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Abstract. Fiber dispersion in collagenous soft tissues has an impirnfuence on the me-
chanical response, and the modeling of the collagen fibdritaoture and its mechanics has
developed significantly over the last few years. The purpdsiee paper is twofold, first to de-
velop a method for excluding compressed fibers within a dgpe for the generalized structure
tensor (GST) model, which several times in the literature heen claimed not to be possible,
and second to draw attention to several erroneous and mhilstpatatements in the literature
concerning the relative values of the GST and the angulagration (Al) model. For the GST
model we develop a rather simple method involving a defoionadependent dispersion pa-
rameter that allows the mechanical influence of compressedsfiwithin a dispersion to be
excluded. The theory is illustrated by application to siengktension and simple shear in order
to highlight the effect of exclusion. By means of two exansphe also show that the GST and
the Al models have equivalent predictive power, contrargdme claims in the literature. We
conclude that from the theoretical point of view neitherlodde two models is superior to the
other. However, as is well known and as we now emphasize, 8iE iBodel has proved to
be very successful in modeling the data from experimentswita range of tissues, and it is
easier to analyze and simpler to implement than the Al agbr,gend the related computational
effort is much lower.

Keywords: Fiber dispersion model; generalized structure tensorulangntegration model;
fibrous tissue; exclusion of compressed fibers
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1 Introduction

Collagen fiber dispersion in fibrous tissues has been rezedras being important in the me-
chanical response of the tissue. In recent years continuechamical models of this response
for tissues such as arteries, the myocardium, heart vateeseas and articular cartilage have
been developed to accommodate the effect of collagen fispedsion embedded within a non-
collagenous matrix material. There are now many imagingatitiels available that can identify
fiber orientations within tissues; in particular, secorrhonic generation, see, e.g., [1], and
ultra-high field diffusion tensor magnetic resonance imggsee, e.g., [2]. These modalities are
able to capture the 3D distribution of collagen fiber ori¢intas without damage to the tissue, in
contrast to histological investigations. This allows aailetd geometrical reconstruction of the
fiber architecture which then serves as a basis for more addanodeling including finite ele-
ment analysis. It is often considered that in the modelinguah dispersions only those fibers
which are extended should contribute to the mechanicabresp In other words compression
is supported only by the non-collagenous matrix materialhich the fibers are embedded, and
this consideration forms part of the motivation of the préseork.

Basically there exist two different approaches for modgfiber dispersion. First, the ‘an-
gular integration’ (Al) approach, which is due to Lanir [3h this approach a single collagen
fiber with strain energy () is considered as a function of the fiber streicfThe strain energy
is then integrated over a unit sphéeeo obtain the strain-energy functioh of the aggregate
of the fibers per unit reference volume, i.e.

U= n/ﬂp(N)w(A)dQ, (1)

whereN is a unit vector pointing in the direction of an arbitrary fibe is the number of fibers
per unit reference volume, ands the relative angular density of fibers normalized acceaydi

to
1

4 Jq
In (1) it has been assumed that the elastic properties ohalfibers are characterized by the

p(N)YAQ = 1. 2)

same strain energy, which was not the case in the original approach by Lanir [3].
Second, the ‘generalized structure tensor’ (GST) apprptatonsiders an energy function
U, associated with the fibers given by

Wy = W(C, H), 3)

which involves the right Cauchy—Green ten€hrand a generalized structure tensrdefined



by

H- L /p(N)N ® NdQ, (4)
47

Q

with the conditiontrH = 1 following from the normalization (2). A list of relevant ctributions
to these two modeling approaches is provided in the intribolniof [5].

Unfortunately, several errors concerning the relatiopsbetween the GST and the Al mod-
els have been promulgated in the literature, as in, e.g.réeated in [7], [8], [9] and other
studies. We therefore highlight some of the errors in ordeliscourage further repetitions.

First, according to [6], the GST model. . gives excellent results for two reasons: (i) the
fiber directional dispersion is small and (ii) all fibers a@elded in tension’Both these conclu-
sions are false. The conclusion (i) is false because thereeguis based on the very specialized
assumption that the strain-energy functibpin (3) is the same as the strain-energy function
of an individual fiber, and the argument in [6] is also base diaylor expansion approxima-
tion of w around the mean fiber direction, which is itself only valid $onall dispersions. The
conclusion (ii) is false because in the application to &teconsidered in [4] not all the fibers
within the dispersion are loaded in tension but still theultssare excellent. Indeed, because
of incompressibility, at least one stretch always has toelss than one so that some fibers in
a dispersion are always under compression. One implicaficonclusion (ii) is that the GST
model cannot exclude fibers in compression, which is cdytaiot the case. Indeed a simple
procedure for excluding fibers in compression in the GST @gogr forms the first part of the
content of the present paper. This also complements ouysisaif the exclusion procedure in
the Al approach contained in [10] and its implementatiorcdbsd in [11]. It should also be
mentioned that recently an approach to exclusion of fibeteerGST model based on the use
of a Heaviside function was developed in [12].

Second, there was also the suggestionin [13], on the batkie ahalysis in [6], that the GST
model, in particular the model in [4], is'a. . first order approximationbf the Al model, again
a false conclusion. Third, the errors in [6] have been prapad)in subsequent papers without
guestion. For example, in [7], with reference to [6], it iated that. .. structure tensors can
only be used when all the fibers are in tension and the angurilution is small

Fourth, in [7] further errors have been produced becauseadiigors used the same set
of parameters in the exponential forms of the strain-enéuggtion in the Al and the GST
approaches (this is a particular example of the assumpsed in [6]), which leads to incorrect
conclusions concerning the relative predictions of the tmaxlels. To elaborate on this point,



in the Al model the authors of [7] used the exponential form

&
w(A) = 2—1{exp[02()\2 —1)% -1}, (5)
Co
and for the GST model, for comparison, they used the stna@megy function
k
We(ly, Iy) = i{GXP[kz(’f]l + (1= 3r)1)"] — 1}, (6)
2

wherec,, ¢y, k1, ko are material constants, whilg and/, are standard invariants amds the
dispersion parameter. The use of (5) in the integrationg1¢gitimate. However, in [7] the
predictions of the models were compared by setting= ¢, andk, = c¢,, which is a very
restrictive assumption, and leads to erroneous compaisgpoint on which we will elaborate
in Sect. 3.

The errors from both studies [6] and [7] have been acceptddfather developed with
additional errors in [8], and subsequent papers. Howdwehasis of the comparisons therein is
invalid since in each case the same material parameterdkawaised for two different models.
An example of an unfounded statement which is contained Jims[8'Numerical tests show
that for all the loading cases for which GST models introdlacge errors, such as uniaxial
loading, shear and biaxial loading, the proposed model hagtter performance, in the sense
that it provides results closer to the ones furnished by acteangle integration of the fiber
orientation distribution’. This statement is based on the incorrect comparison in [i¢. GST
model does not introduce large errors.

The main justification for selecting a particular model iatth captures very well the un-
derlying structure and physics and the data from experimadhhas to be emphasized that the
GST approach has proved to be very successful in modelindateefrom experiments on a
wide range of tissues, including arteries, the myocardiueart valves, corneas, and articular
cartilage, while comparisons of the Al model with experinadata have been conducted to a
much lesser extent. The basis of the comparative study invriEh suggests that the Al model
is superior to the GST model, is unfounded. There is no jaatifin for such a conclusion
on the basis of the analysis in [7] or for referring to the Apegach as the ‘gold standard’.
The purpose of the second part of the present paper is to dgratenby an appropriate choice
of parameters that the Al and the GST modeling approachescpigalent in regard to their
predictive capabilities. Nevertheless, it should be ersjzea that the GST approach is more
amenable to theoretical analysis than the Al approach.dlsis simpler to implement and the
related computational effort is much lower because it da¢snvolve integrations.

The outline of the paper is as follows. In Sect. 2 we provideirarsary of the equations
governing the GST model with rotational symmetry and show hasimple (deformation de-



pendent) modification of the dispersion parameter is usezkttude compressed fibers in a
dispersion. The resulting model, based on a generalizadtste tensor, is then used to illus-
trate the consequences of the exclusion of compressed itbsnsiple tension and in simple
shear. It is shown, in particular, that for simple tensiothe mean fiber direction the stress
response with the fibers excluded is much stiffer than whewy déine not excluded when there is
significant dispersion. On the other hand, depending on #&nnfiber orientation, the simple
shear stress response is either stiffer or softer with fikelusion than without the exclusion,
again when there is significant dispersion.

In order to quantify our comments in the foregoing discussigating to the studies in,
e.g., [6], [7], [8], we provide in Sect. 3 an analysis of thengarison between the GST and
Al models for small strains. In particular it is shown thag tthoicek; = ¢; andk, = ¢, In
the equations (5) and (6), as in [7], is only valid in the twaiting cases of no dispersion or
isotropic dispersion. In fact, to properly compare the mtaahs of the two models on the basis
of the exponential models (5) and (6) the parametgendc, must depend not only ok, and
k, but also on the dispersion parameteiWe then go on to compare the predictions of the Al
and the GST models for simple tension and simple shear fee ttifferent values of dispersion
and in each case, with an appropriate choice of parametees) be seen that the predictions of
the two models essentially coincide. This is in sharp cett@the results in [7] for the same
deformations.

2 GST model with excluded compressed fibers

We consider a deformation described in terms of the defoomafradient~. The associated
left and right Cauchy—Green tensors Bre- FF™ andC = F'F, respectively. In Fig. 1 the unit
vectorM represents the mean fiber direction in the reference coatiguarof a fiber dispersion
with an arbitrary fiber direction denotéd together with the cone within which the fibers are
stretched in the deformed configuration, i.e. for whi€iN) -N > 1. Note thatM is included in
the cone but iM is compressed rather than extended tGéh N > 1 holds in the complement
of the cone.

With respect to an orthonormal basis, E,, E; with M = E;, the unit vectoN is given by

N =sinOcos®E; 4+ sin Osin ® E, + cos © E3, (7)

where© € [0,7] and® € |0, 2n] are spherical polar angles, aMi- N = cos©. Then the
equation(CN) - N = 1 describes the boundary of the region in Fig. 1, and, witht(i8 explicit



Figure 1: Unit vectorN which defines the direction of an arbitrary fiber within a filos-
persion, mean fiber directioM in the reference configuration and cone of fibers which are
stretched in the deformed configuration, i(€N) - N > 1. An orthonormal basig&,, E,, E;
with M = E;. Note that in general the cone is not symmetric aldduaind in this exampl&i
satisfieCM) - M > 1.

expression reads

(CN) - N = sin? ©(C}; cos® ® + 20, sin ® cos & 4 Cyy sin” @)
+25sin O cos O(Ch5 cos ® + Cyz sin @) + Cy cos” O = 1, (8)

which, of course, is satisfied identically in the referenoafmguration,C;; being the compo-
nents ofC. When® # /2 Eq. (8) may be rearranged as

tan® O(C}y cos® ® + 20, sin ® cos @ + Coysin® & — 1)
+2tan O(C13c08 @ + Cogsin ®) + C33 — 1 = 0, (9)

which is a quadratic inan © and shows thab depends o® andC. If © = /2 Eq. (8) reduces
to

Cy cos® & + 20, sin @ cos @ + Chysin® ® = 1, (20)

which governs unstretched fibers perpendiculavito

Under the deformation, the mean fiber directdmmaps intoFM in the deformed configu-
ration, and we use the notatiom= FM to represent this. In generah is neither a unit vector
nor the mean fiber direction in the deformed configurationrr€pondingly, for an arbitrary
fiber we adopt the notatiom defined byn = FN. Next we introduce the angkein the current



configuration, which, for a give@, is related t® and® by

cosf — m-n  (Ci3cos® + Cyysin ) sin © + Cy cos © (1)

Im[[n| CY2n|

since|m| = Céf

the case in which the dispersion is rotationally symmetbiad a mean directiomM, following
[4], the generalized structure tensor has the fetm xl + (1 — 3x)M ® M, and the (constant)

. The GST model uses a generalized structure tensor, asdiefike. (4). For

dispersion parameter is defined by [4]

s

K= / p(©)sin® ©dO, (12)
0
wherep(©) is the fiber orientation density, rotationally symmetrioabthe mean fiber direc-

tion. It satisfies the normalization condition

™

%/p(@) sin©do =1 (13)
0

and enjoys the symmetry properties
p(r+0) = p(r — ©) = p(6). (14)
A generalized invariant denotdd associated witl is
I§ =tr(HC) = kI, + (1 — 3k)I,, (15)

where
L, =trC, I,=M-(CM). (16)

We emphasize that (12) includab the fibers in the dispersion whether they are in tension
or compression. If we wish to exclude compressed fibers theaparopriate range of angles
needs to be omitted from the integral in (12). Towards thel g define a modified dispersion
parameter, denoted (©), by

© T
1 , 1 .
a(®) = [p©sin'cdg+ 5 [ plesin’ e an
0 T—0
where®© € [0,7/2]. The combination of integrals in (17) is appropriate for tiase in which
the mean fiber direction is extended, (€M) - M > 1. However, because of the symmetry

properties (14) the two integrals are the same and henceifhp)ifies to
(S)

JEGERES (18)

0

K1(0) =

N | —
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Figure 2: Typical plot ofx, vs© contained irj0, 7/2]. For0 < © < ©, the curve is determined
by (18), while foro, < © < 7/2, k,(0) = k1(60y), which we denote by.

In particular, if© = ©,, which corresponds to the boundary of the cone shown in Fig. 1
then by (9) with© replaced byo, it is clear thato, depends o andC. Thenk,(0,) is the
dispersion parameter appropriate for the case in whichdahepeessed fibers are excluded, and
in this casex,(0,) can be obtained from (12) by settipg®) = 0 for 6, < © < 7 — O,.

To illustrate its behavior a typical plot ef, (©) is shown in Fig. 2 for© between) andx /2.
This shows that, (©) increases monotonically fromto ©, and has the valug, (©,) for ©
betweern®, andr /2. From (18) it follows that

K1(0) = %p(@) sin® © (19)
at any point where is continuous but since we have $66,) = 0, ] is discontinuous at
O = Q,, with x1(0) = 0for Of < 6 < 7/2.

For convenience we now denotg(©,) by = and consider the material to be incompressible
with an energy functiont(I;, I, ). Sincex}(0F) = 0 it follows that % is stationary with
respect taC, and hence the second Piola—Kirchhoff stress teBs®given by

S=22—g =201 +20,M @M — pC™*, (20)
where the abbreviations, = 0V /01, andy, = 0V /01, have been used, apds the Lagrange
multiplier associated with the constraiit C = 1. Thus, while its derivative with respect @
does not appear in (203,= x,(0,) does depend 0@ and is incorporated in the expression for
Sin exactly the same way as if it were a constant. For exampth,autypical energy function
of the form

U= Uy, (1) + (1), (21)



we obtain the stress relation
S: 2\1450(]1)I +2\I];(II)H _pc_17 (22)

whereV,. (I,) represents the isotropic contribution related to the nmtagenous matrix ma-
terial and¥(I;) is the contribution of the energy stored in the collagen fiber addition [} is
now given byl; = kI, +(1—3k)I,, which is Eq. (15) with « replaced byz, and we emphasize
thatH = il + (1 — 3k)M ® M now involvesr rather thar.

If we consider the model adopted in [4] then, for a single farof fibers, we have

\Iliso<Il) =

o=

(I —3), Wi(I}) = %Z L {exp [ko(15 — 1)7] — 1}, (23)

wherep andk; are parameters with dimensions of stress ani$ a dimensionless parameter.
Hence, from (22), the second Piola—Kirchhoff stress teheoomes

S= ul + 2k, (I — 1) exp [ky(If — 1)’]H — pC~". (24)
Similarly, if the mean fiber direction is not extendgeM ) - M < 1 then(CN) - N > 1 for

O € (0y, ™ — Oy), and in this case we define

71"—@0

/ p(©)sin® ©dO, (25)

O

1

FGQ(@O) = 1

which is complementary te,(0,) and can be obtained from (12) by setting®) = 0 for
© € [0,04] U [r — Oy, 7]. Note that

K1(0p) + K2(Op) = k. (26)

2.1 Example: Simple Tension

As a first example we consider a uniaxial strefch> 1 in the directionM = E; with a
dispersion that is rotationally symmetric abddt Then, by symmetry, the lateral stretches
Xy = A; areX™ /% and the components 6fare diag\, A\™*/%, A™'/?], so that Eq. (11) reduces

to

cosf = Acos© . 27

\/)\2 cos’O + A\ 'sin? O
Note, in particular, that on the boundary of the cone Eq.€8lces to

I =X cos®© + X\ 'sin®© = 1, (28)



which, for A # 1, can be rearranged with = 6, as

tan Oy = /A(A +1). (29)

It follows thatcos 6, = A cos ©,, whered, is the value) obtained from (27) when (28) holds. If
0 <O <06,andr — 0, < © < 7 then the fibers are extended. Thus\ascreases more and
more fibers are recruited into extension, &lbecomes larger and approache?, while 6,
tends to zero.

We now consider the energy functidi (1, I7) = V(I,, I, k) with & = k,(0,). Then the
Cauchy stress tenser = FSF' is given by

o = 2B+ 2¢ih — pl, (30)
whereyy = 9W*/dI, andy) = 9V*/0I; and
h=&B+(1-3rmem, Ij=rL+(1-38)I;=)—-28A>—-\""), (31)
h = FHF" being the spatial generalized structure tensor. For thesi{@8) we have
U= /2, 5= k(15— 1) explhy (1] — 1)%). (32)

For simple tension let be the component of the Cauchy stress in the direction dicktre
Then, by specializing (30), we obtain

o = pN? 4 2k, (I — 1) explhy (I} — 1)?][RA? + (1 — 3R)A?] — p, (33)
0 = pA™" 4 2k (I] — 1) explky(IF — 1)°]RA = p, (34)
and hence, on elimination of

o= pN = AT 42k [N =1 =28V = ATV = 28N —RAT)
xexp {ky[\ — 1 —2R(A? = AD? . (35)

We emphasize here that= «,(6,) depends on via (29).

In order to compare the behavior of the model where compdefisers are excluded with
the model where they are not excluded, i.e. with a congtawe adopt the von Mises distribu-
tion used in [4]. This is given by

_ ] b oexp(2b cos” O)
o=y Temitess .

10
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Figure 3: Uniaxial Cauchy stress against the corresponding streteffior the four values$ =
0,0.5,1.5, 3 (corresponding ta = 1/3,0.285,0.187,0.096) and fork, /u = 5 andk, = 0.01.

whereerfi is the imaginary error function artds the concentration parameter. In fact, a specific
formula can be obtained far by using (36) in the definition (12) with the help of Mathencati

[14]. Thisis
1 1 1 /2 exp(2b)
SR Y Pt Sl 37
"T278 T 4V Therfi(van) 37)

as given in [15], and it can also be obtained from the formatatlie out-of-plane dispersion
parameterk,, given in equation (2.28) of [S] by replacirigoy —b.

We now consider the energy functidih specified in (23) and usk, /u = 5 andk, =
0.01, and the values of = 0,0.5,1.5,3 which correspond ta: = 1/3,0.285,0.187,0.096,
respectively. Figure 3 shows plots of the uniaxial Cauchgssic versus the corresponding
stretch\ based on (35) for the four values &f The solid curves refer to the model described
here while the dashed curves correspond to the case withers Bacluded and constantAs
can be seen, as the valuehoficreases a smaller and smaller proportion of fibers are oesspd
and hence the difference between the two models decreasstpfiihe fibers are then aligned
with the direction of tension, and the response is stiffast] if b — oo, then the curves are
identical. For smaller values éfand hence more dispersion there is a significant difference
between the two models, and in each case the responseeststiff the new model. This can
be seen from the analytical expression (35) siicesmaller tham:. As can be seen from Fig. 3
the continuous curve fdr = 0.5 crosses over that fdr= 1.5. This is because fdr = 0.5, &

11
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Figure 4: Evolution of©, andd, with stretch\. Conef, = 0.32,0.184,0.142rad of stretched
fibers in the deformed configuration for three represergatalues\ = 10, 30, 50.

grows faster with\ initially than forb = 1.5.

Figure 4 shows the evolution é3, andf, with stretch\. As can be seen from the plots the
cone of stretched fibers in the deformed configuration is shfawthree representative values
of A (10, 30, 50), and we note that the angle of the cone decreases as theofaluacreases
(for A = 10, 30,50, 6, = 0.32,0.184,0.142rad, respectively). The corresponding cones for
the fibers in the reference configuration which are stretcheélde deformed configuration are
not shown, but we record that the angles for these conesasenaith) (for A = 10, 30, 50,

O, = 1.476,1.538, 1.551 rad, respectively).

2.2 Example: Simple Shear in the(1, 2)-plane

For the second example we consider simple shear ig tkdirection in the(E, , E,)-plane, with
dispersed fibers lying in this plane. The components of tlierdetion gradient and the right
Cauchy—Green tensors are

1 v 0 1 v 0
Fl=] 0o 1 o0 |, [Cl=]| v 1+4* 0 |, (38)
0 1 0 0 1

12
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Figure 5: Depiction of the region in thél,2) space traced out by the unit vectdrin (39)
for 0 < © < 2. Within the half-circle—7r/2 < © < 7/2 the shaded regions7/2 < © <
—(m — ©y) and0 < © < 7/2 are defined byCN) - N > 1. The angle9, satisfies (43) and
ranges fromr /2 for v = 0 to 7 for v — oc.

respectively, where > 0 is the amount of shear, and we take an arbitrary fiber dined®lito
have the form

N = cos OFE,; + sin OF, (39)
within a dispersion in thél, 2)-plane which has mean fiber directibhin that plane given by
M = cos O E; + sin O E,. (40)
Then
(CN)-N=1+~vsinO(ysin© + 2cos O). (41)

Sincey > 0, it follows that(CN) - N = 1 for v = 0 or © = 0 and, provided # 0,
(CN)-N > 1 for

sin O(ysin © + 2cosO) > 0. (42)
Moreover,(CN) - N = 1 for © = 6, given by

tan ©, = —%. (43)

If we restrict the attention to the range of values= [—x /2, 7/2], then(CN) - N > 1 for the
shaded region in Fig. 5, i.e. forn/2 < © < —(m — Oy) and0 < © < w/2. Equivalently,
(CN) - N > 1 for the rangd) < © < ©,. Note that this is independent of whether the mean
fiber directionM is compressed or extended.

13



Assuming the symmety(© +7) = p(©) for the considered 2D dispersion with orientation
distributionp(©), the normalization condition is

w/2
1
- / p(0)de = 1. (44)
—7/2
For this case the von Mises distributip(®) symmetric abou® = 0 is given by

_exp(bcos20)
p(©) = IO—(b)’

where [, is the modified Bessel function of the first kind of order Without omitting any

(45)

directions the dispersion parameter is defined by

w/2
K= % / p(©) sin®> ©dO = % (1 — 2—22) , (46)
—7/2

where I, (b) is the modified Bessel function of the first kind of order The corresponding
(generalized) structure tensor is

H=xl+(1-2x)M @M (47)

with M = E,, where the hat indicates restriction in tfle2) plane. For a general mean fiber
directionM, given in (40), the structure tensor again has the form (47).
Similarly to the three-dimensional case we definéd) according to

—(m—0) w/2
w@© == [ pesnteder s [ ple)sintede (48)
—7/2 0

Equivalently, because of the symmetrymthis can be expressed as

(€]
a(0) =+ [ ple)sin® e, (49)
0
with © € [0, 7], and hence
51(6) = Lp(6) sin*(©). (50)

Similarly to the three-dimensional case Eqg. (49) can beiobthby settingy(©) = 0 for © €
[0, 7], S0p(60,) = 0 and hence:;(0) = 0 for ©, < © < 7.

14
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Figure 6: Example for simple shear showing the dependence of therdispeparameter =
k1(©y) on the amount of shear for different values of the concentration paramétewhen
compressed fibers are excluded.

As in the three-dimensional case we use the notatien s, (0,). Representative plots of
k = K1(0,) as a function ofy for different values of the concentration paramétare shown
in Fig. 6 based on Eg. (49) with = ©, given by (43).

Consider again the modd™*(7,, I;) but now with the restriction to plane strain. Then,
similarly to the three-dimensional case, the two-dimemsi€Cauchy stress is obtained as the
specialization of (30), written as

& = 201B + 2¢5h — pl, (51)

where a hat again signifies the restriction to two dimensismshath = #B + (1 — 2&)m @ m.
For simple shear we have

M, + M, 1+ v 0
[m] = [F]M] = M, , [Bl= g 1o |, (52
0 0 0 1

where[M] = [M;, M,, 0] = [cos Oy, sin Oy, 0], and
I, =trB =2+~ [ = R(2+Y) + (1 — 28)(1 + 2yM, My +~+*M3).  (53)
For the considered plane strain the strain-energy fun¢#8htakes on the form

U= g(f1 )+ 2% {exp [/cg(f; . 1)2} . 1} : (54)
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and the in-plane Cauchy stress components are derived as

611 = p(1+ %) + 205 [R(1 +~°) + (1 — 28) (M, + vM,)*] — p, (55)
Gag = 4 205[R + (1 — 2R)M5] — p, (56)
019 = py + 205[Ry + (1 — 2R) (M, + vMy) M,). (57)

Of particular interest is the dependence of the shear stigess the amount of shear, and
henceforth we focus on this relationship. First, howeves,nete that for a general direction
(39) we havel, = 1 + sin 20 + ~?sin? ©, which has its maximum value &t = ©,,,, given
by

2
tan(20,,.) = ——, (58)

~
an equation which should be compared with (43). It follonat &, = ©,/2 and this ranges
fromr/4 aty = 0 to 7/2 asy — oo. Thus, the direction in which the stretch is largest is
close to® = /4 for moderate values of and this has a strong influence on the stiffness of
the shear response. In particular, for the range|0, 2] considered in the subsequent examples
Omax € [7/4,37/8].

The following four illustrative examples are now consiakre

Example 1:0,, = 0, I} — 1 = #+?, with
G1o = py + 2k R°7° exp(kai*y"). (59)
Example 2.0y, = 7/4, I} — 1 = v + 14* — 2&y, with
G1o =y + ki (I — 1) explhy (I — 1)%](y + 1 — 2R). (60)
Example 3:0y = 7/2, I} — 1 = (1 — &)77, with
G1a = py + 2k1 (1 — B)*y* explhy (1 — &)y, (61)
Example 40y = 37 /4, I} — 1 = —y + 14* + 2y, with
b1y =y + k(17 — 1) explhy (I — 1)%](y — 1+ 2F). (62)

We now compare the shear stréss versus the amount of sheatbehavior for the model
in which compressed fibers are omitted with that in which ks are included for these four
representative examples. The results are shown in Fig. # #00.1, 1, 10, which correspond
to x = 0.475,0.277,0.026, respectively. We choodg /. = 5 andk, = 0.01 and take these
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Figure 7: Shear stress;, versus amount of shearfor both the excluded fiber model (contin-
uous curves) and the ‘all fiber’ model (dashed curves¥fgr= 0, 7/4,7/2,3x/4: ()b = 0.1
(k = 0475); (b)b =1 (k = 0.277); (c) b = 10 (v = 0.026). For each casg,;/u = 5 and

kiy = 0.01.
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values for purposes of illustration but the qualitativeunatof the plots is very similar for other
values.

First, forb = 10, we note that there is no essential difference between tis with or with-
out compressed fibers excluded (and the slight differensapgears altogether adecomes
larger and larger). This is because there is very littleelisiopn and the fibers are concentrated
close to the mean fiber direction. F&y; = 37/4, in particular, we note that the mean fiber
direction is outside the range of integration for small eslwf~ so that the fibers do not con-
tribute to the strain energy or stress initially, which ipgarted only by the isotropic term. As
~ increases the fiber contribution to the stress is slightatiee for a small range of values of
~ and leads to a maximum in the shear stress versus amountasflstteavior. Thereafter the
fiber contribution becomes positive and increases rapidly w> 2 (not shown). Note that for
Ou = 0 the stress is relatively small since for simple shear thereistretch in the direction
of shear. On the other hand, fé; = 7/4 and©,; = 7/2, which are close to the direction of
maximum stretch, the stress is much larger.

The pattern is similar fob = 1 in respect of the stress magnitudes although they are larger
for ©,; = 0 and©,; = 37 /4 because of the dispersion and there is a difference betveen t
two models. For these two angles the ‘all fiber model has &drgtress than the excluded
fiber model, but fo©®,; = 7/4 and©,; = 7/2 it is the other way around. And the situation for
b = 0.1 is similar to that forb = 1 except that the stiffnesses for all four mean fiber direcion
are very similar, because this is very close to the isotrepi@tion. These differences can be
seen in the Egs. (59)—(62) since for Examples 1 and 4tterms are positive, while in the
Examples 2 and 3 they are negative. Thus, in contrast to iahiextension, for which the
excluded fiber model gives a stiffer response than the all filmlel, in simple shear the stress
can be either stiffer or softer depending on the mean fibection.

3 Some comparisons with the Al model

We now compare the GST model with the Al model due to Lanir 3] without excluding
compressed fibers. For the Al model the energy function iseagral of the form

n/ p(0, P)w(N)sin®© dO dP, (63)
Q

where(2 is the unit spherg¢(0, ®) |© € [0, 7], ® € [0,2x]}, the orientation density depends
on© and® in general, as doek, which is defined ag/I,, wherel, = N - (CN), with N given
by (7), for a general Cauchy—Green ten€grandw()\) is the strain energy of an individual
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fiber in the directiorN. Note that (63) does not include an isotropic term assatiaith the
non-collagenous matrix material.
For purposes of comparison we include a neo-Hookean isottepn and characterize the
Al model by the strain-energy functioh,; as
1
Uap = §M(Il —-3)+ n/ p(0,P)w(A)sin© dO do. (64)
Q

The corresponding GST model has the form of (21) and (23)¢hwve now write as

1 "
Vst = QM(Il —3) + V1), (65)

whereV; represents the strain energy of the dispersed fibers, and rédationally symmetric
dispersion/; is given by (15). Assuming that no energy or stress is astatiaith the fibers
in the reference configuration, we have

w(1) = w'(1) =0, (1) = Ug(1) = 0. (66)

In the paper [7] it was attempted to compare the predictidriseoabove GST model with
the Al model having the same exponential forms (5) and (6)thedsame material constants
c¢; = k; andey, = ky. The associated Cauchy stress relations are

o a1 = 4B + 200, / o0, 8)(I, — 1) exples(I; — DN @Nsin©dOdD — pl  (67)
Q

and
oast = 1B + 2k (1] — 1) explky (1] — 1)2][“5 + (1 =3x)m@m] —pl, (68)

where we recall that = FN andm = FM.

We now elaborate on this particular point by consideringdase of small strains. The
Green-Lagrange strain tendéris defined by = (C — 1)/2, so thatl, = 3 + 2trE and
I, = 1+ 2N - (EN). These expressions for the invariants are exact but wherxpandw(\)
and ¥, (I;) to the second order i we obtain

w(N) ~ %(N CEN)*w” (1), e (I7) ~ 207 (1)(1 — 36)%M - (EM)]?, (69)

where the properties (66) have been used. By substitutegpthpproximations into (64) and
(65) we obtain

W = ptrE + gw”(l) / p(©,®)N - (EN)]*sin © dO d®, (70)
Q
and
Uagr = ptrE 4+ 207 (1)(1 — 3)*[M - (EM)]?, (71)
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respectively. Note that, since we are considering incosglioée materials, expansion of the
incompressibility conditionlet C = 1 to the second order givesBr= tr(E?), which can be
used in (70) and (71). The corresponding linearized Cautbgses are deduced from (70) and
(71) according to

o a1 = 21E + nw"(1) / p(6,®)[N - (EN)]N ® Nsin © dO d® — pl (72)
Q
and
o st = 20uE + 407 (1)(1 — 36)*M - (EM)IM @ M — pl, (73)
respectively.

For definiteness we now consider a uniaxial strain with camepé: in the directionM =
E;, with © measured fronk; and withp independent ob. Then, the dispersion is rotationally
symmetric aboukE; and, by symmetry and the incompressibility condition, @wedal strains
are, to the first order, each equal+a/2. By using the definition (7) anM = E; it follows
thatM - (EM) = ¢ andN - (EN) = (3 cos® © — 1)¢/2. The corresponding uniaxial stresses after
elimination ofp are obtained as

oar = 3pe + %Tw”(l)f(b)& oast = 3pe + 4V{ (1)(1 — 3k)%, (74)

where .
f(b) :/ p(©)(3cos®© — 1)*sin © dO, (75)
0

has been introduced, which, on use of Mathematica [14], eantbgrated to give

27 3 3 b (4b—9)exp(2b)

f) =2+ 25 +5 +33\/57 SE (V) (76)
and then, on use of (37), this can be simplified to
fb)=44(1—-3k)(4—-9b7"). (77)
If the two models are to predict the same stress then fromvwé4nust have
nmw” (1) f(b) = 8(1 — 3k)*W{(1). (78)

For the exponential model used in (23) we obtéif{1) = &,. If we use the exponential model
in Eq. (5) we obtainv”(1) = 4c,, and hence the constantsandk; must be related by

nmey[4+ (1 —36)(4 — 9071 = 2k, (1 — 3r)% (79)
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In the paper [7] the exponential model with = ¢; was adopted for the GST and Al models
in order to compare the predictions of the models for sevamales of deformation for a range
of values ofx. In view of the formula (37), the above relation would thewegiwo equations
relatingb andx. The only solutions of these simultaneous equations:are0 andx = 1/3,
as can easily be verified, so the use of the same exponentaglmwith the same material
constants for other values @in [7] is inappropriate, and the resulting comparisons leetwthe
predictions of the GST and the Al models are therefore nustega Moreover, for each different
deformation considered a formula relatingandk;, different from (79) would be obtained. This
means that even in the small deformation range the two magelsot equivalent.

Thus, to compare the predictions of the two models, for eaglamtes (or equivalently
b) in uniaxial extension, for example, and for a giventhe formula (79) needs to be used
to obtainc, for eachb separately for the corresponding Al model. To illustrate point the
plots in Fig. 8 provide comparisons of the predictions oftihe models for several values of
b for both simple tension and simple shear. For this purposefiices to take:, = k£, for all
the considered values 6f The continuous curves correspond to the Al model and thieedias
curves to the GST model. The parameter values have beentbet sloe continuous and dashed
curves can be seen separately but by refining these parantatepossible to arrange for the
plots to be indistinguishable. It is quite clear that thedizgons of the two models essentially
coincide. Note that in Case A, where there is very little dispn,c, = k,. In Case B, where
there is more dispersion, andk; are slightly different, while in Case C, where the dispairsio
is larger, close to isotropy, the values torandk, are quite different for both simple extension
and simple shear. Note that for Case C the valugg @fre different for simple extension and
simple shear because of the role of the mean fiber directidritendifferent dispersions used
in the two cases. We emphasize that for the plots in Fig. 8§ibader compression were not
excluded, but similar results can be obtained when comedddsers are excluded.

4 Summary and Concluding Remarks

In contrast to the claims in the literature that compresdmztdicannot be excluded in the gen-
eralized structure tensor model, in the present paper we slaown that this is not the case
by developing a rather simple and efficient method for exalgdibers under compression for
the GST model. The consequences of this have been illudtfatehe cases of simple ten-
sion and simple shear, and the differences between thes sgggonses under exclusion and
non-exclusion have been highlighted. The theory presdmeein can be used as a basis for a
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Figure 8: Al model (continuous curve) and GST model (dashed curvelse A (very little
dispersion), Case B (intermediate dispersion) and Casar@e(dispersion, close to isotropy):
(a) simple tension; (b) simple shear 185, = 60°. Parameters are for Case A (A&l:= 10,

¢, = 5; GST:x = 0.026, k; = 5), Case B (Al:'b = 1.5, ¢, = 5; GST:x = 0.15, k; = 5.2), Case
C (Al: b =0.1, ¢; = 5; GST for (a):x = 0.26, k; = 5.7; GST for (b): x = 0.26, k; = 4.1),
while for all cases and the two modeis= £, = 0.01. Note that the factorn in (67) has been
absorbed in the parametar.

general implementation into a finite element program in Whiee dispersion parameter needs

to be evaluated at each Gauss point; details of this will beiged in a subsequent paper. The
present model just constitutes a small extension to theedigm model developed in [4]. The
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analysis can also be extended to the case of a non-symmébgicdispersion involving two
dispersion parameters, as introduced in [5], and will tesutwo deformation dependent dis-
persion parameters. The GST model has also been used inlenongiinelastic effects such as
damage in, e.g., [16] and [17]. We emphasize that we havadirgrovided a detailed analysis
of the exclusion of compressed fibers for the Al approach @}, [flL1]; however, it seems that
the Al approach has not been implemented in commerciallijadola finite element programs.

In the second part of the present paper we have drawn atteiotimisleading statements in
the literature concerning the relative values of the tworagphes. Unfortunately, statements
which suggest that the Al approach is superior by referrmg tas the ‘gold standard’, are
based on erroneous considerations, as we have highlighsesieral locations in the preceding
sections. Indeed we have shown that both models have eeunivatedictive power in two
examples for which the study [7] and subsequent studiesihdieated significant differences
which are referred to as ‘errors’ therein. As the above exasgemonstrate, careful analysis
of the literature is needed, and one should not just accaptthat is published is correct.
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