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Introduction

Security is a key component for information technologies and
communication

Even securely designed algorithm may be vulnerable to
physical attacks

Fault injection attacks (FIA): disrupt and exploit the circuit
behaviour

But FIA can damage the circuit

⇒ The number of fault injections is a critical aspect of FIA
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This Paper

FIA on Generalized Feistel Networks

Single-bit fault model

Find the most critical locations for FIA

Assess the number of faults needed

Generic Approach
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Generalized Feistel Networks

The Original Feistel Structure

Designed by Horst Feistel at
IBM in the 1970’s

Used in DES, Camellia,
MIBS, Simon,. . .

Build 2n-bit permutation
from n-bit to n-bit (Feistel)
functions

Similar encryption and
decryption up to subkeys
order

Lr Rr

F

Lr+1 Rr+1
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Generalized Feistel Networks

Generalized Feistel Networks

Introduced by Zheng, Matsumoto, and Imai at CRYPTO ’89

Splits the message into b ≥ 2 n-bit-long blocks
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Differential Fault Analysis

Differential Fault Analysis (DFA) on GFNs

DFA is a powerful cryptanalytic technique that exploits differences
between the correct ciphertext and erroneous results due to fault
injections.
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At the Feistel network level

Diffusion

Full Diffusion Delay: minimum
number of rounds d for every inputs to
influence every outputs
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At the Feistel network level

Diffusion

Full Diffusion Delay: minimum
number of rounds d for every inputs to
influence every outputs

A matrix M to represent the diffusion
in the network:
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At the Feistel network level

Diffusion

Full Diffusion Delay: minimum
number of rounds d for every inputs to
influence every outputs

A matrix M to represent the diffusion
in the network:

0: B i
r+1 is influenced by B
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r directly

1: B i
r+1 is influenced by B
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r via the

Feistel function F
−∞: not influenced (noted ‘.’)
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At the Feistel function level

Feistel function

Xor with the subkey

S-boxes: non linear

Layers of linear functions

Diffusion in the Feistel function

A divide-and-conquer approach at the S-box level

Influence of the fault on ∆
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Goals:
1 Number of pieces of subkey attacked
2 Number of possible differences
3 ⇒ Number of faults required
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Algorithm

For each block and each round where the fault can be injected:
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Algorithm

For each block and each round where the fault can be injected:
1 Use M to compute:

VF vector of the number of passages of the fault in the Feistel
function on the penultimate round
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Algorithm

For each block and each round where the fault can be injected:
1 Use M to compute:
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function on the penultimate round
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the Feistel function on the last round
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Algorithm

For each block and each round where the fault can be injected:
1 Use M to compute:

VF vector of the number of passages of the fault in the Feistel
function on the penultimate round
WF = M·VF vector of the number of passages of the fault in
the Feistel function on the last round

2 Deduce the number nλ of blocks Kλ
r that can be attacked
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Algorithm

For each block and each round where the fault can be injected:
1 Use M to compute:

VF vector of the number of passages of the fault in the Feistel
function on the penultimate round
WF = M·VF vector of the number of passages of the fault in
the Feistel function on the last round

2 Deduce the number nλ of blocks Kλ
r that can be attacked

3 Use F to find the number of possible differential ∆
B

j
r−1
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Algorithm

For each block and each round where the fault can be injected:
1 Use M to compute:

VF vector of the number of passages of the fault in the Feistel
function on the penultimate round
WF = M·VF vector of the number of passages of the fault in
the Feistel function on the last round

2 Deduce the number nλ of blocks Kλ
r that can be attacked

3 Use F to find the number of possible differential ∆
B

j
r−1

4 Deduce the number nl of pieces K
λ,l
r attacked
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Algorithm

For each block and each round where the fault can be injected:
1 Use M to compute:

VF vector of the number of passages of the fault in the Feistel
function on the penultimate round
WF = M·VF vector of the number of passages of the fault in
the Feistel function on the last round

2 Deduce the number nλ of blocks Kλ
r that can be attacked

3 Use F to find the number of possible differential ∆
B

j
r−1

4 Deduce the number nl of pieces K
λ,l
r attacked

5 Estimate the number nJ of faults required to attack that
subkey block
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DES

Description

NIST standard from 1977 to 2001

A 16-round Feistel cipher

Starts by a 64-bit permutation IP and
finishes by its inverse IP

−1

Feistel function consists in 4 steps:

Expansion E which maps 32 bits in
48 bits by duplicating half of the bits

Xor with the 48 bits of subkey Kr

8 S-boxes 6× 4

Bit permutation P of 32 bits

Lr Rr

E

Kr

S8S7S6S5S4S3S2S1

P

Rr+1Lr+1
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DES

Results

Full diffusion delay: d = 2

M =

(

. 0
0 1

)

Number of subkey blocks: Λ = 1

Number of pieces in subkey blocks: L = 8

Number of faults required to retrieve a piece of subkey: n = 3

Table: Results of our analysis on the DES

Blocks B VF WF nl ∆

R15 (., 0) (1, 0) 1 ≤ nl ≤ 2 1

R14 (0, 1) (2, 1) 2 ≤ nl ≤ 8 2

R13 (1, 2) (3, 2) 2 ≤ nl ≤ 8 32 ∗ 247
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MIBS

Description

Presented at CANS’09

A 32-round Feistel cipher

Key of 64 or 80 bits

Feistel function operates in 3 steps:

Xor with the subkey

8 S-boxes 4× 4

A linear mixing layer MC acting at
nibble level

Lr Rr

Kr

S7S6S5S4S3S2S1S0

MC

Lr+1
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MIBS

Results

Full diffusion delay: d = 2

M =

(

1 0
0 .

)

Number of subkey blocks: Λ = 1

Number of pieces in subkey blocks: L = 8

Number of faults required to retrieve a piece of subkey: n = 2

Table: Results of our analysis on MIBS

Blocks B VF WF nl ∆

L31 (0, .) (0, 1) 1 1

L30 (1, 0) (1, 2) 5 ≤ nl ≤ 6 4

L29 (2, 1) (2, 3) 8 112
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TWINE

Description

64-bit block cipher presented at SAC ’12

GFN with 16 blocks, 4 bits each, and with 80 or 128-bit keys

36 rounds for both key lengths

Feistel function used 8 times per round and consecutively
made of:

4-bit Xor with a subkey block
A single S-box 4× 4
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TWINE

Results

Full diffusion delay: d = 8

M =
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Number of subkey blocks: Λ = 8

Number of pieces in subkey blocks: L = 1

Number of faults required to retrieve a piece of subkey: n = 2
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TWINE

Results

Full diffusion delay: d = 8

Number of subkey blocks: Λ = 8

Number of pieces in subkey blocks: L = 1

Number of faults required to retrieve a piece of subkey: n = 2

Summary of Results

Best case achievable: inject a fault at round 31

⇒ Attack nλ = 5 functions (4 with non faulted B
j
r−1 and one

with #{B j
r−1} = 7)

If injected earlier ⇒ at most 4 functions

If injected after ⇒ only up to 3 functions
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CLEFIA

Description

128-bit block cipher presented at FSE ’07

Key sizes: 128, 192 or 256 bits

Part of standard ISO/IEC 29192-2

GFN with 4 blocks, 32 bits each

2 slightly different Feistel functions:

Xor with the subkey
4 S-boxes 8× 8
2 linear diffusion layers, MC0 and MC1
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CLEFIA

Results

Full diffusion delay d = 4

M =
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Number of subkey blocks: Λ = 2

Number of pieces in subkey blocks: L = 4

Number of faults required to retrieve a piece of subkey: n = 2
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CLEFIA

Results

Full diffusion delay d = 4

Number of subkey blocks: Λ = 2

Number of pieces in subkey blocks: L = 4

Number of faults required to retrieve a piece of subkey: n = 2

Table: Results of our analysis on CLEFIA

Blocks B VF WF nλ nl ∆

B
0
17 (0, ., ., .) (0, 1, ., .) 1 (1, 0) (1,−)

B
0
16 (1, ., ., 0) (1, 2, ., 0) 1 (4, 0) (1,−)

B
0
15 (2, ., 0, 1) (2, 3, 0, 1) 2 (4, 1) (1, ≤ 127)

B
0
14 (3, 0, 1, 2) (3, 4, 1, 2) 2 (4, 4) (4, huge)

B
0
13 (4, 1, 2, 3) (4, 5, 2, 3) 2 (4, 4) (946, huge)
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Conclusion

It has been shown that some blocks are more vulnerable to
DFA than others in GFNs

A method has been proposed to identify these blocks allowing
attackers to minimize single-bit fault injections

The vulnerability evaluation is not optimal but is generic and
a method to assess the vulnerabilities automatically is possible

Further work will include multi-bit faults injection
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Thank you for your attention

Do you have any questions ?
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