schemes whose security
is less well-established.

1 Introduction

Message Authentication. Message authentication schrmcs are an important
security tool. A s more and more da t a is bcing transmitted over networks, the
need for secure, high-speed, software-based message authentication is becorning
more acutr.

The setting for message aut,hentication IS the following. Two parties A and
B agree on a secret key a. A message authent,ica.tion scheme corisists of two
algorithms S arid V . If A wants to scnd a message z to D , then A first computes
the rriessage authentication code, or M A C , a = S,(z), and sends the pair (z, a)
to B. When B receives a pair (x, a) , I3 evaluatts V,(z, a) , which returns 1 if the
MAC is valid, and 0 othcrwise.

Security for message authentication schemes can be formally defined, as in
Bellare e l nl. [4], essentially along the same liries as for digital signattiires [8]: wc
say tha t an adversary forges a MAC if, wlieri givcn oracle access to S, and Val it,
obtains I /n(z,a) = 1 for some message s that, was never given to the oracle for
S,; a message authenticat,ion scheme is secure if' it is computationally infeasible
to forge a MAC.

Common Approaches to Message A u t h e n t i c a t i o n . One of the most widely
used message aut,hent#ication schemes is built using a block cipher, typically the
Data Encryption Standard (DES), and applying it, to the message in Cipher
Block Chaining (CBC) mode. Only recently has this schemc been shown t)o
be secure [4], iinder a reasonable assumption about, DES, alt.hoiigh the level o f
security provided by this scheme degrades quit,e quickly as the number of queries

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 '96, LNCS 1109, pp. 313-328, 1996.
0 Springer-Verlag Berlin Heidelberg 1996

31 4

or the message length increases. Moreover, as 11% is applied t,o every block of
the message, t<his scheme is quite slow, especially in software.

Another coniniori practice today is t,o use a cryptographic hash function h ,
such as MD5, and set S,(z) = h(u . c . u) , where “.” denotes concatenation.
Many variations on this scheme have heen proposed as well (see [16])). These
schemes arc t,ypically much faster t h a n t,he CHC-LIES scheme; unfortunately,
the securit>y of these schemes is not well-eshablished; to obtain m u c h confidencc
in the security of this approach, onc must assume a good deal more about t)he
properties of h than seems warranted (but, see [2] for some progress in t8his area).

The Universal-Hash Construction. The problem of message authentication
was studied early on in an informat,ion-t,hcoretic setting, first by Gilbert e t al.
[7], and later by Wegmari arid Carter [18]. Wegman and Carter’s universal-
hash constructzon was later placcd in a ~rypt~ograyhic setting by Brassard [C i] ,
Krawczyk [12], and R,ogaway [17]. ‘I’his constmiction uses a 2-universal family H
of hash functions, arid a pseudo-raridorri family F of functions. Assume that the
outputs of both types of functions arc bit strings of Ihe same length, say I . The
secret, key for such a scheme consists of a pair (h , f) , where h E H and f E F
are chosen at, random. The MAC for a message z is (r , f (r) @ h (z)) , where the
“tag” value r is a counter that, is incrmwnt,eti with rach application of algorithm
S.

Actually, one does riot iiced a Zuniversal family of hash functions, but rather,
a family of hash functions satkfyiiig t,he following property for suitably small
F >_ 2-‘: for any pair of inputs x1 # x2 and for any l-bit string z , for a random
h E H , the probabilit,y t,ha.t /?,(XI) 6) h (r 2) = z is no more than t. In this c.ase,
we say H is an t-AX17 (almost exclusive-or universal) family of hash functions.

The main theorem concerning the security of the basic universal-hash con-
struction is the following (see [17] and [12] for more details arid references).

Thcoreinl. A S S U T I ~ ~ H is c-A.XU, and that F is replaced b y the truly randoin
family R of functzons. In this cast, af an adversary makes 41 queries l o S and
q 2 queries to V , l h e probabilzty of forging a M A C is at mos t q z t .

If in passing from R t,o F t,he forgery probability should significantly increase,
this would give us a stat,ist,ical test, to distinguish I;’ from R. tha t makes q1 + q z
queries to the test function.

Our Contributions. We coritribuk to this line of research in two ways. In
the first par t , §§2-3, we analyze t,hc basic construction and some variants under
more realistic and p rx t i ca l assumptions. In the second par t , 334-7, we show
how schemes based on universal hashing can he efficient,ly implemented, and we
report on t,he performarice of these implementat,ions.

NEW Analyszs and C o n ~ l r ~ r c t i o n s . Clorisider the choice of the family E’ of
pseudo-random furictions b’. Since f is evaluated at just a single counter value
per message, one can usually afford to employ a. function with strong security
properties, but which may bc somewhat slow t,o evaluate. A block cipher such
as DES secms like a very good choice.

31 5

There is, however, an irritating probleni with using DES in conjunction with
Theorem 1: namely, DES is a permut,at,ion (on 64-hit8 strings). The level of secu-
rit,y implied by Theorem 1 decreases quadratically with q1 + 9 2 , and as 91 + 9 2
nears 232, Theorem 1 says nothing at a l l about the srcurity of the message au-
thentication scheme. This is because with close tto 2'' queries t o a test function,
we cun already dist,inguish DES from a random fiiriction, since DES will not yield
any collisions, unlike a random function.

There are several cryptsographic const,ructions in the litcrature (e.g., [3 , 11)
tha t suffer from the same problem.

In $2, we analyze the security of thc universal-hash construct,ion using pseudo-
random permutsa,t,ions, arid show that, it, i s in fact, more seciire than implied by
the above theorem. We also give a small modification t,o the universal-hash
construction with even better security properties.

Another potential problem with tmhe basic universal-hash construction is that
algorithm S is not stateless. This might be inconvenient, in certain situations
where reliably maintaining state is difficult, or where many part,ies are authen-
ticating with the same key. In $ 3 , we show a modification to the basic construc-
tion tha t is stateless and efficient, whilc st,ill being just a.s secnre as the basic
universal-hash construction.

Fust Implementations. The most critical aspect of the universal-hash con-
struction in terms of performance is the family H of hash functions. We need tlo
be able to generate random elements of H reasonably quickly, and more impor-
tantly, we need to be able to apply functions in H t o messages very quickly.

We discuss three types of hash funclions based on polynomials over finit,e
fields. We show how these tjhree types of hash fiinctioris can be efficiently imple-
mented in software, and we report on the performance of these implementations.
In 54 we present the three hash functions under consideration, and summarize
our empirical results. In fj5-7 we discuss our implerrieritations of these functions,
as well as some possible alternative iniplenientations. Our results indicate that
on typical workstations and personal corriprit,crs, the perforrriancc of these hash
functions is compet,itive with that of ot,her commorily employed authentication
schemes whose security is less well established.

Some of our techniques may be useful in other contexts as well, such as our
method for constructing a randoni irreducible polynomial of given degree over
GF(2).

2 Using a Pseudo-Random Family of Permutations

As mentioned in the introduct,iori, tmhc eshblished theory on the universal-hash
construction is riot adcquate to explain what happens when pseudo-random per-
mutations are used in skad of pseudo-random fiiiiclioris. The following theorem
is useful in that regard.

Theorem 2. I n thP basac unzvcrsal-hash ronstrucizon, auppose H 2.5 t - A X U , a n d
that F 2s replaced b y t h e truly random f a m r l y P of pcrrnu ta f ions on 1-bzt strings.

Suppose t h a t t h e adversary m a k e s q1 qutrws l o S and (12 qutraes l o V . T h e n
prov ided q: 5 1 1 6 , the probabili ty th,ut lh,e adversary forges a MAC is a2 m o s t
ILQ:!E.

This tlieorcni is proved in the Appendix A .
As usual, if in passing fro111 I' to a pseudo-random family F of permutations,

the forgery probabilit,y incrcases significantly, we get, a statistical test distin-
guishing F from I-'.

T h e usefulness of t,his theorem depends on the c; for long messages, there
is usually a trade-off between the efficiency of the hash function and I / (. This
motivates the following const,ruction .

Let F be a family pseudo-random permutations on 1 bits. Let HI be an
cl-AXU family of hash funct,ions, and H:! an r2-AXII family of hash functions.
Assume these functions have l-bit outputs and that funct,ions in H I have /-bitj
inputs .

A s in the basic universal-hash const,ruction we use a tag value r that) is a
counter increniented with cach invocation of S. 'I'he secret key for the MAC
consists of f E F , hl E HI , and h:! E 112, chosen randomly. The MAC for a
mcssage r is (r , f(r) @ h , l (r) 63 h2(z)) .

Theorem3. Suppose that P as replaced by Ih.c truly r a n d o m f a m i l y P of per-
m u t a t i o n s , and t h a t a n adversary m a k e s ql queries t o ,S and q2 querics do V .
Then provided q: 5 l / c l , th,e probabili ty t h a t t h e adiwrsary forges a MAC is a t
m o s t 2q2cz .

This theorem is also proved in appendix A .
As an example, slippose we a.re using DES and 1 = 64. Since hl is applied to

a short st,ring, we can afford to use a family HI with (1 = 1/2"'. The theorem
says we should use algorithm S no more than 232 times, at which point we
should switch the MAC key. But riot,e that iintil this poinl is reached (if ever),
the security degrades only very little.

3 Using a Random Tag

Consider the basic universal-hash conslruct,ion. Letr W be an t-.4XU family of
hash funct-ions, and F' a pseudo-raildoin family of functions, all functions may-
ping t<o !-bit, st8rings, and t h t t,he furictions i r i +' have 1-bit inputs. To make
S stateless, instead of a countcr, we might use a random l-hit tag. However,
the security in this case can degra.de w r y rapidly. A f k r 0(11/2) queries to t,he
S-oracle, it is likely that t,wo tag values c~ollide. Depending on the family of hash
functions, this event can comproiiiise the scheme completely (this is certainly
t,rue for the hash functions discussed in this paper).

One solution is tmo double the length of the ra.ndorn tag. IIowever, we t,heri need
a pseudo-random function from 2l to d bit,s. If we want, to base the security on
DES, wit,h 1 = 64, we could use the general consLruct,iori of Aiello and Venkatesan
[l] to build a pseudo-random function from 21 to 1 bits. However, tha t would

31 7

require 6 DES applicat,ions. For the particular sitiiatiori a t hand, it turns out,
t,hat two DES applications are sufficient. We outline this construction.

The secret key for t,he message authentication scheme consists of f l g E F ,
h E H , and two elements C Y , ~ E GF(2'). All of these are chosen at r m d o m .
To comput,e a MAC for the message 2, t,he algorithm S generates two random
elements r , s E GF(2'). The MAC: is (P , s, f (r a + s) @ g(rP + s) @ h (z)) .

Theorern4. Suppose t h a t F is replaced hy the fum.ily 13 of truly random func-
tions from 1 bats t o 1 bits, and [hut un adversary makes 41 queries l o S and 92
queries t o V , where q1 < 2 l - l . Then 1h.e prohabi l i ty th,ut the udversary forges u
MAC zs ai most q;2-2'+' + q z (t + Z-'-').

The proof is iri Appendix B.
As usual, if in passing from R t,o F we gct a. significant increase the forgery

probability, we get, a statist,ical test to distinguish F from R.
It still remains to prove an analogous theorem for permuhtions; nevertheless,

DES, or some simple construction based on i t , still seems like a good candidate
for F .

4 Three Types of Hash F'unctioiis

In the rerriainder of this paper, we deal wit,h the choice and irriplemenlation of
a n t-AXU family of hash functions.

In this section, we present the three types of hash fuuct,ions under consider-
ation. We assume tha t messages are broken up into 7 1 blocks, each containing 1
bits. The oiit,put of the hash functions is 1 bibs.

The Evaluation Hash. The rvnluntion hush views the input as a polynomial
M (t) of degree less Lhan n over GF(2'). The hash key is a random element cu in
GF(2'). The hash value is M (a) . c1' E GF(2'). This faniily of hash functions is
c-AXU with c w n / 2 ' .

The Division Hash. The division hash views the input as a polynomial m(z) of
degree less tjhan 711 over GF(2). The hash key is a random irreducible polynomial
p(x) of degree 1 over GF(2). The hash value is m (x) . z ' mod p(zj. Since the total
number of irreducible polynomials of degree I is M 2' /1 , it is easy to see tha t t h i s
family of hash functions is t-AXU with 6 x n1/2'.

The Generalized Division Hash. The third hash function a c t d l y includes
each of the first, two as special cases. Suppose tshat k I I . The generalized division
hash views the input as a polyriomial m (z) over GF(2k) of degree less than
n l / k . The key is a random monic irreducible polynomial p (z) of degree l / k over
GF(2'). The hash value is m(z)z' / '" mod p (z) . It is ca.sy to show t,hat this is
c-AXU with 6 M n l l k2 ' .

The division hash was first suggested for i isc in message authentication by
Krawczyk [la] 'I'he other two are obvious variants, b u t havc somewhat differcrit
performance arid security propertie3

An output length of 1 = 64 should provide an adequate level of security for
the above three hash functions. Note tha t from the point of view of message
authentication, MD5’s output length of 128 is really “overkill”--this outjp~lt>
length was chosen to make finding collisions hard, another problem entirely.

We have irriplemenkd t,he evaluation and division hashes with 1 = 64. One
disadvantage of the division hash is that we have to generate a random irreducible
polynomial of degree 64 over GF(2) whenever we generate a hash function. This
can he somewhat time consuming. Moreover, with the division hash, one effec-
tively has 6 bits less security t8han wit>h the evaluation hash (i.e., E increases
by a factor of 2‘)). However, the division hash runs somewhat, faster than t h e
evaluation Iiwh. We have also implemented the generalized division hash with
I = 64 and k = 8. We have found t,liat with this method, hash function genera-
tion is much faster than with thc division hash, while hashing speed is identical
to that, of thc division hash. Also, onc has only 3 bits less security than with the
evaluation hash.

We briefly summarize some of c u r eiiipirical results; more details can be found
later in the paper. The timings are based 011 a C implementation using gcc on a
Sun Sparc- 10 workstatiori with a 70MHz clock. The Sparc- 10 has a very t8ypical
32-bit RISC architecture.

One implementation of the generalized division hash uses one 8KB table for
each hash function. The sct-up time (the t,inie to generate the hash functiori
and pre-compute the associated table) is about 25511s. The hash function itself
achieves a bit ratme of 50-75Mbps (lo6 bit,s per second).

Cache Behamor. Because of the relatively large h b l e size, cache behavior
can heavily influence t,he speed of the hash function. We performed a number
of experiments to try to measure this influence, and where the speed seerried to
rely heavily on cache behavior, we report) this speed as an interval. T h e highest
speed in this interval represents an ideal sitjuat8ion, where a huge amount of da ta
is hashed before pushing the table out of cache. ‘I’he lower speed represents a
situation where only 2KB of data are hashed before pushing the tablc out, of
cache. We still need to gain more practical expcrience with cache behavior.

lJsing a. h b l e of just, 2KB, the evaluat,ion hash can be implemented so that,
it has a set-lip time of just 30ps, and runs at 34-36Mbps. Note the much smaller
variance in running t,itne due to cache effects.

We have not included in the above the cost of the pseudo-random function.
Using one of the fast,er DES irriplementations, buill by How [lo], the set-up t h e
is about 75ps , and the tinie for one DES operation is about 1O.Sps.

We compare the above with a standard C implementatiori of MD5 on our
machine, for which gcc produces quite good code. M D 5 achieves a top speed
of 41Mbps. T h i s measures the speed of the internal compressiori luIlciion; deal-
ing with word-alignment and byte-ordering prohlems can reduce MD5’s speed
somewhat,. Cache effects do not seem to affect, t,he speed of MD5 significantly.

I t is clear from the above running tiriles lha t CBC-DES is very slow, running
at only 6Mbps.

31 9

As anot,her example. we compiled our code for t,he generalized division hash
on a 90 MHz Pentiurn, rurinirig linux and using gcc. Because of the very small
register set on the Pentium, the gcc compiler was not, able t,o generate w r y good
code, and so we hand optimized t,he asscmbly code. The set-up t ime was was
220ps, arid the hash function runs at 85-100Mbps.

We compare this to the hand-ophriized asscmbly implementation of MD5
by Bosselaers, Govaerts, and Vandewalle [5]. ’l’his runs at, 113Mhps.

Also, How’s implementation of DES 011 our Pentium has a set-up time of
9 4 p , and one application takes 1 1 . 5 ~ ~ . This implies A rate of about 6Mbps for
CBC-Ill%.

5 The Evaluation Hash

To implement the evaluation hash for GP’(2’4), we select an irreduci ble poly~lo-
mial f(a) E GF(2)[a] of degree 64, and reprcscrit GF(264) as GF(2)[z]/(f(z)). It
is convenient, especially on 32-bit machines, t o select f(a) of the form zG4+f0(z),

where deg fo(a) is small, for example J (z) = zG4 + z4 + z3 + z + 1.
To evaluatc a polynomial in C;F(264)[1] at, a point n E G17(2G4), we use

Homer’s rule. Thus, t,he critical operation is the inap [I li CY . /3 (p E GF(264)).
Since CY remains fixed for many such rriultiplications, we can speed things up
considerably by performing a I.’re-comput,a.tioii.

Suppose cy = a(.) mod f(z), where u (z) E GF(2)[2], with dega (z) < 64.
For a given b(z) E GF(2)[2], with degbjz) < 64, we want, to compute a,(.) .

b (x) mod f(x). We discuss two methods to d o this.

Method 1. We itssiiine tha t we have performed a pre-conipiltat*ion that, allows
us t,o compute t.he map v (z) H u (z) zG4 mod f(z) (deg(v(z) < 8) by table-
lookup. This table will have 256 cnt,ries, and because of the special form of J (z) ,
each cntry will be only 16 -b i t~ wide, for a total of 0.5KR. This table is fixed once
arid for all.

Given u (z) we can perform a pre-cornpiit,at,iori tha t allows us to compute the
map ?j(z) ++ ~ (z) . u (x) mod f(a) (deg .(x) < 8) by t8a.ble-lookup. This table will
also have 256 entries, but each entry will be 64-bits wide, for a total of 2KH.

To compute u(x) . b(z) mod f (x) , WC’ writ,e h (x) = Ciy0 bi(z)zsi , initialize
r (z) to zero, and do t,he following:

7

for i - 7 down t,o 0 do r (z) + r(z)zX + b i (x) u (z) mod f(x)

Assuming a 32-bit machine, polynomials of dcgrec less than 64 are repre-
sented by a word-pair. Suppose ~ (z) is represented by t,he word-pair (hi, lo) . In
this algorithm, the compiitat,ion of r (z) z 8 mod f (r) is performed by extracting
the high-order byte of hi, performing a t , ab l~- look~ip , performing a left-shift, of
8 bits on (hi, l o) , and replacing l o by the exclusive-or of itself and the result of
the table-lookup. To compute bi (z)a(z) mod f (x) , we ext,ract t,he appropriate
byte of b(z) , perform a tablc-lookup, oht,aining two words. We then exclusive-or
these two words into (h i , lo).

320

Timiny resd ts . In our Sparc- 10 irriplement,atiori. the pre-computation step
for a given a(.) t,akes ;3Ops. The hash funct,ion then runs at about about 34-
36Mbps. The number of machine inst,ructions executed per byte is about 14. One
particular bottleneck is the double-word shift---t,his alone takes 4 instructions.

Method 2. In t>his riiet,hod to compute u (z) b(r) mod f(x), simply to perform
a pre-computation t,hat allows us to compute, for 0 5 i < 7, the maps w(x) H
v(x);csia(z) mod f(x) (deg TI(.) < 8) by t,able-lookup. This will requirc 8 tables,
each with 256 64-bit entries, for B total of 16KB. With t,hese tables, we can carry
out the multiplication by N using 8 table look-ups and exclusive-ors.

Timing results. In our Sparc-10 implenientation , this method requires 240,~s
for the pre-computation, and runs at 32-54Mbps. The iiiimber of machine in-
structions executed per byte is about 7. The very large table seems to cause a
significant performance degradation.

For both of these methods, t o achieve these hash rates one must process the
message word-by-word, and not byte-hy-byte, that is, each word of the message
is read from memory as a wliolc, and then exclusive-ored into a register. Any
byte-ordering problems can he dealt with at virtually no cost

6 The Division Hash

We now consider the division hash. There arc two problems that need to be dealt
with: how to apply the hash Eunct,ion given t,he polynomial p (x) E GF(2)[z] of
degree 64 tha t defines i t , arid how to generate a random irreducible polynomial
over GF(2) of degree 64. We deal with these problems in t,urri.

6.1 Hash Function Application

Assume we have the polyriomial p (z) defining the hash function. Tf tmhe input to
t,he function is m (z) = Cyzi 1 i i i (2) 2 ~ ~ ” ~ , we initialize ~ (2) to zero, and do the
following:

for i +- 71 - 1 down tJo - I cto r (z) t-

where m - 1 (; c) is defined to be zero.

p(x) (deg o(x) < 64). We describe two mct,liods to implement this map.

Method 1. In this method, we perform a prc-comprit~at~ion tha t allows us to
compute O(Z) H ~(z)z~~ mod p(z) (deg ~ (x) < 8) by table look-up. This will
require a table of 256 64-bit erit,ries, for R total 2KH. Given this table for 8-bit
reduction, wc c . a ~ easily compute the 64-bi0 reduction using 8 lable lookups,
shifts, and exclusive-ors.

Timing resvlfs. In our Sparc- I0 irnpleinentation of this met,hod, the pre-
computation step takes about 3 0 p , and achieves a rate of 35-38Mbps. The
number of machine instructions executed per byt,e is about, 10.

+ m i (x) modp(s) ,

The critical operation is the 64-bit redriction map V(Z) w 7 / (2) ~ ~ ~ mod

32 1

Method 2. Thc double-word shifts requircd in the above method are quitc
costly on 32-bit machines. On siicli niachines, the following avoids lliese shifts,
and yields better pipeline ut,ilization as well. In this method, we perform a
pre-computation tha t allows us to compute, for 0 5 i < 4, the maps v (x) -
1 / (~) 2 ~ ~ + ~ a mod p (x) (deg ~ (x) < 8) . This requires 4 tables, each with 256 64-bit
entries, for a total of 8KB. With these tables, we can perform a 32-bit reduction
with just, 4 table look-ups and exclusive-ors. We repeat this twice to get a 64-bit
reduction.

Timing results. For this metthod, t h e pre-computation step takes 120/*s, and
achieves a rate of 50-75Mhps. The number of riiacliirie inst,ruct#ions ~xecii t~ed per
byte is about 6.

A s In the evaliintion Iiash, for reasons of efficiency, the message should be
proccsscd word-by-word, instcad of byte-by-byte

6.2 Generating an Irrcducihle Polynomial

We now consider the problem of generating a random irrcducible polynomial of
degree 64 over GF(2). One way is t,o generate polynomials at random and test
for irreducibility. This is quite t,ime consuming, and requires a lot of random
bits.

A much better way t,o proceed is t,hr following. We can assume tha t we
already have one irreducible polynomial of degree 64, defining the extension
field GF(264). Given this, we generate a random element, in GF(264) and then
compute t,lie minimal polynomial of this element. This procedure is also nice
since we only need 64 random bits.

With this procedure, the probabilit,y lhat, we get a polynomial whose degree is
less than 64 is 1/232 (the probability of choosing an element in GF(232)). While
Ihis is small, it cannot be ignored. If t>liis happens, one could repeat the above
procediire. Howevcr, it, is a.ct,iia.lly bct,t,cr from both an efficiency and security
standpoint to do t,he following: if we get, an irreducible q(z) of degree less than 64,
then simply define the hash function by the polynomial p(x) =
Although perhaps counter-intuitive, it is riot difficult to show t.hat the security
of this hash function is jus t as good as that of t'he original (we leave this to the
reader to verify).

So we have reduced our problem to the following, which we state in more
general terms. Let K be a field arid f(x) E I < [x] a rnonic, irreducible polynomial
of degree d. We are given a polynomial g(z) E K [z] of degree less than d , and we
want to compute its minimal polynomial modulo f(x), i.e., the rnonic polynomial
h (z) E K [z] of least degree such tha t h , (g (z)) 0 mod f(x).

We describe three ways t o solve t,his problem.

Method 1. This rnet,hod, due to Gordon [! I] , applies only to a finite field K =
GF(q). We compute the sequence of polynomials g(x)9 ' mod f(x) for 0 5 i 5 m ,
where 772 is the smallcst positivc intcger such that y(x)qm g(z) mod f(x).
Note tha t m I d. We then comput,e h (x) = ~ ~ ~ ~ ' (J : - g (x) q ') mod f (x) . When

m = d , we replace h (x) with h (z) + f (z) . 'l'lris nirthod iises O(d310gq) arithmet,ic
operations in Ii.

Now consider tahe situation whcre 1; = GF(2) and d = 64. We have to do
63 squaririgs and multiplies modulo f(.c). There arc a variety of ways to make
the squaririgs fast with a pre-computed table. However, since the operands in
the mult,iplies are difYererit every t,irne, we cannot perform a pre-compiitat>ion to
speed this up, making t,hese miiltiplications q u i k slow.

Timing r e s u h . In our Sparc-10 implrinentation ~ t,his method t8akes about
8 2 0 ~ s : 35ps for the squarings, and 785ps to do the mult,iplications.

Method 2. One of the most obvious and well-known methods is to compute
powers of g(z) rnodiilo f (z) , and t,hrri find a linear relat,ion using eliminat>ion
t,echniyues. This will in general take 0 (d 3) arit,hnietic operations in I<.

Consider the situat,ion where I< = GF(2) arid d = 64. To compute the se-
quence of powers of g(z) niodulo f (z) , we first, build a table to make multipli-
cation by y(z) modulo f(z) fast,. For this, we use t81ie t,ecliniqiie of mct*hod 1
in 55. Now we have a matrix M E GF(2)"x"4, arid we want to find a vector
v E GF(2)IX6" satisfying ~ J M = 0. One way to do this is standard Gaussian
elimination; however, when we build t,hc mat.rix, tslie ruws are represented as
word-pairs, but to perform Gaussian elirninat~ion, we need to perform c o l i ~ m ~ i
operations. Convertmirig this matrix to a form that, makes Gaussian elimination
efficient is quite time consuming. A rriuch bet,ter approach is that of Parkinson
and Wunderlich [15] (see also Lenst,ra and Manassc [In]) which finds a solution
using row operations.

Timing results. In our Sparc-10 implementatiori, this method requires about
570,~s: 30ps to build the multiplicat,ion look-up t,able; 1 2 5 p to compute the
powers of g(z); and 4 1 5 ~ s to perforni the Parkinson- Wunderlich algorithm.

Method 3. Consider the sequence of polynornialsg~(z), yl(z), . . ., where yi(z) =
g(z)' mod f(z). This is a linearly generated sequence over Ii with minimal poly-
nomial h(z) , i .e. , it satisfies a 1inea.r recurrence whose cocffkients are those of
h (z) . Borrowing a simple idea from Wiedernann [19], we consider the projected
sequence a0 = yo(O), 01 = g](O), . . ., i.e., we sirriply take the constant terms of
the polynomial sequence to get a seqiierice over I<. This latter sequence is also
liriearly generated over A'; in general it,s minimal polynomial will divide h (z) ,
but since h (z) is irreducible, and since the projected sequence is nonzero, the
minimal polynomial of the projectled sequence is also h (z) .

So now we have the following problem. We have a sequence of elements
ao7 a l , . . . in A' t,hat is linearly generated over I< with minimal polynomial of
degree at. niost d. The first, 2d clenients of this sequence fully determine its mini-
mal polynomial, and t>his can be very efficiently computed using the Berlekamp-
Massey algorithm (see Massey [I41 and also Kaltofen and Saunders [ll]), which
iises O(d2) arithinet,ic operations in Ti.

Consider now the sit,uation where li = GF(2) and d = 64. We compute the
powers of g(z) as in method I , and pack the constant-term hits into 4 machine
words. Uy keepirig elements of GF(2) packed into words, wit,h some care t81ie
Berlekamp-Massey algorithm can be iniplenientcd so as to be quit,e efficient.

323

‘t‘irnzng resul ts. In our Sparc- 10 iiriplt‘mpiit,atiori~ the tot,al lime t o compute
a rninimal polynorriial wit,h this niethod is about 36011s: 3Ops t,o build the mul-
tiplication look-up table; 250ps to compute the sequence of powers; and 80ps to
perform the Berlekamp-Massey algorithm.

7 The Generalized Division Hash

‘I’he generalized division hash achieves a hit-rate identical to that of the division
hash, but, has the advantage t,hat the required irreducible polynomial can be
generated much faster.

The generalized division hash works over the field A‘ = GF(28). To generate
the hash function arid required tables, we have to perform arithmetic in li’. To
do this, we use the standard technique of using exponentiation and logarithm
tables so that a miiltiplication in K takes one additsion and three table look-ups.
To avoid special cases involving multiplication by 0, we set t,he logarithm of 0
to -255, and the exponentiation table is then indexed from -510 to 508. The
t,otal size of these tables is 2KB.

7.1 Hash Function Application

Suppose we have a polyriornial p(x) E K [x] defining the hash function. We can
carry out division with remainder in milch the same way as in $6. In fact, once
we pre-compute t,he necessary tables, the algorithms for division with remainder
are identical to those in SG. One difference is that const,ructing the tables takes
just a little more time: 35ps (instead of 3Ops) in t h e 1-kable method, and 140,~s
(instead of 1 2 0 p) in the 4 t ab le met,hod.

7.2 Generating an Irreducible Polynomial

We generate a random irreducible polyrioriiial over I i as follows. We fix an ir-
reducible polynomial j (x) t I<[x] of degree 8. For efficiency purposes, f (x) is
chosen to be of the form 2’ + fo(z), where degfo(x) < 4. We choose a ran-
dom polynomial g(z) € K [z] of degree less t#haii 8 , arid compute its minimal
polynomial. This is done using t,he Berlekamp-Massey algorithm, as in the last
section. This requires tha t we compute g(z)* mod f(x) for 0 5 i < 16. These
multiplications are d a l e by a method analogous to method 1 in 55. Again, the
special form of f(x) makes these multiplications more efficient. Also as in SG, if
we get an irreducible polynomial of degree less t,han 8, we use it anyway.

Tinizng results. In our Sparc-10 implemcntation, the total time required to
generate a random irreducible polynomial is 11 5ps: 35ps to build the multiplica-
tion look-up table; 30ps t,o compute t h e sequencc of powers; and 55ps to perform
the Herleka.mp-Massey algorithm.

324

8 Conclusion

Our expcrierice indicat,es tha t a message authentication scheme based on ei-
ther the generalized division hash or t hc evaluation hash, along with DES, is
an att,ractive alternat,ive to scherries based on MD5, or similar cryptographic
hash functions: one can obtain a much higher degree of provable security, while
attaining reasonable perfwmance.

We summarize our empirical results here. Iktails of how these estimates
were obtained are contained in the body of the paper. The scheme based on the
generalized division hash requires 120 random bits to generate an instance of
the scheme. It uses one 8 K H h b l e per instance. Given the 120 bits defining the
instance, there is a set-up cost. On a 70MHz Sparc-10, the total set-up t ime is
3 3 0 p , and on a 90MHz Pentiuni, 315~s . As t o speed, it runs al 50-75Mbps on
a Sparc-10, and 85-lO0Mbps on a, Pent,iurri. There is also the cost of one DES
application per message: about 1 lps on both machines.

In contrast, consider a scheme based on the evaluation hash. It also requires
120 random bits to generate an instance of t8he scheme, but uses one table of
2KH per instance. On a Sparc-10, the tot,al set,-up cost is just 105ps, and runs at
3 4 - 3 6 ~ s . We have riot, irriplementkd this on the Pentium. Because of the smaller
set-up time, and because the smaller tahlc places less presslire on the cache, this
scheme could be preferable t,o t.he generalized hash scheme in some situations.
This requires more cxperirrientation.

We compare the above to MD5 and CkK-DES.
MD5 has no significant sct-up time or storage requirements. It runs at

41Mbps on a Sparc-10, and at l l3Mbps on a Pentium.
CBC-DES has a set-up time of 75ps on t,he Sparc-10, and 94ps on the Pen-

t ium. The storage requirements are not. significant. It runs at about 6Mbps on
both machines.

We note that our hash techniques complement the buc,ket,-hash technique
developed by Rogaway [17] very nicely. For high-speed authentication of very
large files, orie would reduce the input, size by a factor of, say, 10 using a bucket
hash, and then apply, say, a, generalized division hash to this shorter string.

Appendix A: Proof of Theorems 2 and 3

To prove Theorem 2 , without loss of generality, we assume tha t the adversary
is deterministic, and that all S-queries are made hcfore all V-queries. We are
assuming that f is a random permutation. For 1 5 i 5 91, the adversary obtains
strings I U , = f (i) @ h (r 7) . where each message xa is some function of w1,. . . , w - 1 .

Let w = (~ 1 , .
~ u ' ~ ,) .

Lemma5. L e t h E H be an arbz trary hash functzon, a n d let w be an arbz trary
5eyueiice of strangs that can appear Q S outputs f r o m ihP S-oracle wzfh nonzero
probabzlzty. Thm uif have Pr[hlw] 5 2 Pr[h]

325

Theorem 2 follows Lrivially from this lemma, using the standard argument
for the security of the basic universal-hash const,ruction with the fact, that H is
c-AXU.

To prove Lemma 1, we use Bayes' theorem.

We want to bound the quantity

from below.
Fix g E H ~ and let u, = w, @ g (x z) for 1 5 i 5 41. Then we have

It follows that, T is just nyLi'(2' - i)-' times the probability that for a
random g E H , the sequence v = (Q, . . . , 7 i q l) contains no duplicates. NOW, fix 1:
arid j with 1 5 i < j 5 yl . If, OII the one hand, zi = z j , then by the assumption
that w appears with nonzero probability, arid the fact that f is a permutation,
it follows that wi # wj, and so va # ' u j . On the other hand, if zi # xj: then
by the fact that H is 6-AXU, it follows that vi = v j with probability at most C .

Thus, the sequence v contains duplicates with probability a t most q t t / 2 , and SO

41 -1

Prom this it follows that Pr[hlw] 5 Pr[h]/(1 --p:~/2). ' rhe lemma then follows

Tha t proves Theorem 2. For Theorem 3, the key lemma is the following.

Lemma6. Le t hl , h2 E HI x HZ be a n arbz trary pazr of hash f u n c t z o n s , a n d
let w be a n arbz trary sequence of s t rzngs tha t c a n appear a s o u t p u t s from the
S-orac le wzth n o n z e r o probabzlzty. T h e n we h u u e Pr[hl, hzlw] 5 2 Pr[h l , hz].

from the assumption that qf 5 l / c .

The proof of this lemma is quite similar to the proof of Lemma 1, arid wc
leave the details to the reader.

Appendix B: Proof of Theorem 4

The proof borrows ideas from [l] arid [3]. Without loss of generality, we assume
that the adversary is deterministic, and makcs all S-queries before all V-queries.
We are assurning that f and g are random fi~nct~ions on &bit strings.

326

First of all, note that the contiit,ional probability of forging a MAC given
Q = /? is at most yf /2 '+ ' + ty2. This follows by a sta.ndard argument. We
shall show that the conditional probabiiit,y of forging a MAC given ry # @ is
~7/2~' + q 2 (c + l/2'+'). The theorem t,hen follows by a simple calculat,ion.

For 1 5 i 5 q1+y2, associat,cd with query i are ta.g values ~ i , si E GF(2') and
a message 2;; for 1 5 i 5 41, the t,ags are independently generated random values,
while for q1 < i 5 q1 + 4 2 they are chosen by t,he adversary. For 1 5 i 5 q1 t 4 2 ,

let ui = Q T ~ + . ? a , vi = Pri + s;, and I I) ~ = f (u ,) CF, g (u i) .
Define a matrix M over CF(2) wit,h q1 $ 4 2 rows and 2'+' columns as follows.

The columns of A4 are split into two halves, and within each half, columns are
indexed by elements of GF(2'). For any row i, we p1ac.c a 1 in the column in
the first half indexed by ui , and in t,hc column in the second half indexed v;; a
0 is placed in all other columns. Consider t h e vect,or space W spanned by the
first y1 rows of M. We say that t,herta is a s p o n t a n e o u s d e p e n d e n c y if W has
dimension less than 91. For ql < i _< q 1 + 4 2 , we say that row i of M is a coerced
d e p e n d e n c y if it lies in W ; we call this coerced dependency n o n t r i v i a l if does not
appear among the first y1 rows of M . Notice that if there are no spontaneous
dependencies, then for 1 5 i 5 q l , the random variables w; are just random bit
strings, nol correlated with any others seen by the adversary, or with h , a , or p.
The conditional forgery bound follows from the following three lemmas.

Lemma 7. T h e probabi l i ty t h a t t h e i t i s a s p o n t a n e o u s d e p e n d e n c y is h o u n d e d
by E j & I / 2 W (2 j) I y : P 2 ' .
Proof. This is proved using a count.ing argunient, as in [l], iriakirig use of the
fact, that the map that sends (T , s) t,o (N T + s , , !?~ + s) is one-to-one, and the
fact for 1 5 i 5 41, t>hat the values ri,, si are generatfled a.t random. We ornil the
details.

Lemma 8. T h e prohahi l i ly t h a t t h m ? zs n o spon laneom d e p e n d e n c y , h u t t h e r e
is a n o n t r i v i a l coerced depen,den.cy i s bounded b y y2/(2' - 1) ~ j ~ 1 (q 1 / 2 ') 2 ~ + 1 5
422-1-2 .

Proof. It suffices t,o bound the probability of creating a coerced dependency in
a modified interaction where for 1 5 i 5 41, the random variables wd are siniply
defined t o be random strings. One t,hen makes a similar counting argument,
using of the additional fact t,hat N arid /? are chosen a(, random, subject, to
a # p. Again, we omit, t8he details.

Lemma 9. Giwn tha t th,pre are n o s p o n t n n eous or n o n t r i v i a l coerced d e p e n d e n -
c i e s , t h e c o n d i t i o n a l prohahi l i ly of a, f o r y e r y ts at iriosl q2c .

Proof. Consider any fixed i , with q1 < i 5 (11 + q 2 . On thc one harid, suppose row
i is equal to some row j , with 1 5 j 5 q l . Finding a valid MAC for xi in this case
is tantamount to finding h (z j) $ h (z i) . This can happen with probabilit,y a t most
c , since H is E-AXU, and-as there were no spontaneous dependencies--h is not
correlated with any random variables seen by the adversary. On the other hand,

32 7

if row i does not appear among the first y1 rows, then since t,liere are no nontrivial
coerced dependencies, the value wi is just, a random bit string, not correlated
with any random variables seen by the adversary. Therefore, the probability of
finding a valid MAC in this case is 2-'. So i n eit,her case, the probabilit,y t ha t
this a t tempt at forgery succeeds is at, most, f . 'I'he overall probability of a forgery
is thus q z c .

References

I . W. Aiello and R. Venkatesan. Foiling hirt,hday attacks in output-doubling trans-
formations. In Advunceu in Cryptology-- Eurocrypt '96, 1996. To appear.

2. M. Bellare, R . Carretti, and H. Krawczyk. Keying hash func:tioris for message a u -
thentication. In Advances in Cryplology--Crypt0 '96, 1996.

3. M. Bellare, R. GuCrin, and P. R.ogaway. XOR MACs: New methods for message
authentication using finite pseudorandurn fiiiic-ticins. In Advances in Cryptology--
Crypto '95, pages 15 28, 1995.

4. M. Bellare, J. Kilian, and P. Rogaway. On the seciirit,y of cipher block chaining.
In Advances in Cryptology

5. A. Bosselaers, R. Govaerts, arid J . Vandewalle. Fast hashing on thc: Pentium. In
Advances in Cryptology-Crypto '96, 1996.

6 . G. Brassard. On computationally scciirr aiit,hcritication tags requiring short secret
shared keys. Tn Advances in Cryptology-Crypto '82, pages 79W36, 1982.

7. E. Gilbert, F. M. Williams, and N . Sloane. Codes which detect deception. Bell
System Technical Journal, 53(3):405-424, 1974.

8. S. Goldwasser, S. Micah, and R. Rivest,. A digit,al signature scheme secure against
adaptive chosen-message attacks. SIAM J . Cornput., 17:281-308, 1988.

9. J . Gordon. Very simple method to find the minimal polynomial of an arhit,rary
non-zero element, of a finite field. Electronic Letters, 12:663-664, 1976.

10. D. How. Fast and portable DES encryption and decryption, 1992. Available from
houaisl.stanford.edu.

11. E. Kaltofen and B. Saunders. On Wiedeman's mcthocl o f solving sparse linear
systems. In Symp. Applied Algebra, Algebraic Algorithms, Error- Correcting Codes
(Lecture Notes in Computer Science no. 539), pages 29-38, 1991.

12. 11. Krawczyk. LFSR-based hashing and authentication. In Advaraccs in
Cryptology-Crypto '94, pages 129-139, 1994.

13. A. K. Lenstra and M. S. Manasse. Compact, increment,al Gaussian elimination
over Z/2Z. Technical Report, 88-16, llniversit,y of Chicago Dcpt. of Computer
Science, 1988.

14. J. Massey. IEEE Yrans. 1 7 t i . Theory,

15. D. Parkinson and M. Wnnderlich. A compac(. algorit,lrrri for Gaussian elimination
over GF(2) implemented on highly parallel computers. Parallel Computing, pages

16. B. Preneel and P. van Oorschot. MDx-MAC: and building fast MACs from hash

17. P. Rogaway. Bucket hashing and its applicat.iori to l as t rnessagc authentication.

Crypt0 '94, pages 341-358, 1994.

Shift-register synthesis and HCH coding.
IT- 15: 122-1 27, 1969.

65-73, 1984.

functions. In Advances in Cryptology Crypt<) ',9S, papc:s 1 14, 1995.

In Advances in Cryptology- Crypto '95, pages 29-42, l Y % .

328

18. M. Wegman and 1,. Carter. Ncw hash functions and their use in authentication
and set equality. ,I. of Conipvler and System Sciences, 22:2655279, 1981.

19. D. Wiedemann. Solving sparse linear systems over finite fields. f E E E Trans. Inf.
Theory, I’I-32:54--62, 1986.

	1 Introduction
	2 Using a Pseudo-Random Family of Permutations
	3 Using a Random Tag
	4 Three Types of Hash F'unctioiis
	5 The Evaluation Hash
	6 The Division Hash
	6.1 Hash Function Application
	6.2 Generating an Irrcducihle Polynomial

	7 The Generalized Division Hash
	7.1 Hash Function Application
	7.2 Generating an Irreducible Polynomial

	8 Conclusion
	Appendix A: Proof of Theorems 2 and 3
	Appendix B: Proof of Theorem 4
	References

