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ABSTRACT 

A wheeled mobile robot is subject to both holonomic and nonholonomic con- 

straints. Representing the motion and constraint equations in the state space, 

this paper studies the feedback linearization of the dynamic system of a 

wheeled mobile robot. The main results of the paper are: (1) It is shown 

that the system is not input-state linearizable. (2) If the coordinates of a 

point on the wheel axis are taken as the output equation, the system is not 
input-output linearizable by using a static state feedback; (3) but is input- 

output linearizable by using a dynamic state feedback. (4) If the coordinates 

of a reference point in front of the mobile robot are chosen as the output equa- 

tion, the system is input-output linearizable by using a static state feedback. 

(5) The internal motion of the mobile robot when the reference point moves 

forward is asymptotically stable whereas the internal motion when the refer- 

ence point moves backward is unstable. A nonlinear feedback is derived for 

each case where the feedback linearization is possible. 
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1 Introduction 

The feedback linearization of nonlinear systems has been extensively studied in the liter- 
ature [I ,  2, 3, 4, 51. Broadly speaking, there are two types of linearization: input-state 

linearization and input-output linearization. Necessary and sufficient conditions have been 

established for each type of linearization [6, 71. For a given nonlinear system, these condi- 

tions can be checked to determine if the system is linearizable. Two types of feedback are 

commonly employed for the purpose of linearization: static state feedback and dynamic 

state feedback. The dynamic state feedback is more general and includes the static state 
feedback as a special case. Consequently, the conditions for the dynamic state feedback are 

more complicated. 

In this paper, we study the feedback linearization of a wheeled mobile robot. Due to the 

fact that the wheeled rnobile robot is nonholonomically constrained, the wheeled mobile 
robot possesses a number of distinguishing properties as far as the feedback linearization is 

concerned. In particular, we will first show that the dynamic system of a wheeled mobile 

robot is not input-state linearizable. We then study the input-output linearization of the 

system for two types of output equations which are chosen for the trajectory tracking of 
the mobile robot. The first output takes the coordinates of the center point on the wheel 

axis, and the other output takes the coordinates of a reference point in front of the mo- 

bile robot. With the first output equation, we should that the system is not input-output 

linearizable by using a static state feedback but is input-output linearizable by using a 

dynamic state feedback. The dynamic feedback achieving the input-output linearization 

is constructed following the dynamic extension algorithm [7, 81. With the second type of 

output equation, the system is input-output linearizable by simply using a static state feed- 

back. Nevertheless, the internal dynamics of the system is not always stable. Specifically, 

when the reference point is controlled to move backward, the internal motion of the system 
is unstable. 

Although motion planning of mobile robots have been an active topic in robotics in 
the past decade [9, 10, 11, 12, 131, the study on the feedback control of mobile robots is 

very recent [14, 15, 161. The work which is most closely related to the present study is by 

d'Andrea-Novel e t  al. [17] who studied full linearization of wheeled mobile robots. Since 

they used a reduced model, the motions of mobile robots are not completely characterized. 

In particular, the nonlinear internal dynamics, which are a major topic of this study, are 

excluded from the motion equations. Bloch and McClamroch [18] showed that a nonholo- 

nomic system, including wheeled mobile robot systems, cannot be stabilized to a single 

equilibrium point by a sniooth feedback. Walsh e t  al. [I91 suggested a control law to sta- 

bilize the nonholonomic system about a trajectory, instead of a point. Other relevant work 
includes [20, 211 which proved that systems with nonholonomic constraints are small-time 
locally controllable. 
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Figure 1: Schematic of the mobile robot. 

2 Dynamics of a Wheeled Mobile Robot 

2.1 Constraint Equations 

In this section, we derive the motion equations and constraint equations of a wheeled mobile 

robot whose schematic top view is shown in Figure 1. We assume that the mobile robot 

is driven by two independent wheels and supported by four passive wheels at  the corners 

(not shown in Figure 1). Before proceeding, let us fix some notations (see Figure 1). 

I-: 

c: 

m,: 

m,: 

I,  : 

the displacement from each of the driving wheels to the axis of symmetry. 

the displacement from point Po to the mass center of the mobile robot, 

which is assumed to be on the axis of symmetry. 

the radius of the driving wheels. 

r /2b .  

the mass of the mobile robot without the driving wheels and the rotors of 

the motors. 

the mass of each driving wheel plus the rotor of its motor. 

the moment of inertia of the mobile robot without the driving wheels and 

the rotors of the motors about a vertical axis through the intersection of 

the axis of symmetry with the driving wheel axis. 

the moment of inertia of each driving wheel and the motor rotor about the 

wheel axis. 

the moment of inertia of each driving wheel and the motor rotor about a 
wheel diameter. 

There are three constraints. The first one is that the mobile robot can not move in 

lateral direction, i. e., 

ia cos 4 - x1 sin 4 = o (1) 



where (xl ,  x2) is the coordinates of point Po in the fixed reference coordinated frame XI-X2, 
and 4 is the heading angle of the mobile robot measured from xl-axis. The other two 

constraints are that the two driving wheels roll and do not slip: 

?l cos # + k2 sin # + b$ = r01 

i1 cos # + k2 sin 4 - b# = r02 

where O1 and O2 are the angular positions of the two driving wheels, respectively. 

Let the generalized coordinates of the mobile robot be q = (xl, x2, #, 01, 02). The three 

constraints can be written as follows 

where 
- sin 4 cos 4 0 0 0 ] 
-cos4 -s in# -b r 0 
- cos # -sin 4 b 0 r 

We define a 5 x 2 dimensional matrix as follows 

The two independent columns,of matrix S(q) are in the null space of matrix A(q) ,  that is, 

A(q)S(q) = 0. We define a distribution spanned by the columns of S(q) 

S(q> = Is1(9> s2(q)l  = 

The involutivity of the distribution A determines the number of holonomic or nonholonomic 

constraints [21]. If A is involutive, from the Frobenius theorem [22], all the constraints are 

integrable (thus holonomic). If the smallest involutive distribution containing A (denoted 

by A*) spans the entire 5-dimensional space, all the constraints are nonholonomic. If 

dim(A*) = 5 - k, then k constraints are holonomic and the others are nonholonomic. 

To verify the involutivity of A, we compute the Lie bracket of sl(q) and s2(q). 

- - 
cb cos 4 cb cos 4 
cb sin $ cb sin # 

C -C 

1 0 

0 1 - - 

r -rc sin 4 1 



which is not in the distribution A spanned by sl(q) and s2(q). Therefore, at least one of 

the constraints is nonholonomic. We continue to compute the Lie bracket of sl(q) and s ~ ( Q )  

r -rc2 COS 4 1 

which is linearly independent of sl(q), s2(q), and s3(q). However, the distribution spanned 

by s l ( y ) ,  s2(q), s3(q) and s4(q) is involutive. Therefore, we have 

It follows that ,  among the three constraints, two of them are nonholonomic and the third 

one is holonomic. To obtain the holonomic constraint, we subtract equation (2) from 

equation (3). 

264 = r(8, - el) (8) 

Integrating the above equation and properly choosing the initial condition of 4, O,, and 01, 

we have 

4 = ~ ( 0 ,  - 01) (9) 

which is clearly a holonomic constraint equation. Thus 4 may be eliminated from the 

generalized coordinates. The new generalized coordinates are 4-dimensional, which will be 

denoted by y again. 

The two nonholonomic constraints are 

i 1 s i n ~ - i 2 c o s ~  = 0 

il cos 4 + i2 sin 4 = cb(& + 8 2 )  

where cb = as defined early. The second nonholonomic constraint equation in the above 

is obtained by adding equations (2) and (3). It is understood that 4 is now a short-hand 

notation for c(O1 - 02) rather than an independent variable. We write these two constraint 

equations in matrix form 

A(q)Q = 0 (13) 

where q is now defined in equation (10) and A(q) is given below 



2.2 Dynamic Equations 

We use the Lagrange formulation to establish equations of motion for the mobile robot. 

The total kinetic energy of the mobile base and the two wheels is 

1 1 1 
I< = -m(i: + i:) + mCcd(J1 - B 2 ) ( i 2  cos # - $1 sin #) + ; i~w(B: + 8;) + 2 ~ ~ 2 ( B 1  - B2)2 (15) 

2 

where 

Lagrange equations of motion for the nonholonomic mobile robot system are governed 

by 1231 

where q; is the generalized coordinate defined in equation (10)) f; is the generalized force, 

a;j is from the constraint equation (14), and X1 and X2 are the Lagrange multipliers. Sub- 

stituting the total kinetic energy (equation (15)) into equation (16), we obtain 

m i l  - m,d($ sin $ + d2 cos #) = Xl sin # + A 2  cos # (17) 

m i 2 + m , d ( $ c o s $ - ~ 2 s i n # )  = -X1cos++X2sin+ (18) 

m,cd(i2 cos $ - j.1 sin #) + (Ic2 + 1~)01 - Ic2& = TI - cbX2 (19) 

-m,cd(i2 cos $ - il sin #) - I ~ ~ B ~  + (Ic2 + 1, )~~ = 7 2  - cbA2 (20) 

where and T~ are the torques acting on the two wheels. These equations can be written 

in the matrix form 

M(q)ir' + V(q74.1 = E(q)7 - AT(q)X (21) 

where A(q) is defined in equation (14) and 

r 0 -m,cd sin # m,cd sin $ 1 
0 m m,cd cos # -m,cd cos # 

M ( q )  = I -meed sin 4 m,cd cos 4 Ic2 + I, - Ic2 

1 mccd sin 4 -mccdcos $ - I C ~  I c 2 + I W  1 

V(q7 4.) = 

- -m,dd2 cos $ - 

-m,dd2 sin q5 

0 

0 - - 

0 0 



2.3 State Space Realization 

In this subsection, we establish a state space realization of the motion equation (21) and 

constraint equation (13). Let S(q) be a 4 x 2 matrix 

cb sin 4 cb sin q5 

0 

whose columns are in the null space of A(q) matrix in the constraint equation (13), i.e., 

A(q)S(q) = 0. From the constraint equation (13), the velocity q must be in the null space 

of A(q). It follows that q E span{sl(q), sz(q)), and that there exists a smooth vector 

q = [ql 772]T such that 

= S(q)rl (23) 

and 

= S(q)i + (24) 

For the specific choice of S(q) matrix in eqation (22), we have q = 1, where 0 = [jl j21T. 
Now multiplying the both sides of equation (21) by ST(q) and noticing that s ' ( ~ ) A ~ ( ~ )  = 

0 and ST(q)E(q) = 12X2 (the 2 x 2 identity matrix), we obtain 

Substituting equation (24) into the above equation, we have 

By choosing the following state variable 

we may represent the motion equation (26) in the state space form 

where 

It is noted that the dependent variables for each term have been omitted in the above 

representation for cla,rity. All the terms are functions of the state variable x only. Since q 

is not part of the sta,te variable, it is replaced by S(q)q. 



3 Input-State Linearization 

In this section, we study the input-state linearization of the control system (28) using 

smooth nonlinear feedbacks. To simplify the discussion, we first apply the following state 

feedback 

where ir is the new input variable. The closed-loop system becomes 

;: = f '(x) + gl(x)p (30) 

where 

Theorem 1 S y s t e m  (30) is  not  input-s tate  linearizable by a smooth  s tate  feedback. 

Proof: If the system is input-state linearizable, it has to satisfy two conditions : the 

strong accessibility condition and the involutivity condition [7, p.1791. We will show that 

the system does not satisfy the illvolutivity condition. 

Define a sequence of distributions 

Then the involutivity condition requires that the distributions Dl, D2, . . . , D6 be all 

involutive, with 6 being the dimension of the system. Dl = ~ ~ a n { ~ l )  is involutive since g1 

is constant. Next we compute 

It is easy to verify that the distribution spanned by the columns of S(q) is not involutive. 

(Actually, if the distribution were involutive, the two constraints (11) and (12) would 

be holonomic.) It follows that the distribution D2 = ~ ~ a n { ~ l ,  Ljlgl) is not involutive. 

Therefore, the system is not input-state linearizable. 

Corollary 1 S y s t e m  (28) i s  no t  input-s tate  linearizable by a smooth  s tate  feedback. 

Proof: A proof similar to that of Theorem 1 can be carried out. Alternatively, system 

(30) can be regarded as a special case of system (28). 



4 Input-Output Linearization and Decoupling 

Although the dynamic system of a wheeled mobile robot is not input-state linearizable as 

shown in the previous section, it may be input-output linearizable. In this section, we 

study the input-output linearization of two types of outputs. First, the coordinates of 

the center point Po are chosen as the output equation. It will be shown that the input- 

output linearization is not possible by using static state feedback, but is possible by using 

a dynamic state feedback. Second, the coordinates of a reference point P, in front of the 

mobile robot is chosen as the output equation. In this case, the input-output linearization 

can be achieved by using a static state feedback. Nevertheless, the internal dynamics when 

the mobile robot moves backwards is unstable. 

4.1 Controlling the Center Point Po 

Since the mobile robot has two inputs, we may choose an output equation with two inde- 

pendent components. A natural choice for the output equation is the coordinates of the 

center point Po, i .e., 

Together with this output equation, we will consider the state equation (30), assuming that 

the nonlinear feedback (29) is applied to cancel the dynamic nonlinearity. To verify if the 

system is input-output linearizable, we compute the time derivatives of y .  

where 
cb cos 4 cb cos 4 

S1(x) = 
cb sin 4 cb sin 4 I 

Since jl is not a function of the input p ,  we differentiate once more. 

where the second term on the right-hand side is evaluated to be 

- sin 4 
~ 1 i x ) r  = c2b(v: - 7:) [ cos ] 

Now that ij is a function of the input p ,  the decoupling matrix of the system is Sl(x). Since 

Sl(x) is singular, the system is not input-output linearizable and the output can not be 

decoupled by using any static state feedback [6, 14, 151. 



4.2 Dynamic Feedback Control 

As shown above, the mobile robot under the output equation (31) is not input-output 

linearizable with any static feedback of the form 

Nevertheless the input-output linearization may be achieved by using a dynamic feedback 

of the form [7, 24, 25, 26, 81 

We follow the dynamic extension algorithm [7, pp.258-2691 to derive fE( . ,  .), gt(., .), a( . ,  a ) ,  

and P(., a )  if they exist at all. We divide the algorithm in three steps. 

Step 1: Since the rank of the decoupling matrix Sl(x) in equation (32) is one, we first 

apply a static feedback to linea,rize and decouple one output from the others. For the 

mobile robot, there are two outputs y = [yl y 2 ] T .  We choose to  linearize yl and decouple 

it from y2. Substituting the following static feedback into equation (32) 

the closed-loop input-output map is then 

It is clear that ;iil = ul,  that is, the first output yl is linearized and controlled only by ul. 

Thus ul can be designed to a,chieve the performance requirements for y l .  On the other 
hand, y2 is still nonlinear. Further, it is also driven by ul. 

Step 2: We substitute the static feedback (36) into equation (30) to obtain the new state 

equation 



Figure 2: Dynamic feedback controller of a mobile robot. 

We now differentiate the second output with respect to the new state equation x = 

f 2 ( x )  + 9 2 ( x ) ~ ,  hoping that u2 will appear in the derivative of y2. In the following differ- 

entiation, is treated as a (time-varying) parameter. 

v u 
--b a3(x,s)+$(X,~)V -C a?x)+ @(x)u Lk 

jl2 = cb(71 + 772) sin $ 

2 2 1 
& = c %I - + tan 4 ul 

(3' = 3 2 2 
sin q5 u1 

Y 2 b(% - 772)(1)1 - ~ 2 ) ~  + +I - 7 2 ) - 4  
cos $b 

+ cos 4 ( - 77:) tan 4 + CG 

+ tan $ti1 + 2c2b(v1 + v 2 )  
u2 

cos d 

a'(@+ b l ( x ) ~  
Z - f (x) + ~ ( x ) T  

It is seen that u2 appears in the third-order derivative of y2.  We note that IJ?) has the 

following structure 

YP' = Q l ( x )  + Q ~ ( x ) u I +  Q3Gl + Q4"2 (40) 

where Q ; ( x )  can be easily identified. 

Step 3: Noting equation (40), y2 will be linearized if we apply the following feedback 

&T-+ 
- 

with v being the reference input. However, this feedback depends on u l ,  which can be 

eliminated by introducing an integrator on the first input channel. Formally, we utilize the 

X 



following dynamic feedback 

where ( is one-dimensional and 

After applying the above dynamic feedback, we finally obtain two linearized and decoupled 

subsystems: 

It is noted that the first subsystem is now of third order due to the introduction of the 
integrator on its input channel. This concludes the dynamic extension algorithm. The 

resulting extended system hence is decouplable with static state feedback. 

The overall dynamic feedback control of the mobile robot is depicted in Figure 2. The 

first feedback (29) is to cancel the dynamic nonlinearity in order to simplify the subsequent 

discussion. The second feedback (36) is to linearize yl and also decouple it from y2. The 

third feedback represented by equations (42) and (43) is to linearize y2. 

Finally we comment on the invertibility of the system [27, 28, 291. Since the differential 

output rank p* of this particular system is computed by [8] 

which is equal to the number of outputs, the system is right-invertible [27]. This guarantees 

the success of the above dynamic extension algorithm since a right-invertible system can 

always be locally decoupled via a dynamic state feedback [27]. Furthermore, since the 

different output rank is equal to the number of inputs, the system is also left-invertible 
128, 29, 301. 

4.3 Look-Ahead Control 

In Section 4.1, we showed that the center point Po of the mobile robot cannot be controlled 
by using a static feedba.cl<. .4 dy~iamic feedback is necessary. In this section, we present 



an alternative control method. The method is motivated from vehicle maneuvering. When 

operating a vehicle, a driver looks at a point or an area in front of the vehicle. We define a 

reference point P, which is L distance (called look-ahead distance) from Po (see Figure 1). 
We take the coordinates of P, in the fixed coordinate frame as the output equation, i .e., 

X l  + Lcosd 
y = h(x) = 

x2 + L sin 4 I 
To verify if the system is input-output linearizable with this output equation, we compute 

the derivatives of y.  

d h .  dh 
jl = - x = -  

da dx ( f l (x )  + gl(x)p) 

- - 
cb cos 4 - cL sin 4 cb cos q5 + cL sin 4 [ c i 4 + c c o  co sin 4 - C L  cos 4 ] [ :j: ] = 

Since y is not a function of the input p ,  we differentkite it once more. 

The input p shows up in the second order derivative of y. Clearly, the decoupling matrix in 

this case is @(x).  Since the deternlinant of @(x) is (-2c2bL), it is nonsingular as long as the 

look-ahead distance L is not zero. It follows that the system can be input-output linearized 

and decoupled [6]. The nonlinear feedback for achieving the input-output linearization and 

decoupling is 

p = P ( x )  (u - &(x)v) (47) 

Applying this nonlinear feedback, we obtain 

Therefore, the mobile robot can be controlled so that the reference point P,. tracks a desired 

trajectory. The motion of the mobile robot itself, particularly the motion of the center point 

Po, is determined by the internal dynamics of the system which is the topic of the next 

section. We note that the look-ahead control method degenerates to the control of the 

center point if L = 0. 

4.4 Internal Dynamics 

The previous section addresses the input-output properties of the mobile robot with the 

look-ahead control output equation (46). In this section, we proceed to study the behavior 

of the internal dynamics including the zero dynamics of the system. For a general discussion 

of internal dynamics and zero dynamics, see Chapter 5 of [31]. 

We first construct a diffeomorphism by which the overall system can be represented in 

the norm form of nonlinear systems [31]. Since the relative degree of each output is two, 



we may construct four components of the needed diffeomorphism from the two outputs and 

its Lie derivative, i.e., hl(x), Lfhl(x), hz(x) and Lfh2(x). Since the state variable x 

is six dimensional, we need two more components. We choose the two components to be 

01 and 02. Thus the proposed diffeomorphic transformation would be 

To verify that T(x) is indeed a diffeomorphism, we compute its Jacobian. 

It is easy to check that has full rank1. Thus T(x) is a valid state space transformation. 
?x 

The inverse transformation TV1(z) is given by 

We partition the state variable z into two blocks 

After applying the feedback (47), the system of the mobile robot is represented in the 

following normal form. 

'The terms denoted by t do not affect the computation of the rank. 



where 

I[ cbsin#-cLcos4 -cbcos$-cLsin4 w z') = [ z4 ] = 2c2 bL -cb sin # - cL cos cb cos 4 - cL sin # 

It is understood that # in the expression of w(zl, z2) is a short-hand notation for c(z5 - 

z6). Together, the linear state equation (51) and the linear output equation (53) are an 
equivalent representation of the input-output map (equations (48) and (49)). Equation (52) 
represents the unobservable internal dynamics of the mobile robot under the look-ahead 

control. 

The zero dynamics of a control system is defined as the dynamics of the system when 

the outputs are identically zero ( 2 .  e., y = 0, jl = 0, y = 0, . . . ). If the outputs are identically 

zero, it implies that z1 = 0, and the zero dynamics is 

Thus, z2 remains constant while the outputs are identically zero. The zero dynamics 

is stable but not asymptotically stable. In other words, if the reference point P, remains 

still, so does the mobile robot (or more specifically, the wheels do not move). 

We now look at  the internal dynamics while the reference point is in motion. More 

specifically, we are interested in the internal motion of the mobile robot when it moves 

straight forward or backward. Let the mobile robot be initially headed in the positive X1 
direction. We assume that the reference point is controlled to move in the negative XI 
direction. The velocity of the reference point is then 

where ~ ( t )  > 0. Substituting this into the internal dynamics ( 5 2 ) ,  we obtain 

cb sin 4 - cL cos 4 
-cb sin q5 - cL cos # I 

A solution of this internal dyna,mics is 

where cl is a constant. That is, the two wheels rotate at exactly the same angular velocity 

and the mobile platform moves straight in the negative XI direction. 



We now study the stability of the internal motion described by equations (55) and (56). 

We first change the state variable so that the stability of the internal motion in z2 can be 

formulated as the stability of equilibrium points in 5. 

i 2  = 26 - zg* 

We may express the internal dynamics in terms of ( = [ C 6 I T .  

This system has an equilibrium subspace characterized by 

We may not draw any conclusion based on the linear approximation of the internal dynamics 
which has an eigenvalue a t  the origin. We will utilize the Liapunov method to establish 

the stability condition. Consider the following candidate for a Liapunov function 

In a neighborhood of Ec, V(C) = 0 if (' E EC, and V(C) > 0 if C # EC. Thus V(C) is positive 

definite with respect to EC, and may serve as a Liapunov function for testing the stability 

of EC. We compute the derivative of V ( 5 )  with respect to the time 

Since e(t) > 0, v(() is also positive definite with respect to Ec. Therefore the equilibrium 

subspace EC is not stable. 

On the other hand, if the reference point is controlled to move in the positive XI 

direction, the velocity of the reference point is 

where ~ ( t )  > 0. Using the same Liapunov function, we can similarly show that 

along the forward internal motion. Therefore, the forward internal motion is stable. Intu- 

itively, if the mobile platform is "pushed" at the reference point, the internal motion is not 

stable. If it is "pulled" or "dragged" at the reference point, the internal motion is stable. 



Conclusion 

We presented a number of interesting results on the feedback linearization of the dynamic 
system of a wheeled mobile robot. The first result reveals that the system is not input- 

state linearizable. The proof of this result is based on the fact a wheeled mobile robot is 

nonholonomically constrained. The other results are on the input-output linearization and 

decoupling of the system. Two types of outputs have been addressed. In the first type of 
output, the center point of the mobile robot on the wheel axis is intended to be controlled. 
It has been known that the point on the wheel axis cannot be controlled using a static 

feedback [14, 151. We show that the center point can be controlled to  track a trajectory 

by using a dynamic nonlinear feedback. The dynamic feedback for achieving the input- 

output linearization and decoupling has been developed through a three-step algorithm. 

The second output takes the coordinates of a reference point in front of the mobile robot. 

The input-ouput linearization of the system under this output is possible by simply using 

a static nonlinear feedback. The last part of the paper investigates the behavior of the 
internal dynamics of the system with the second type of output. We showed that the 

internal motion of the system is asymptotically stable when the reference point is controlled 

to move forward, but is unstable when it is controlled to move backward. These results, 
together with the results on controllability and feedback stabilization [18, 20, 14, 15, 161 

provide a theoretical foundation for feedback control of wheeled mobile robots. 
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