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Abstract

A mixed hypergraph H is a triple (V, C,D) where V is the vertex set and C
and D are families of subsets of V , called C-edges and D-edges. A vertex coloring
of H is proper if each C-edge contains two vertices with the same color and each
D-edge contains two vertices with different colors. The spectrum of H is a vector
(r1, . . . , rm) such that there exist exactly ri different colorings using exactly i colors,
rm ≥ 1 and there is no coloring using more than m colors. The feasible set of H is
the set of all i’s such that ri 6= 0.

We construct a mixed hypergraph with O(
∑

i log ri) vertices whose spectrum
is equal to (r1, . . . , rm) for each vector of non-negative integers with r1 = 0. We
further prove that for any fixed finite sets of positive integers A1 ⊂ A2 (1 6∈ A2), it is
NP-hard to decide whether the feasible set of a given mixed hypergraph is equal to
A2 even if it is promised that it is either A1 or A2. This fact has several interesting
corollaries, e.g., that deciding whether a feasible set of a mixed hypergraph is gap-
free is both NP-hard and coNP-hard.

1 Introduction

Graph coloring problems are intensively studied both from the theoretical point view and
the algorithmic point of view. A hypergraph is a pair (V, E) where E is a family of subsets
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of V of size at least 2. The elements of V are called vertices and the elements of E are
called edges. A mixed hypergraph H is a triple (V, C,D) where C and D are families of
subsets of V of size at least 2. The elements of C are called C-edges and the elements of D
are called D-edges. A proper ℓ-coloring c of H is a mapping c : V → {1, . . . , ℓ} such that
there are two vertices with Different colors in each D-edge and there are two vertices with
a Common color in each C-edge. A proper coloring c is a strict ℓ-coloring if it uses all ℓ
colors. A mixed hypergraph is colorable if it has a proper coloring. Mixed hypergraphs
were introduced in [23]. The concept of mixed hypergraphs can find its applications in
different areas, e.g. list-coloring of graphs [14], graph homomorphisms [9], coloring block
designs [2, 3, 16, 17, 18], etc. The importance and interest of the concept is witnessed by
a recent monograph on the subject by Voloshin [21]. As an example, we present here the
following construction described in [14]: Let G be a graph and let L be a function which
assigns each vertex a set of colors. A coloring c of G is a proper list-coloring with respect to
the lists L if c(v) ∈ L(v) for each vertex v of G and c(u) 6= c(v) for each edge uv of G. Let
L be the union of the lists of all the vertices of G. Consider a mixed hypergraph H with
the vertex set V (G) ∪ L and the following edges: a D-edge {u, v} for each uv ∈ E(G),
a D-edge {x, y} for any x, y ∈ L (x 6= y) and a C-edge {v} ∪ L(v) for each vertex of
G. H has a proper coloring iff G has a proper list-coloring. Similar constructions have
been found by the author [9] for graph homomorphisms, the channel assignment problem,
L(p, q)-labelings of graphs and some other graph coloring problems.

The feasible set F(H) of a mixed hypergraph H is the set of all ℓ’s such that there
exists a strict ℓ-coloring of H . The (lower) chromatic number χ(H) of H is the minimum
number contained in F(H) and the upper chromatic number of χ̄(H) of H is the maximum
number. The feasible set of H is gap-free (unbroken) if F(H) = [χ(H), χ̄(H)] where [a, b]
is the set of all the integers between a and b (inclusively). If the feasible set of H contains a
gap, we say it is broken. The spectrum of a mixed hypergraph H is the vector (r1, . . . , rχ̄(H))
where r` is the number of different strict ℓ-colorings of H . Two colorings c1 and c2 are
considered to be different if there is no permutation of colors changing one of them to
the other, i.e., it is not true that c1(u) = c1(v) iff c2(u) = c2(v) for each two vertices u
and v. We remark that the spectrum is usually defined to be a vector (r1, . . . , rn) where
n is the number of vertices of the mixed hypergraph, but we prefer using the definition
without trailing zeroes in the vector. If F is a set of positive integers, we say that a
mixed hypergraph H is a realization of F if F(H) = F . A mixed hypergraph H is a
one-realization of F if it is a realization of F and all the entries of the spectrum of H are
either 0 or 1.

A necessary and sufficient condition on a set of positive integers to be the feasible set
of a mixed hypergraph was proved in [6]:

Theorem 1 A set F of positive integers is a feasible set of a mixed hypergraph iff 1 6∈ F
or F is an interval. If 1 ∈ F , then all the mixed hypergraphs with this feasible set contain
only C-edges.

In particular, there exists a mixed hypergraph such that its feasible set contains a gap.
On the other hand, it was proved that feasible sets of mixed hypertrees [10], mixed
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strong hypercacti [13] and of mixed hypergraphs with maximum degree two [11, 12] are
gap-free. Feasible sets of mixed hypergraphs with maximum degree three need not to
be gap-free. The feasible sets of planar mixed hypergraphs, i.e., hypergraphs whose
bipartite incidence graphs of their vertices and edges are planar [4, 15], are exactly intervals
[k1, k2], 1 ≤ k1 ≤ 4, k1 ≤ k2 and sets {2} ∪ [4, k], k ≥ 4 as proved in [7].

Necessary or sufficient conditions for a vector to be a spectrum of a mixed hypergraph
were not addressed in detail so far. However, Voloshin [22] conjectured a sufficient con-
dition for a vector to be the spectrum of a mixed hypergraph (Conjecture 2 in [22]): If
n0, . . . , nt is a sequence of positive integers such that ni ≥ (ni−1 +ni+1)/2 for 1 ≤ i ≤ t−1
and max{n⌊t/2⌋, n⌈t/2⌉} = max0≤i≤t{ni}, then there exists a mixed hypergraph H such that
χ(H)+ t = χ̄(H) and H allows exactly ni different strict (χ(H)+ i)-colorings (0 ≤ i ≤ t).
We prove this conjecture. In fact, Theorem 3 implies that the only hypothesis needed is
that n0, . . . , nt is a sequence of non-negative integers. Let us remark at this point that
Conjecture 1 from [22] on co-perfect mixed hypergraphs was disproved in [8].

We study several problems posed in [22] (Problem 10, 11, Conjecture 2) and in [6].
In particular, we are interested in the size of the smallest (one-)realization of a given
feasible set. In [6], two constructions of a mixed hypergraph with a given feasible set F
are presented, but both of them can have exponentially many vertices in terms of maxF
and |F|. The second construction from [6] does not even give one-realization of F . We
present an algorithmic construction (Theorem 2) which gives a small one-realization for a
given feasible set F . The number of vertices of this realization is at most |F|+2 maxF−1
and the number of edges is cubic in the number of vertices.

Theorem 2 from Section 2 can be restated as follows: Let (r1, . . . , rm) be a vector such
that r1 = 0 and ri ∈ {0, 1} for 2 ≤ i ≤ m. Then, there exists a mixed hypergraph H such
that the spectrum of H is (r1, . . . , rm). Note that the condition r1 = 0 is the condition
1 6∈ F mentioned earlier. We generalize this theorem in Section 3. We prove that for
each vector (r1, . . . , rm) of non-negative integers such that r1 = 0 there exists a mixed
hypergraph such that its spectrum is equal to (r1, . . . , rm) (Theorem 3). The number of
vertices of the mixed hypergraph from Theorem 3 is 2m + 2

∑m
i=1,ri 6=0(1 + ⌊log2 ri⌋) and

the number of its edges is cubic in the number of its vertices. Theorem 3 provides an
affirmative answer to Conjecture 2 from [22] which was mentioned above.

We deal with complexity questions related to feasible sets of mixed hypergraphs in
Section 4. We prove that for any fixed finite sets of positive integers A1 ⊂ A2, it is
NP-hard to decide whether the feasible set of a given mixed hypergraph H is equal to A2

even if it is promised that F(H) is either A1 or A2. This theorem has several interesting
corollaries: It is NP-complete to decide whether a given mixed hypergraph is colorable, it
is both NP-hard and coNP-hard for a fixed non-empty finite set of positive integers A to
decide whether the feasible set of a mixed hypergraph is equal to A, it is both NP-hard
and coNP-hard to decide whether the feasible set of a given mixed hypergraph is gap-free.
This particular result was previously obtained in [11]. It was also known before that it is
NP-hard to decide whether a given mixed hypergraph is uniquely colorable [20] and that
it is NP-hard to compute the upper chromatic number even when restricted to several
special classes of mixed hypergraphs [1, 10, 12, 19].
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There is also no polynomial-time o(n)-approximation algorithm for the lower or the
upper chromatic number unless P = NP where n is the number of vertices of an input

mixed hypergraph. We remark there is an O(n (log log n)2

log3 n
)-approximation algorithm for the

chromatic number of ordinary graphs [5]. Recall that an algorithm for a maximization
(minimization) problem is said to be K-approximation algorithm if it always finds a
solution whose value is at least OPT/K (at most K · OPT) where OPT is the value of
the optimum solution.

2 Small realizations of feasible sets

If F = {m}, then the complete graph of order m is the one-realization of F with the
fewest number of vertices. In this section, we present a one-realization with few vertices
for the case |F| ≥ 2:

Theorem 2 Let F be a finite non-empty set of positive integers with 1 6∈ F . There exists
a mixed hypergraph with at most |F|+2 maxF−minF vertices whose feasible set is F and
every entry of its spectrum is 0 or 1. The number of the edges of this mixed hypergraph
is cubic in the number of its vertices.

Proof: The proof proceeds by induction on maxF . If 2 6∈ F , then let H ′ be a one-
realization of F ′ = {i − 1|i ∈ F}. Let H be the mixed hypergraph obtained from H ′ by
adding a vertex x and D-edges {x, v} for all v ∈ V (H ′). This operation was also used
in [6] under the name “elementary shift”. It is clear that proper ℓ-colorings of H are in
one-to-one correspondence with proper (ℓ+1)-colorings of H ′, since the color of the vertex
x has to be different from the color of any other vertex and it does not affect coloring of
any edge except for the added D-edges of size two. Hence, H is one-realization of F . The
number of vertices of H is at most 1+ |F ′|+2 maxF ′−minF ′ ≤ |F|+2 maxF −minF .

It remains to consider the case when minF = 2. The case of F = {2} is described
before Theorem 2. In the rest, we assume that maxF > 2. For this purpose, we define a
mixed hypergraph H with the vertex set {v+

2 , . . . , v+
m, v−

1 , . . . , v−
m, v⊕

1 }∪{v
⊕
i |i ∈ F\{2, m}}

where m = maxF . Let F(H) = {c1, . . . , ck}, c1 < . . . < ck, and set c′1 = 1 and c′i = ci

for 2 ≤ i ≤ k. Next, we describe the edges of H . The mixed hypergraph H contains the
following edges for each l, 2 ≤ l ≤ k:

{v−
i , v+

j } is a D -edge for c′l−1 ≤ i ≤ c′l and c′l−1 < j ≤ c′l with i 6= j (1)

{v−
i , v⊕

c′
l−1

} is a D-edge for c′l−1 < i ≤ c′l (2)

{v+
i , v−

i , v+
j } is a C-edge for c′l−1 < i, j ≤ c′l and i 6= j (3)

{v+
i , v−

i , v⊕
c′
l−1

} is a C-edge for c′l−1 < i ≤ c′l (4)

{v+
i , v−

i , v−
j } is a C-edge for c′l−1 < i, j ≤ c′l and i 6= j (5)

{v⊕
c′
l−1

, v−
c′
l−1

, v+
j } is a C-edge for c′l−1 < j ≤ c′l (6)

{v⊕
c′
l−1

, v−
c′
l−1

, v−
j } is a C-edge for c′l−1 < j ≤ c′l (7)
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{v+
c′
l
, v−

c′
l
, v⊕

c′
l
} is a C-edge if l < k (8)

{v⊕
c′
l−1

, v+
c′
l
, v⊕

c′
l
} is a C-edge if l < k (9)

{v−
c′
l−1

, v−
c′
l
, v⊕

c′
l
} is a D-edge if l < k (10)

{v−
i , v+

j , v−
j } is a D-edge for 1 ≤ i ≤ c′l , c′l−1 < j ≤ c′l and i 6= j (11)

We prove that the mixed hypergraph H has the properties claimed in the statement of the
theorem. Note that H is exactly the mixed hypergraph Hk defined in the next paragraph.
In the rest, we slightly abuse the notation and we call the D-edges described in (1) just
D-edges (1) and we call other kinds of edges in a similar way.

Let H l be the mixed hypergraph obtained from by H (for l ≥ 2) restricting to the
vertices {v+

2 , . . . , v+
c′
l
, v−

1 , . . . , v−
c′
l
, v⊕

1 } ∪ {v⊕
i |i ∈ F ∧ 3 ≤ i < c′l}. The edges of H l are those

edges of H which are fully contained in the vertex set of H l. We prove that the following
statements hold for all l, 2 ≤ l ≤ k:

1. F(H l) = {c1, . . . , cl}

2. Any proper coloring c of H l with c(v+
c′
l
) 6= c(v−

c′
l
) uses less than cl colors. In addition,

c satisfies that c(v⊕
c′
l−1

) = c(v+
c′
l
), c(v−

c′
l−1

) = c(v−
c′
l
) 6= c(v+

c′
l
).

3. Any proper coloring c of H l with c(v+
c′
l
) = c(v−

c′
l
) uses exactly cl colors. In addition,

the coloring c colors the vertices v−
1 , . . . , v−

cl
with mutually different colors and the

colors of v−
i and v+

i (and v⊕
i if it exists) are the same.

4. There is exactly one proper coloring using exactly λ colors for each λ ∈ F(H l).

These four claims are proved simultaneously by induction on l.
We first deal with the case that l = 2. Let c be a proper coloring of H2. If c(v⊕

1 ) 6=
c(v−

1 ), then this coloring uses exactly two colors on the vertices v−
1 , . . . , v−

c′
2

, v⊕
1 , v+

2 , . . . , v+
c′
2

due to the presence of C-edges (6) and (7). Furthermore, the D-edges (1) and (2) force
that c(v−

1 ) = c(v−
2 ) = . . . = c(v−

c′
2

) and c(v+
1 ) = c(v+

2 ) = . . . = c(v+
c′
2

) = c(v⊕
1 ) Thus, the

vertices are colored as described in the second claim.
Let us now suppose that c(v⊕

1 ) = c(v−
1 ). If c(v+

i ) 6= c(v−
i ) for some 2 ≤ i ≤ c′2, then

c(v⊕
1 ) 6= c(v−

1 ) due to the presence of C-edges (4) and (5) and D-edges (1) and (2). Thus
c(v+

i ) = c(v−
i ) for all 2 ≤ i ≤ c′2. The colors of c(v−

i ) for 1 ≤ i ≤ c′2 are mutually distinct
due to the presence of D-edges (1) and (2). We may infer that any such coloring c assigns
c′2 colors to the vertices v−

1 , . . . , v−
c′
2

, v⊕
1 , v+

2 , . . . , v+
c′
2

. Hence, the coloring c uses exactly

c2 = c′2 colors. This finishes the proof of all the four claims for H2. It is straightforward
to check that the two given colorings of H2 are proper.

Let us prove the claims 1, 2, 3 and 4 for H l (l ≥ 3) assuming them proved for
H l−1. Consider a proper coloring c of a mixed hypergraph H l. If c(v−

c′
l−1

) 6= c(v+
c′
l−1

),

then the C-edge (8) and the D-edge (10) together with the second claim assure that
c(v+

c′
l−1

) = c(v⊕
c′
l−1

). Note that in this case c uses less than cl−1 colors to color vertices of

the electronic journal of combinatorics 11 (2004), #R19 5



H l−1. If c(v−
c′
l−1

) = c(v+
c′
l−1

), then c(v−
c′
l−2

) = c(v⊕
c′
l−2

) 6= c(v−
c′
l−1

). Thus, the color c(v⊕
c′
l−1

)

is either c(v−
c′
l−1

) = c(v+
c′
l−1

) or c(v−
c′
l−2

) = c(v⊕
c′
l−2

) due to the presence of the C-edge (9)

(and both is possible). In both cases, the coloring c must use exactly cl−1 colors to color
vertices of H l−1.

We distinguish two cases (similar to those above): c(v−
c′
l−1

) 6= c(v⊕
c′
l−1

) and c(v−
c′
l−1

) =

c(v⊕
c′
l−1

). If c(v−
c′
l−1

) 6= c(v⊕
c′
l−1

), then the same argumentation as used before yields that

c(v−
c′
l−1

) = . . . = c(v−
c′
l
) and c(v⊕

c′
l−1

) = c(v+
c′
l−1

+1) = . . . = c(v+
c′
l
). On the other hand, if

c(v−
c′
l−1

) = c(v⊕
c′
l−1

), then we can again infer that c(v⊕
c′
l−1

) = c(v−
c′
l−1

), c(v+
c′
l−1

+1) = c(v−
c′
l−1

+1) 6=

. . . 6= c(v+
c′
l
) = c(v−

c′
l
). The colors c(v−

c′
l−1

), . . . , c(v−
c′
l
) are also mutually distinct because of

the D-edges (1) and (2) and they are different from colors c(v−
1 ), . . . , c(v−

c′
l−1

−1) due to the

presence of D-edges (11) and the third claim used for H l−1. This proves the first, the
second and the third claim for H l. We again leave a straightforward check that all the
described colorings are proper. As to the fourth claim: If c(v−

c′
l−1

) = c(v⊕
c′
l−1

), then exactly

cl−1 colors are used to color the vertices of H l−1 and new cl − cl−1 colors are used to color
the vertices of v+

c′
l−1

+1, . . . , v
+
c′
l

and v−
c′
l−1

+1, . . . , v
−
c′
l

due to the presence of D-edges 11. On

the other hand, if c(v−
c′
l−1

) 6= c(v⊕
c′
l−1

), there exists unique extension of any proper coloring

of H l−1 to H l. This finishes the proof of all the four claims on H l.
We conclude that H = Hk has the desired properties. The bound on the number of

edges follows from the fact that each edge has size at most three.

We immediately have the following corollary of Theorems 1 and 2:

Corollary 1 There exists a polynomial-time algorithm which for a given set F decides
whether it is a feasible set of some mixed hypergraph and if so it outputs a mixed hypergraph
H such that F(H) = F .

Proof: If 1 6∈ F , then the algorithm returns the construction from Theorem 2. If
1 ∈ F and F is not interval, then the algorithm returns that no such mixed hypergraph
exists (Theorem 1). If 1 ∈ F and F is an interval, then the algorithm outputs a mixed
hypergraph consisting of maxF vertices and no edges.

3 Realizations of spectra

We first slightly alter the construction from Theorem 2:

Lemma 1 Let F = {c1, . . . , ck} be a set of positive integers with 1 6∈ F . There exists a
mixed hypergraph H∗ with at most 2(|F| + maxF) vertices which is a one-realization of
F . Moreover, H∗ contains 3l vertices w+

i , w⊕
i , w⊖

i (1 ≤ i ≤ k) with the following property:
Let c be any proper coloring of H∗, then
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• The vertices w+
i , w⊕

i , w⊖
i are colored by c with exactly two colors for each i.

• c(w⊖
i ) = c(w+

i ) 6= c(w⊕
i ) iff c uses exactly ci colors.

• c(w⊖
i ) 6= c(w+

i ) = c(w⊕
i ) iff c does not use exactly ci colors.

Proof: If F = {2}, then consider the following mixed hypergraph H∗: V (H∗) =
{w+

1 , w⊕
1 , w⊖

1 } where {w⊖
1 , w+

1 } is the only C-edge of H∗ and {w⊖
1 , w⊕

1 } is the only D-
edge of H∗.

Assume now that 2 ∈ F and F 6= {2}. The case 2 6∈ F is considered later. We extend
the construction from the proof of Theorem 2. Let Hk be the mixed hypergraph obtained
in the construction and let us continue using notation from the proof of Theorem 2. We
add a vertex v+

1 together with a C-edge {v+
1 , v−

1 } and a vertex v⊕
c′
k

together with a C-edge

{v⊕
c′
k−1

, v⊕
c′
k
}. It is routine to check that the following two claims hold:

• c(v−
c′
i
) = c(v+

c′
i
) 6= c(v⊕

c′
i
) iff c uses exactly ci colors.

• c(v+
c′
i
) = c(v⊕

c′
i
) iff c does not use exactly ci colors.

Let w+
i = v+

c′
i
, w−

i = v−
c′
i

and w⊕
i = v⊕

c′
i
. We add new vertices w⊖

i for all 1 ≤ i ≤ k

to the mixed hypergraph together with C-edges {w⊖
i , w+

i , w⊕
i } and {w⊖

i , w+
i , w−

i } for all
1 ≤ i ≤ k, C-edges {w⊖

i , w−
i , v−

1 } for all 2 ≤ i ≤ k and D-edges {w⊖
i , w⊕

i } for all 1 ≤ i ≤ k.
We further add a C-edge {w⊖

1 , w−
1 , v−

2 }. The resulting mixed hypergraph is H∗.
Let c be a proper coloring of H∗. If c(w+

i ) 6= c(w⊕
i ) (and thus c(w+

i ) = c(w−
i )), then

the C-edge {w⊖
i , w+

i , w⊕
i } and the D-edge {w⊖

i , w⊕
i } force the vertex w⊖

i to have the color
c(w+

i ) = c(w−
i ) (and this extension is possible) — this describes the case when the coloring

c uses exactly ci colors. Let us assume further c(w+
i ) = c(w⊕

i ). If c(w+
i ) 6= c(w−

i ), then the
C-edge {w⊖

i , w+
i , w−

i } and the D-edge {w⊖
i , w⊕

i } force the vertex w⊖
i to have the color c(w−

i )
(and this extension is possible). If c(w+

i ) = c(w⊕
i ) = c(w−

i ), then the C-edge {w⊖
i , w−

i , v−
1 }

(the C-edge {w⊖
1 , w−

1 , v−
2 } in case i = 1) and the D-edge {w⊖

i , w⊕
i } force the vertex w⊖

i to
have the color c(v−

1 ) (the color c(v−
2 )). This requires that c(v−

1 ) 6= c(w+
i ) = c(w⊕

i ) = c(w−
i )

(c(v−
2 ) 6= c(w⊕

i ) where w⊕
i = v⊕

1 , since i is 1 in this case). The last non-equality is assured
by the presence of the D-edge (11) (D-edge (2) ) in the construction of Theorem 2. This
implies that each coloring c of Hk can be uniquely extended to H∗.

It is straightforward to check that all the three properties stated by the lemma hold.
The second and the third one are established due to the presence of a C-edge {w⊖

i , w+
i , w−

i }
and a D-edge {w⊖

i , w⊕
i } (1 ≤ i ≤ k) and due to the analogous claims stated in the previous

paragraph for v+
c′
i

and v⊕
c′
i
. The first one is established by the presence of the C-edges

{w⊖
i , w+

i , w−
i } and D-edges {w⊖

i , w⊕
i }.

The final case to consider is that 2 6∈ F . In this case, we first construct a mixed
hypergraph for F ′ = {i − 1|i ∈ F} and then add a new vertex x together with D-edges
{x, v} for all vertices v as in the beginning of the proof of Theorem 2.
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Lemma 2 Let l be a given positive integer. There is a mixed hypergraph Hl with three
special vertices w+, w⊖, w⊕ which satisfies: Let c be any precoloring of w+, w⊖ and w⊕

using two colors such that c(w⊖) 6= c(w⊕), then:

• Any extension of c to a proper coloring of Hl uses no additional colors.

• If c(w⊖) 6= c(w+) = c(w⊕), then c can be uniquely extended to a proper coloring of
Hl.

• If c(w⊖) = c(w+) 6= c(w⊕), then c can be extended to exactly l different proper
colorings of Hl.

The number of vertices of Hl does not exceed 3 + 2⌊log2 l⌋.

Proof: The proof proceeds by induction on l. The statement is trivial for l = 1. We
distinguish two cases:

• The number l is even.
Let Hl be the mixed hypergraph obtained from Hl/2 by adding a new vertex x, a
C-edge {w⊕, w⊖, x} and a D-edge {w⊕, w+, x}. If c(w⊖) 6= c(w+) = c(w⊕), then c
can be extended uniquely to Hl/2 and also to x, since the added edges force that
c(x) = c(w⊖). If c(w⊖) = c(w+) 6= c(w⊕), then c can be extended to l/2 different
proper colorings to Hl/2 and it can be extended by setting c(x) to either c(w⊕) or
c(w⊖). Altogether, we obtain l different extensions.

• The number l is odd.
Let l = 2t + 1 and consider the mixed hypergraph Ht with the properties described
in the statement of the lemma. Let w′+, w′⊕, w′⊖ be the special vertices of Ht. The
mixed hypergraph Hl is constructed as follows: We set the vertex w⊕ to be w′⊖ and
w⊖ to w′⊕. In addition, new vertices w+ and x are introduced. Now add C-edges
{w⊕, w⊖, w′+} and {w⊕, w⊖, x}, and D-edges {w⊕, w+, w′+} and {w⊖, w′+, x}. If
c(w⊖) 6= c(w+) = c(w⊕), then the added C-edges and D-edges force that c(w′+) =
c(w⊖) and c(x) = c(w⊕). The coloring c can be uniquely extended to the remaining
vertices of Ht. If c(w⊖) = c(w+) 6= c(w⊕), then c(w′+) can be either c(w⊕) or c(w⊖).
We consider these two possibilities. If c(w′+) is c(w⊖), then c(x) has to be c(w⊕)
and c can be uniquely extended to the remaining vertices of Ht. If c(w′+) is c(w⊕),
then c(x) can be either c(w⊕) or c(w⊖) and c can be extended in t different ways
to the remaining vertices of Ht. Thus, c can be extended altogether in 2t + 1 = l
different ways.

The bound on the number of vertices of Hl is obviously fulfilled in both the cases.

We combine Lemmas 1 and 2 to get the main result of this section:
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Theorem 3 Let (r1, . . . , rm) be any vector of non-negative integers such that r1 = 0.
Then there exists a mixed hypergraph with at most 2m + 2

∑m
i=1,ri 6=0(1 + ⌊log2 ri⌋) vertices

such that its spectrum is equal to (r1, . . . , rm). Moreover, the number of edges of this mixed
hypergraph is cubic in the number of its vertices.

Proof: Let F = {j|rj 6= 0} and let H∗ be the mixed hypergraph from Lemma 1. We
keep the notation of Lemma 1. We apply the following procedure for each ci ∈ F(H∗):
We add a copy of Hrci

from Lemma 2 to H∗ and we identify vertices w+
i and w+, w⊕

i and

w⊕ and w⊖
i and w⊖. Lemmas 1 and 2 now yield that the spectrum of the just constructed

mixed hypergraph is (r1, . . . , rm). The bound on the number of vertices easily follows
from counting the number of the vertices of H∗ and the vertices of Hrci

(and realizing
that some of the vertices have been identified). The bound on the number of edges follows
from the fact that each edge has size at most three.

4 Complexity results

The main theorem of this section is proved in a similar way as Theorem 3, except that
instead of Lemma 2, we use the following lemma:

Lemma 3 Let Φ be a given formula with clauses of size three and let n be the number
of variables and m the number of clauses of Φ. There exists a mixed hypergraph HΦ with
three special vertices w+, w⊖, w⊕ which satisfies: Let c be any precoloring of w+, w⊖ and
w⊕ using two colors such that c(w⊖) 6= c(w⊕), then:

• Any extension of c to a proper coloring of HΦ uses no additional colors.

• If c(w⊖) 6= c(w+) = c(w⊕), then c can always be extended to a proper coloring of
HΦ.

• If c(w⊖) = c(w+) 6= c(w⊕), then c can be extended to a proper colorings of HΦ iff Φ
is satisfiable.

HΦ has 2n + 3 vertices and 3n + m edges.

Proof: Let x1, . . . , xm be the variables of the given formula. Let HΦ be a mixed hyper-
graph with vertices w+, w⊖, w⊕, vT

1 , vF
1 , . . . , vT

n , vF
n and the following edges:

• C-edges {w⊕, w⊖, vT
i } and {w⊕, w⊖, vF

i } for 1 ≤ i ≤ n,

• D-edges {vT
i , vF

i } for 1 ≤ i ≤ n and

• D-edges {w⊖, w+, wX
i , wY

j , wZ
k } for each clause of the formula containing the vari-

ables xi, xj and xk where X = T if the occurrence of xi in the clause is positive and
X = F otherwise; Y and Z are set in the same manner.
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The bounds on the size of HΦ are clearly fulfilled.
Any extension of a precoloring c of the vertices w+, w⊖, w⊕ with c(w⊖) 6= c(w⊕) to

the vertices vT
1 , vF

1 , . . . , vT
n , nF

n uses only the colors c(w⊖) and c(w⊕) due to the presence of
C-edges {w⊕, w⊖, vT

i } and {w⊕, w⊖, vF
i } for all 1 ≤ i ≤ n. If c(w⊖) 6= c(w+), then all the

D-edges corresponding to the clauses of Φ are properly colored already by the precoloring
and thus assigning all the vertices vT

i the color c(w⊕) and all the vertices vF
i the color

c(w⊖) yields a proper extension of c.
Let us assume in the rest of the proof that c(w⊖) = c(w+). The color c(w⊕) represents

true and the color c(w⊖) represents false in our construction. The presence of D-edges
{vT

i , vF
i } assures that each variable and its negation have opposite values (recall that the

value of xi is represented by the color of vT
i ). The D-edges {w⊖, w+, vX

i , vY
j , vZ

k } force that
each clause contains at least one true literal (a vertex colored by the color c(w⊕). Hence,
c can be extended to HΦ iff there is a satisfying assignment of Φ.

We now combine Lemmas 1 and 3 to get the following theorem:

Theorem 4 Let A2 be a finite non-empty subset of {2, 3, . . .} and A1 a proper (possibly
empty) subset of A2. It is NP-hard to decide whether the feasible set of a given mixed
hypergraph H is equal to A2 even if it is promised that F(H) is either A1 or A2.

Proof: We present a reduction from the well-known NP-complete problem 3SAT. Let
Φ be a given formula with n variables and HΦ the mixed hypergraph from Lemma 3.
Consider the mixed hypergraph H∗ from Lemma 1 for the set F = A2 = {c1, . . . , ck}. Let
A2 \A1 = {ci1, . . . , cik′

}. We create |A2| − |A1| = k′ ≥ 1 copies of HΦ and we identify the
vertices w⊖, w+, w⊕ of the j-th copy with the vertices w⊖

cij
, w+

cij
, w⊕

cij
of H∗. Let H be the

obtained mixed hypergraph.
It is easy to verify that H can be constructed in time polynomial in the number of

variables and clauses of the formula Φ. In particular, the number of vertices of H is at
most 3 · max A2 + 2 · |A2 \ A1| · n and the number of its edges is cubic in the number of
its vertices.

The mixed hypergraph H has a strict ℓ-coloring for ℓ ∈ A1 since any strict ℓ-coloring
of H∗ can be extended to the copies of HΦ due to Lemma 3. Recall that c(w⊖

cij
) 6=

c(w+
cij

) = c(w⊕
cij

) for 1 ≤ j ≤ k′ for every strict ℓ-coloring of H∗ with ℓ ∈ A1. On the

other hand, H has a strict ℓ-coloring for ℓ ∈ A2 \ A1 iff Φ is satisfiable: Since it holds
that c(w⊖

cij
) = c(w+

cij
) 6= c(w⊕

cij
) for every strict cij -coloring c of H∗, the coloring c can be

extended to the j-th copy of HΦ iff Φ is satisfiable by Lemma 3.

Several interesting computational complexity corollaries follow almost immediately.
These results are new except for Corollary 4 which was proved in a weaker form in [11]:

Corollary 2 It is NP-complete to decide whether a given mixed hypergraph H is colorable.
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Proof: This problem clearly belongs to the class NP. It is enough to set A1 = ∅ and
A2 = {2} in Theorem 4 to get the result.

Corollary 3 Let A be a fixed finite subset of {2, 3, . . .}. It is coNP-hard to decide whether
the feasible set of a given mixed hypergraph H is equal to A. If A 6= ∅, then this problem
is NP-hard, too.

Proof: The coNP-hardness is established by setting A1 = A and A2 to a proper finite
superset of A omitting 1 in Theorem 4. The NP-hardness is established by setting A2 to
A and A1 to a proper subset of A.

Corollary 4 It is both NP-hard and coNP-hard to decide whether the feasible set of a
given mixed hypergraph H is gap-free even for a mixed hypergraph H with χ̄(H) = 4.

Proof: The NP-hardness is established by setting A1 = {2, 4} and A2 = {2, 3, 4} in
Theorem 4. The coNP-hardness is established by setting A1 = {4} and A2 = {2, 4}.

Corollary 5 There is no polynomial-time o(n)-approximation algorithm for the lower or
the upper chromatic number of a mixed hypergraph where n is the number of its vertices
unless P = NP .

Proof: Suppose that there is a polynomial-time f(n)-approximation algorithm for the
lower chromatic number where f(n) ∈ o(n) and n is the number of vertices of a given
mixed hypergraph. Let Φ be a given formula with clauses of size three with N variables.
Choose m such that m > 2 ·f(3m+2N). It is not hard to see that there is such an integer
m ∈ O(N) since f(n) ∈ o(n). Let H be the mixed hypergraph from the construction of
Theorem 4 for A1 = {m} and A2 = {2, m}. Note that the number of vertices of H is
at most 3k + 2N . The approximation algorithm for the lower chromatic number outputs
a number which is less then m iff the feasible set of the input mixed hypergraph is A2.
Recall that F(H) = A2 iff Φ is satisfiable. Hence, the existence of the polynomial-time
o(n)-approximation algorithm implies that 3SAT∈ P and consequently P = NP . The
non-existence (unless P=NP) of a polynomial-time o(n)-approximation algorithm for the
upper chromatic number can be proved similarly.
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5 Conclusion

There exists a mixed hypergraph whose feasible set is F for any set F of positive inte-
gers with 1 6∈ F . We proved that there exists a mixed hypergraph whose spectrum is
(r1, . . . , rm) for any vector (r1, . . . , rm) of non-negative integers such that r1 = 0. The
number of vertices of the smallest mixed hypergraph which is a realization of a given
set F has been substantially decreased from exponential to linear in maxF . But the
following question has not been answered: What is the number of vertices of the smallest
mixed hypergraph whose feasible set is equal to a given set F? Or even, what is the
number of vertices of the smallest mixed hypergraph whose spectrum is equal to a given
spectrum (r1, . . . , rm)? The answer to any of these questions probably requires some very
fine analysis.

We have not dealt with mixed hypergraphs containing only C-edges in this paper. It
is clear that if r1 6= 0 (this is equivalent to the fact that a mixed hypergraphs contains
only C-edges), then r1 = 1. Furthermore, r2 = (2n − 2)/2 for some n since C-edges of size
two can be contracted without affecting the spectrum and any two-coloring of a mixed
hypergraph on n-vertices with no D-edges and with no C-edges of size two is proper. This
leads to the following problem: What are necessary and sufficient conditions for a vector
(r1, . . . , rm) with r1 = 1 to be the spectrum of a mixed hypergraph?
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The author would like to thank Jǐŕı Sgall for suggesting an easy way to prove Lemma 2, Jan
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