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Abstract—We focus on full-rate, fast-decodable space–time
block codes (STBCs) for � � � and � � � multiple-input mul-
tiple-output (MIMO) transmission. We first derive conditions
and design criteria for reduced-complexity maximum-likelihood
(ML) decodable � � � STBCs, and we apply them to two families
of codes that were recently discovered. Next, we derive a novel
reduced-complexity �� � STBC, and show that it outperforms all
previously known codes with certain constellations.

Index Terms—Alamouti code, decoding complexity, mul-
tiple-input multiple-output (MIMO), quasi-orthogonal space–time
block codes (STBCs), sphere decoder.

I. INTRODUCTION

I
N 1998, Alamouti [1] invented a remarkable scheme

for multiple-input multiple-output (MIMO) transmission

using two transmit antennas and admitting a low-complexity

maximum-likelihood (ML) decoder. Space–time block codes

(STBCs) using more than two transmit antennas were designed

in [2]. For such codes, ML decoding is achieved in a simple

way, but, while they can achieve maximum diversity gain [3],

[4], their transmission rate is reduced. The quasi-orthogonal

STBCs in [5] can support a transmission rate larger than or-

thogonal STBCs, but at the price of a smaller diversity gain.

Using algebraic number theory and cyclic division algebras,

algebraic STBCs can be designed to achieve full rate and full

diversity, but at the price of a higher decoding complexity.

Recently, a family of twisted space–time transmit di-

versity STBCs, having full rate and full diversity, was proposed

in [6]–[9]. These codes were recently rediscovered in [10],

whose authors also pointed out that they enable reduced-com-

plexity ML decoding (see infra for a definition of decoding

complexity). Independently, the same codes were found in

[11]. More recently, another family of full-rate, full-diversity,

fast-decodable codes for MIMO was proposed in [12].
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Empirical evidence seems to show that the constraint of sim-

plified ML decoding does not entail substantial performance

loss. To substantiate the above claim, the present paper provides

a unified view of the fast-decodable STBCs in [6]–[8], [10]–[12]

for MIMO. We show that all these codes allow the same

low-complexity ML decoding procedure, which we specialize

in the form of a sphere-decoder (SD) search [13]–[16]. We

also derive general design criteria for full-rate, fast-decodable

STBCs, and we use it to design a family of codes based

on a combination of algebraic and quasi-orthogonal structures.

In this case, the full-diversity assumption is dropped in favor

of simplified ML decoding. Within this family, we exhibit a

code that outperforms all previously proposed STBCs for

4-QAM signal constellation.

The balance of this paper is organized as follows. Section II

introduces system model and code design criteria. In Section III,

we present the concept of the fast-decodability of STBCs. In

Section IV we review two families of fast-decodable

STBCs that have recently appeared in the literature, and we

show how both of them enable a reduced-complexity ML de-

coding procedure. In Section V, we propose fast-decodable

STBCs, and we show the corresponding ML decoding com-

plexity. Finally, conclusions are drawn in Section VI.

Notations: Boldface letters are used for column vectors, and

capital boldface letters for matrices. Superscripts , , and de-

note transposition, Hermitian transposition, and complex con-

jugation, respectively. , , and denote the ring of rational

integers, the field of complex numbers, and the ring of Gaussian

integers, respectively, where . Also, denotes the

identity matrix, and denotes the matrix all

of whose elements are .

Given a complex number , we define the operator from

to as where and denote

real and imaginary parts. The operator can be extended to

complex vectors

Given a complex number , the operator from to is

defined by

The operator can be similarly extended to matrices

by applying it to all the entries, which yields real

matrices. The following relations hold: and

. Given a complex number , we define the

operator from to as
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The following relation holds:

The operator stacks the column vectors of an

complex matrix into an complex column vector. The

operation denotes the Euclidean norm of a vector. Finally, the

Hermitian inner product of two complex column vectors and

is denoted by . Note also that if , then

.

II. SYSTEM MODEL AND CODE DESIGN CRITERIA

We consider an MIMO transmission over a block-

fading channel. The received signal matrix is

(1)

where is the codeword matrix, transmitted over

channel uses. Moreover, is a complex white

Gaussian noise with independent and identically distributed

(i.i.d.) entries , and is

the channel matrix, assumed to remain constant during the

transmission of a codeword, and to take on independent values

from codeword to codeword. The elements of are assumed

to be i.i.d. circularly symmetric Gaussian random variables

. The realization of is assumed to be known at

the receiver, but not at the transmitter. The following definitions

are relevant here.

Definition 1: (Code Rate): Let be the number of indepen-

dent information symbols per codeword, drawn from a com-

plex constellation . The code rate of an STBC is defined as

symbols per channel use. If , the STBC is

said to have full rate.

Consider ML decoding. This consists of finding the code ma-

trix that achieves the minimum of the squared Frobenius norm

.

Definition 2: (Decoding Complexity): The ML decoding

complexity is defined as the minimum number of values of

that should be computed in ML decoding. This number

cannot exceed , with , the complexity of the

exhaustive-search ML decoder.

Consider two codewords and . Let denote the

minimum rank of the matrix , and the product distance,

i.e., the product of nonzero eigenvalues of the codeword distance

matrix . The error probability of an

STBC is upper-bounded by the following union bound:

(2)

where denotes the pairwise error probability (PEP) of

the codeword differences with rank and product distance ,

and the associated multiplicity. In [3], the “rank-and-

determinant criterion” (RDC) was proposed to maximize both

the minimum rank and the minimum determinant

For a full-diversity STBC, i.e., for all matrices,

this criterion yields diversity gain and coding gain

[3]. For STBC with , and hence without

full diversity, one should minimize with .

A. Linear Codes, and Codes With the Alamouti Structure

Linear STBCs are especially relevant in our context, because

they admit ML sphere decoding.

Definition 3: (Linear STBC): A STBC carrying symbols

is said to be (real) linear if we can write

for some . The matrix is called

the (real) generator matrix of the linear code. If a complex ma-

trix exists such that , then we can write

which identifies a complex linear STBC, with

its complex generator matrix.

Definition 4: (Cubic Shaping): For a linear STBC, if its real

generator matrix is an orthogonal matrix satisfying

, then we say that the STBC has cubic shaping (see [17] for

the significance of cubic shaping).

Linear STBCS admit the canonical decomposition

(3)

where and are the real and imaginary parts of , respec-

tively, and , are (generally complex)

matrices. With this decomposition, (1) can be rewritten using

only real quantities

(4)

where

and . Note that the matrix de-

pends on . With complex linear STBC, we may use only com-

plex quantities

(5)

where now

(6)

with , , and .

Definition 5: (Alamouti Structure): We say that an STBC has

the Alamouti structure if

(7)

where with , and , , and

.
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From the definition of linear codes, we have

(8)

and can see, by direct calculation, that , which

implies the cubic shaping of these STBCs. Moreover, given

and , let us define

(9)

where the last two elements of the vectorized matrices are con-

jugated. We can write (1) as

(10)

where

(11)

and

Note that has its last two rows conjugated. In complex no-

tations, multiplication of at the receiver by is equiva-

lent to matched filtering. Direct calculation shows that, for codes

with the Alamouti structure

i.e., (12)

and hence ML decoding can be done symbol-by-symbol, which,

under our definition, yields complexity .

III. FAST DECODING WITH QR DECOMPOSITION

Consider a linear STBC carrying independent quadra-

ture amplitude modeulation (QAM) information symbols.

Following (5), at the receiver, the SD algorithm can be used

to conduct ML decoding based on QR decomposition of

matrix [16]: , where is unitary, and

is upper-triangular. The ML decoder minimizes

. If we write

then the matrices and have the general form

and

. . .

. . .
...

where

and This formulation of the QR de-

composition coincides with the Gram–Schmidt procedure ap-

plied to the column vectors of . It was pointed out in [16] that

the search procedure of an SD can be visualized as a bounded

tree search. If a standard SD is used for the above STBC, we

have levels of the complex SD tree, where the worst case com-

putation complexity is . However, zeros appearing among

the entries of can lead to simplified SD, as discussed in the

following.

If the condition

(13)

is satisfied for and for some , then

levels can be removed from the complex SD tree, and we can

employ a -dimensional complex SD. In it, we first esti-

mate the partial vector . For every such vector

(there are of them), a linear ML decoding, of com-

plexity is used to choose so as to minimize the

total ML metric. Hence, the worst case decoding complexity is

. The components should be sorted in order to

maximize .

Analysis of the structure of the matrix yields the following

observation:

Zero entries of , besides those in (13), lead to faster metric

computations in the relevant SD branches, but not to a reduction

of the number of branches. We conclude this section with the

following definition.

Definition 6: (Fast-Decodable STBCs): A linear STBC al-

lows fast ML decoding if (13) is satisfied, yielding a complexity

of the order of .

IV. FAST-DECODABLE CODES FOR MIMO,

AND ML DECODING

Consider now full-rate and full-diversity fast-decod-

able STBCs, i.e., with symbols/codeword and

. Here we examine two families of full-rate, full-diversity

fast-decodable STBCs, endowed with the following structure:

(14)

where the first (resp., second) component code encodes symbols

(resp., ).

Family I: In this family of fast-decodable STBCs, indepen-

dently derived in [7], [10], [11], has the Alamouti

structure [1] with and is chosen as fol-

lows: let

and (15)

where and is the unitary matrix

with . We have

(16)
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which has the Alamouti structure (7). Vectorizing, and sepa-

rating real and imaginary parts of the matrix , we obtain

Thus, is the generator matrix of the

code. Specifically, is the generator matrix of ,

and is the generator matrix of . The matrix

has the structure of (8) with coefficients and

(17)

and

(18)

Direct computation shows the following.

Property 1 (Column Orthogonality): Both and have

orthogonal columns: , where or

, i.e., .

Property 2 (Mutual Column Orthogonality and Cubic

Shaping): With as in (15), the subspace spanned by the

columns of is orthogonal to the one spanned by the columns

of , i.e., , for and . Since

, we have

This implies cubic shaping [17].

The matrix should be chosen so as to achieve full rank and

maximize the minimum determinant. The best known code of

the form (14) was first found in [7], and independently redis-

covered in [10] and [11] by numerical optimization.

Family II: In the second family of fast-decodable STBCs

[12], both and , have the Alamouti

structure (7), with coefficients used for ,

and for . The only difference between

Family II and Family I is that Family II codes do not satisfy

Property 2: is not an orthogonal matrix, and hence codes in

this family do not exhibit cubic shaping.

Table I compares the minimum determinant of the best

known STBCs in the two families with that of the Golden code

[18] for 4-, 16-, and 64-QAM signaling. In our computations,

we assume that the constellation points have odd-integer coor-

dinates. It can be seen that the minimum determinant of Family

I STBCs and of the Golden code [18] are constant across con-

stellations, while the minimum determinant of Family II STBC

decreases slowly as the size of the signal constellation increases.

The codes of [7], [10], [11] exhibit a minimum determinant

slightly larger than those of [12].

Let us define the signal-to-noise ratio SNR ,

where the average energy. Fig. 1 compares the codeword

TABLE I
THE MINIMUM DETERMINANTS � OF THE GOLDEN CODE AND TWO

FAMILIES OF FAST-DECODABLE STBCS WITH 4-, 16-, AND 64-QAM
SIGNALING

Fig. 1. Comparison of the CER of the best �� � codes in two fast-decodable
STBC families and of the Golden code with 4- and 16-QAM signaling.

error rate (CER) of the best STBCs in the two families and of

the Golden code with 4- and 16-QAM signaling. It is shown

that both families of fast-decodable STBCs exhibit similar CER

performances, and both differ slightly, at high SNR, from that

of Golden code. Since the latter has the best CER known, but

does not admit simplified decoding, this small difference can be

viewed as the penalty to be paid for complexity reduction.

A. Decoding Family I and Family II STBCs

By direct computation, we have and

. In fact, we can see that the full-rate fast-decodable STBCs

are obtained by linearly combining two rate- codes: and

. Moreover, by examining the structures of the STBCs

and the matrix , we obtain the results that follow.

Proposition 1: We have if and only if is

an Alamouti STBC. Consequently, the fast-decodable full-rate

STBCs only exist for and their corresponding worst

case decoding complexity does not exceed .

Proof: First, if is an Alamouti STBC, from (12) we

conclude that , and therefore

Second, since is a rate- STBC, it was shown in [2,

Theorem 5.4.2] that complex linear-processing orthogonal

designs only exist in two dimensions and the Alamouti scheme

is unique. Thus, 1) the orthogonality condition in

STBCs implies that must have an Alamouti structure,

which completes the proof of the converse implication; and 2)

this also implies that it is only possible to have for
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the fast-decodable full-rate STBCs. Based on Definition

6, it yields and the worst-case decoding complexity of

.

To further save computational complexity, we may require

. This can be obtained if both and have

the Alamouti structure. Note that this condition is sufficient but

not necessary, since the Alamouti structure implies

, but the converse is not true.

The Alamouti structure of and yields some zero

entries in matrix and we have the following proposition.

Proposition 2: The other elements in the matrix cannot be

nulled.

Proof: By direct computation we easily verify

, , . Therefore, this code is not an orthogonal

STBC [2], and we have

and (19)

With , we have

(20)

then

and (21)

Due to (19) and (21), the corresponding elements in cannot

be nulled.

In summary, a STBC of the form (14) has complexity

if it satisfies Proposition 1. If in addition has Alam-

outi structure, then extra computational savings are available in

the SD algorithm. Moreover, if cubic shaping is required, the

generator matrix of the STBC is orthogonal.

V. NEW STBC AND ITS DECODING COMPLEXITY

Here we design a fast-decodable full-rate

STBC based on the concepts elaborated upon in the previous

sections. Specifically, using the twisted structure described

above, we combine linearly two rate- codes. Since rate-

orthogonal codes do not exists for four transmit antennas, we

resort quasi-orthogonal STBCs instead [5].

Definition 7 (Quasi-Orthogonal Structure): [5] A code

whose words have the form

or another equivalent form as defined in [5], where ,

, is said to have a quasi-orthogonal structure. The

quasi-orthogonal STBC is not full rank and has .

Definition 8 (Full-Rate, Fast-Decodable STBC for

MIMO): A full-rate , fast-decodable STBC for

MIMO, denoted , has symbols/codeword, and can be

decoded by a 12-dimensional real SD algorithm (rather than the

standard 16-dimensional SD).

The codeword matrix encodes eight QAM sym-

bols , and is transmitted by using the

channel four times, so that . We admit the sum structure

(22)

where is a quasi-orthogonal STBC, and

(23)

with

(24)

and

(25)

where , , , , and is

a unitary matrix.

Remark 1 (Rank 2): Since the matrix has the quasi-or-

thogonal structure, the code does not have full rank. In partic-

ular, it has .

Remark 2 (Cubic Shaping): Direct computation shows that

the matrix guarantees cubic shaping.

We conduct a search over the matrices , leading to the min-

imum of , where the terms represent the total

number of pairwise error events of rank and product distance

. Since an exhaustive search through all unitary matrices

is too complex, we focus on those with the form

(26)

where is a discrete Fourier transform

matrix, for some integer , and

for .

For 4-QAM signaling, taking and , we

have obtained as

which yields the minimum .

Under 4-QAM signaling, we compare the minimum determi-

nants and their associated multiplicities , as well

as the CERs of the above STBC to the following codes.

1) Code with the structure (22), with the “perfect”

rotation matrix [19].

2) The best DjABBA code of [8].

3) The “perfect” two-layer code of [20].
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TABLE II
MINIMUM DETERMINANTS OF 4�2 STBCS WITH 4-QAM SIGNALING

Fig. 2. Comparison of the CER of different � � � STBCs with 4-QAM sig-
naling.

Determinant and multiplicity values are shown in Table II.

It can be seen that the proposed STBC has the smallest

, when compared to the rank- code with perfect ro-

tation matrix in [19]. The CERs are shown in Fig. 2. The pro-

posed code achieves the best CER up to the CER of . Due

to the diversity loss, the performance curves of the new code and

the one of DjABBA cross over at CER of .

For 16-QAM signaling, the best matrix with and

is

The performance of this code is compared with that of other

codes in Fig. 2. We can see that, at CER , it requires an

SNR 0.4 dB higher than the best known code of [8], which was

not designed for reduced-complexity decoding.

Finally, we notice that the first two colums of are two

stacked Alamouti blocks. This provides the orthogonality con-

dition . Therefore, the worst case decoding com-

plexity of fast-decodable STBCs is , as compared to

a standard SD complexity .

VI. CONCLUSION

We have derived conditions for reduced-complexity ML de-

coding, and applied them to a unified analysis of two families

of full-rate full-diversity STBCs that were recently pro-

posed. Moreover, we have compared their minimum determi-

nant, CER performance, and shaping property, and examined

how both families allow low-complexity ML decoding. We have

also introduced design criteria of fast-decodable STBCs for

MIMO. These design criteria were finally extended to the con-

struction of a fast-decodable code. By combining algebraic

and quasi-orthogonal STBC structures, a new code was found

that outperforms any known code for 4-QAM signaling,

yet with a decoding complexity of in lieu of the worst case

ML decoding complexity .
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