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Abstract. Fiber dispersion in collagenous soft tissues has an important influence on the me-

chanical response, and the modeling of the collagen fiber architecture and its mechanics has

developed significantly over the last few years. The purposeof the paper is twofold, first to de-

velop a method for excluding compressed fibers within a dispersion for the generalized structure

tensor (GST) model, which several times in the literature has been claimed not to be possible,

and second to draw attention to several erroneous and misleading statements in the literature

concerning the relative values of the GST and the angular integration (AI) model. For the GST

model we develop a rather simple method involving a deformation dependent dispersion pa-

rameter that allows the mechanical influence of compressed fibers within a dispersion to be

excluded. The theory is illustrated by application to simple extension and simple shear in order

to highlight the effect of exclusion. By means of two examples we also show that the GST and

the AI models have equivalent predictive power, contrary tosome claims in the literature. We

conclude that from the theoretical point of view neither of these two models is superior to the

other. However, as is well known and as we now emphasize, the GST model has proved to

be very successful in modeling the data from experiments on awide range of tissues, and it is

easier to analyze and simpler to implement than the AI approach, and the related computational

effort is much lower.

Keywords: Fiber dispersion model; generalized structure tensor; angular integration model;

fibrous tissue; exclusion of compressed fibers
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1 Introduction

Collagen fiber dispersion in fibrous tissues has been recognized as being important in the me-

chanical response of the tissue. In recent years continuum mechanical models of this response

for tissues such as arteries, the myocardium, heart valves,corneas and articular cartilage have

been developed to accommodate the effect of collagen fiber dispersion embedded within a non-

collagenous matrix material. There are now many imaging modalities available that can identify

fiber orientations within tissues; in particular, second-harmonic generation, see, e.g., [1], and

ultra-high field diffusion tensor magnetic resonance imaging, see, e.g., [2]. These modalities are

able to capture the 3D distribution of collagen fiber orientations without damage to the tissue, in

contrast to histological investigations. This allows a detailed geometrical reconstruction of the

fiber architecture which then serves as a basis for more advanced modeling including finite ele-

ment analysis. It is often considered that in the modeling ofsuch dispersions only those fibers

which are extended should contribute to the mechanical response. In other words compression

is supported only by the non-collagenous matrix material inwhich the fibers are embedded, and

this consideration forms part of the motivation of the present work.

Basically there exist two different approaches for modeling fiber dispersion. First, the ‘an-

gular integration’ (AI) approach, which is due to Lanir [3].In this approach a single collagen

fiber with strain energyw(λ) is considered as a function of the fiber stretchλ. The strain energy

is then integrated over a unit sphereΩ to obtain the strain-energy functionΨ of the aggregate

of the fibers per unit reference volume, i.e.

Ψ = n

∫

Ω

ρ(N)w(λ)dΩ, (1)

whereN is a unit vector pointing in the direction of an arbitrary fiber, n is the number of fibers

per unit reference volume, andρ is the relative angular density of fibers normalized according

to
1

4π

∫

Ω

ρ(N)dΩ = 1. (2)

In (1) it has been assumed that the elastic properties of all the fibers are characterized by the

same strain energyw, which was not the case in the original approach by Lanir [3].

Second, the ‘generalized structure tensor’ (GST) approach[4] considers an energy function

Ψf associated with the fibers given by

Ψf = Ψf(C,H), (3)

which involves the right Cauchy–Green tensorC, and a generalized structure tensorH, defined
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by

H =
1

4π

∫

Ω

ρ(N)N ⊗ NdΩ, (4)

with the conditiontrH = 1 following from the normalization (2). A list of relevant contributions

to these two modeling approaches is provided in the introduction of [5].

Unfortunately, several errors concerning the relationships between the GST and the AI mod-

els have been promulgated in the literature, as in, e.g., [6], repeated in [7], [8], [9] and other

studies. We therefore highlight some of the errors in order to discourage further repetitions.

First, according to [6], the GST model‘ . . . gives excellent results for two reasons: (i) the

fiber directional dispersion is small and (ii) all fibers are loaded in tension’. Both these conclu-

sions are false. The conclusion (i) is false because the argument is based on the very specialized

assumption that the strain-energy functionΨf in (3) is the same as the strain-energy functionw

of an individual fiber, and the argument in [6] is also based ona Taylor expansion approxima-

tion of w around the mean fiber direction, which is itself only valid for small dispersions. The

conclusion (ii) is false because in the application to arteries considered in [4] not all the fibers

within the dispersion are loaded in tension but still the results are excellent. Indeed, because

of incompressibility, at least one stretch always has to be less than one so that some fibers in

a dispersion are always under compression. One implicationof conclusion (ii) is that the GST

model cannot exclude fibers in compression, which is certainly not the case. Indeed a simple

procedure for excluding fibers in compression in the GST approach forms the first part of the

content of the present paper. This also complements our analysis of the exclusion procedure in

the AI approach contained in [10] and its implementation described in [11]. It should also be

mentioned that recently an approach to exclusion of fibers inthe GST model based on the use

of a Heaviside function was developed in [12].

Second, there was also the suggestion in [13], on the basis ofthe analysis in [6], that the GST

model, in particular the model in [4], is a‘ . . . first order approximation’of the AI model, again

a false conclusion. Third, the errors in [6] have been propagated in subsequent papers without

question. For example, in [7], with reference to [6], it is stated that‘ . . . structure tensors can

only be used when all the fibers are in tension and the angular distribution is small’.

Fourth, in [7] further errors have been produced because theauthors used the same set

of parameters in the exponential forms of the strain-energyfunction in the AI and the GST

approaches (this is a particular example of the assumption used in [6]), which leads to incorrect

conclusions concerning the relative predictions of the twomodels. To elaborate on this point,
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in the AI model the authors of [7] used the exponential form

w(λ) =
c1
2c2

{exp[c2(λ2 − 1)2]− 1}, (5)

and for the GST model, for comparison, they used the strain-energy function

Ψf(I1, I4) =
k1
2k2

{exp[k2(κI1 + (1− 3κ)I4)
2]− 1}, (6)

wherec1, c2, k1, k2 are material constants, whileI1 andI4 are standard invariants andκ is the

dispersion parameter. The use of (5) in the integration (1) is legitimate. However, in [7] the

predictions of the models were compared by settingk1 = c1 andk2 = c2, which is a very

restrictive assumption, and leads to erroneous comparisons, a point on which we will elaborate

in Sect. 3.

The errors from both studies [6] and [7] have been accepted and further developed with

additional errors in [8], and subsequent papers. However, the basis of the comparisons therein is

invalid since in each case the same material parameters havebeen used for two different models.

An example of an unfounded statement which is contained in [8] is: ‘Numerical tests show

that for all the loading cases for which GST models introducelarge errors, such as uniaxial

loading, shear and biaxial loading, the proposed model has abetter performance, in the sense

that it provides results closer to the ones furnished by an exact angle integration of the fiber

orientation distribution’.This statement is based on the incorrect comparison in [7]. The GST

model does not introduce large errors.

The main justification for selecting a particular model is that it captures very well the un-

derlying structure and physics and the data from experiments. It has to be emphasized that the

GST approach has proved to be very successful in modeling thedata from experiments on a

wide range of tissues, including arteries, the myocardium,heart valves, corneas, and articular

cartilage, while comparisons of the AI model with experimental data have been conducted to a

much lesser extent. The basis of the comparative study in [7], which suggests that the AI model

is superior to the GST model, is unfounded. There is no justification for such a conclusion

on the basis of the analysis in [7] or for referring to the AI approach as the ‘gold standard’.

The purpose of the second part of the present paper is to demonstrate by an appropriate choice

of parameters that the AI and the GST modeling approaches areequivalent in regard to their

predictive capabilities. Nevertheless, it should be emphasized that the GST approach is more

amenable to theoretical analysis than the AI approach. It isalso simpler to implement and the

related computational effort is much lower because it does not involve integrations.

The outline of the paper is as follows. In Sect. 2 we provide a summary of the equations

governing the GST model with rotational symmetry and show how a simple (deformation de-
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pendent) modification of the dispersion parameter is used toexclude compressed fibers in a

dispersion. The resulting model, based on a generalized structure tensor, is then used to illus-

trate the consequences of the exclusion of compressed fibersin simple tension and in simple

shear. It is shown, in particular, that for simple tension inthe mean fiber direction the stress

response with the fibers excluded is much stiffer than when they are not excluded when there is

significant dispersion. On the other hand, depending on the mean fiber orientation, the simple

shear stress response is either stiffer or softer with fiber exclusion than without the exclusion,

again when there is significant dispersion.

In order to quantify our comments in the foregoing discussion relating to the studies in,

e.g., [6], [7], [8], we provide in Sect. 3 an analysis of the comparison between the GST and

AI models for small strains. In particular it is shown that the choicek1 = c1 andk2 = c2 in

the equations (5) and (6), as in [7], is only valid in the two limiting cases of no dispersion or

isotropic dispersion. In fact, to properly compare the predictions of the two models on the basis

of the exponential models (5) and (6) the parametersc1 andc2 must depend not only onk1 and

k2 but also on the dispersion parameterκ. We then go on to compare the predictions of the AI

and the GST models for simple tension and simple shear for three different values of dispersion

and in each case, with an appropriate choice of parameters, it can be seen that the predictions of

the two models essentially coincide. This is in sharp contrast to the results in [7] for the same

deformations.

2 GST model with excluded compressed fibers

We consider a deformation described in terms of the deformation gradientF. The associated

left and right Cauchy–Green tensors areB = FFT andC = FTF, respectively. In Fig. 1 the unit

vectorM represents the mean fiber direction in the reference configuration of a fiber dispersion

with an arbitrary fiber direction denotedN, together with the cone within which the fibers are

stretched in the deformed configuration, i.e. for which(CN) ·N > 1. Note thatM is included in

the cone but ifM is compressed rather than extended thenCN ·N > 1 holds in the complement

of the cone.

With respect to an orthonormal basisE1, E2, E3 with M = E3, the unit vectorN is given by

N = sinΘ cosΦE1 + sinΘ sinΦE2 + cosΘE3, (7)

whereΘ ∈ [0, π] andΦ ∈ [0, 2π] are spherical polar angles, andM · N = cosΘ. Then the

equation(CN) ·N = 1 describes the boundary of the region in Fig. 1, and, with (7),the explicit
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M
b

Θ0

E1 E2

E3
N

Figure 1: Unit vectorN which defines the direction of an arbitrary fiber within a fiberdis-

persion, mean fiber directionM in the reference configuration and cone of fibers which are

stretched in the deformed configuration, i.e.(CN) · N > 1. An orthonormal basisE1, E2, E3

with M = E3. Note that in general the cone is not symmetric aboutM , and in this exampleM

satisfies(CM) · M > 1.

expression reads

(CN) · N = sin2Θ(C11 cos
2Φ+ 2C12 sin Φ cosΦ + C22 sin

2Φ)

+2 sinΘ cosΘ(C13 cosΦ + C23 sin Φ) + C33 cos
2Θ = 1, (8)

which, of course, is satisfied identically in the reference configuration,Cij being the compo-

nents ofC. WhenΘ 6= π/2 Eq. (8) may be rearranged as

tan2Θ(C11 cos
2Φ + 2C12 sinΦ cos Φ + C22 sin

2Φ− 1)

+2 tanΘ(C13 cosΦ + C23 sinΦ) + C33 − 1 = 0, (9)

which is a quadratic intanΘ and shows thatΘ depends onΦ andC. If Θ = π/2 Eq. (8) reduces

to

C11 cos
2Φ + 2C12 sinΦ cosΦ + C22 sin

2Φ = 1, (10)

which governs unstretched fibers perpendicular toM .

Under the deformation, the mean fiber directionM maps intoFM in the deformed configu-

ration, and we use the notationm = FM to represent this. In general,m is neither a unit vector

nor the mean fiber direction in the deformed configuration. Correspondingly, for an arbitrary

fiber we adopt the notationn defined byn = FN. Next we introduce the angleθ in the current
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configuration, which, for a givenC, is related toΘ andΦ by

cos θ =
m · n
|m||n| =

(C13 cosΦ + C23 sin Φ) sinΘ + C33 cosΘ

C
1/2
33 |n|

(11)

since|m| = C
1/2
33 . The GST model uses a generalized structure tensor, as defined in Eq. (4). For

the case in which the dispersion is rotationally symmetric about a mean directionM , following

[4], the generalized structure tensor has the formH = κI + (1− 3κ)M ⊗M , and the (constant)

dispersion parameter is defined by [4]

κ =
1

4

π
∫

0

ρ(Θ) sin3ΘdΘ, (12)

whereρ(Θ) is the fiber orientation density, rotationally symmetric about the mean fiber direc-

tion. It satisfies the normalization condition

1

2

π
∫

0

ρ(Θ) sinΘdΘ = 1 (13)

and enjoys the symmetry properties

ρ(π +Θ) = ρ(π −Θ) = ρ(Θ). (14)

A generalized invariant denotedI⋆4 associated withH is

I⋆4 = tr(HC) = κI1 + (1− 3κ)I4, (15)

where

I1 = trC, I4 = M · (CM). (16)

We emphasize that (12) includesall the fibers in the dispersion whether they are in tension

or compression. If we wish to exclude compressed fibers then an appropriate range of angles

needs to be omitted from the integral in (12). Towards this goal we define a modified dispersion

parameter, denotedκ1(Θ), by

κ1(Θ) =
1

4

Θ
∫

0

ρ(ξ) sin3 ξdξ +
1

4

π
∫

π−Θ

ρ(ξ) sin3 ξdξ, (17)

whereΘ ∈ [0, π/2]. The combination of integrals in (17) is appropriate for thecase in which

the mean fiber direction is extended, i.e.(CM) · M > 1. However, because of the symmetry

properties (14) the two integrals are the same and hence (17)simplifies to

κ1(Θ) =
1

2

Θ
∫

0

ρ(ξ) sin3 ξdξ. (18)
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Figure 2: Typical plot ofκ1 vsΘ contained in[0, π/2]. For0 ≤ Θ ≤ Θ0 the curve is determined

by (18), while forΘ0 ≤ Θ ≤ π/2, κ1(Θ) = κ1(Θ0), which we denote bȳκ.

In particular, ifΘ = Θ0, which corresponds to the boundary of the cone shown in Fig. 1,

then by (9) withΘ replaced byΘ0 it is clear thatΘ0 depends onΦ andC. Thenκ1(Θ0) is the

dispersion parameter appropriate for the case in which the compressed fibers are excluded, and

in this caseκ1(Θ0) can be obtained from (12) by settingρ(Θ) = 0 for Θ0 ≤ Θ ≤ π − Θ0.

To illustrate its behavior a typical plot ofκ1(Θ) is shown in Fig. 2 forΘ between0 andπ/2.

This shows thatκ1(Θ) increases monotonically from0 to Θ0 and has the valueκ1(Θ0) for Θ

betweenΘ0 andπ/2. From (18) it follows that

κ′1(Θ) =
1

2
ρ(Θ) sin3Θ (19)

at any point whereρ is continuous but since we have setρ(Θ0) = 0, κ′1 is discontinuous at

Θ = Θ0, with κ′1(Θ) = 0 for Θ+
0 ≤ Θ ≤ π/2.

For convenience we now denoteκ1(Θ0) by κ̄ and consider the material to be incompressible

with an energy functionΨ(I1, I4, κ̄). Sinceκ′1(Θ
+
0 ) = 0 it follows that κ̄ is stationary with

respect toC, and hence the second Piola–Kirchhoff stress tensorS is given by

S= 2
∂Ψ

∂C
= 2ψ1I + 2ψ4M ⊗ M − pC−1, (20)

where the abbreviationsψ1 = ∂Ψ/∂I1 andψ4 = ∂Ψ/∂I4 have been used, andp is the Lagrange

multiplier associated with the constraintdetC = 1. Thus, while its derivative with respect toC

does not appear in (20),κ̄ = κ1(Θ0) does depend onC and is incorporated in the expression for

S in exactly the same way as if it were a constant. For example, with a typical energy function

of the form

Ψ = Ψiso(I1) + Ψf(I
⋆
4 ), (21)
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we obtain the stress relation

S= 2Ψ′

iso(I1)I + 2Ψ′

f(I
⋆
4 )H − pC−1, (22)

whereΨiso(I1) represents the isotropic contribution related to the non-collagenous matrix ma-

terial andΨf(I
⋆
4 ) is the contribution of the energy stored in the collagen fibers. In addition,I⋆4 is

now given byI⋆4 = κ̄I1+(1−3κ̄)I4, which is Eq. (15)2 with κ replaced bȳκ, and we emphasize

thatH = κ̄I + (1− 3κ̄)M ⊗ M now involvesκ̄ rather thanκ.

If we consider the model adopted in [4] then, for a single family of fibers, we have

Ψiso(I1) =
µ

2
(I1 − 3), Ψf(I

⋆
4 ) =

k1
2k2

{

exp
[

k2(I
⋆
4 − 1)2

]

− 1
}

, (23)

whereµ andk1 are parameters with dimensions of stress andk2 is a dimensionless parameter.

Hence, from (22), the second Piola–Kirchhoff stress tensorbecomes

S= µI + 2k1(I
⋆
4 − 1) exp

[

k2(I
⋆
4 − 1)2

]

H − pC−1. (24)

Similarly, if the mean fiber direction is not extended(CM) · M ≤ 1 then(CN) · N > 1 for

Θ ∈ (Θ0, π −Θ0), and in this case we define

κ2(Θ0) =
1

4

π−Θ0
∫

Θ0

ρ(Θ) sin3ΘdΘ, (25)

which is complementary toκ1(Θ0) and can be obtained from (12) by settingρ(Θ) = 0 for

Θ ∈ [0,Θ0] ∪ [π −Θ0, π]. Note that

κ1(Θ0) + κ2(Θ0) = κ. (26)

2.1 Example: Simple Tension

As a first example we consider a uniaxial stretchλ ≥ 1 in the directionM = E3 with a

dispersion that is rotationally symmetric aboutM . Then, by symmetry, the lateral stretches

λ2 = λ3 areλ−1/2, and the components ofF are diag[λ, λ−1/2, λ−1/2], so that Eq. (11) reduces

to

cos θ =
λ cosΘ

√

λ2 cos2Θ+ λ−1 sin2Θ
. (27)

Note, in particular, that on the boundary of the cone Eq. (8) reduces to

I4 = λ2 cos2Θ+ λ−1 sin2Θ = 1, (28)
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which, forλ 6= 1, can be rearranged withΘ = Θ0 as

tanΘ0 =
√

λ(λ+ 1). (29)

It follows thatcos θ0 = λ cosΘ0, whereθ0 is the valueθ obtained from (27) when (28) holds. If

0 ≤ Θ < Θ0 andπ −Θ0 < Θ ≤ π then the fibers are extended. Thus, asλ increases more and

more fibers are recruited into extension, andΘ0 becomes larger and approachesπ/2, while θ0
tends to zero.

We now consider the energy functionΨ⋆(I1, I
⋆
4 ) = Ψ(I1, I4, κ̄) with κ̄ = κ1(Θ0). Then the

Cauchy stress tensorσ = FSFT is given by

σ = 2ψ⋆
1B + 2ψ⋆

4h − pI , (30)

whereψ⋆
1 = ∂Ψ⋆/∂I1 andψ⋆

4 = ∂Ψ⋆/∂I⋆4 and

h = κ̄B + (1− 3κ̄)m ⊗ m, I⋆4 = κ̄I1 + (1− 3κ̄)I4 = λ2 − 2κ̄(λ2 − λ−1), (31)

h = FHFT being the spatial generalized structure tensor. For the model (23) we have

ψ⋆
1 = µ/2, ψ⋆

4 = k1(I
⋆
4 − 1) exp[k2(I

⋆
4 − 1)2]. (32)

For simple tension letσ be the component of the Cauchy stress in the direction of stretch.

Then, by specializing (30), we obtain

σ = µλ2 + 2k1(I
⋆
4 − 1) exp[k2(I

⋆
4 − 1)2][κ̄λ2 + (1− 3κ̄)λ2]− p, (33)

0 = µλ−1 + 2k1(I
⋆
4 − 1) exp[k2(I

⋆
4 − 1)2]κ̄λ−1 − p, (34)

and hence, on elimination ofp,

σ = µ(λ2 − λ−1) + 2k1[λ
2 − 1− 2κ̄(λ2 − λ−1)](λ2 − 2κ̄λ2 − κ̄λ−1)

× exp
{

k2[λ
2 − 1− 2κ̄(λ2 − λ−1)]2

}

. (35)

We emphasize here thatκ̄ = κ1(Θ0) depends onλ via (29).

In order to compare the behavior of the model where compressed fibers are excluded with

the model where they are not excluded, i.e. with a constantκ, we adopt the von Mises distribu-

tion used in [4]. This is given by

ρ(Θ) = 4

√

b

2π

exp(2b cos2Θ)

erfi(
√
2b)

, (36)
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Figure 3: Uniaxial Cauchy stressσ against the corresponding stretchλ for the four valuesb =

0, 0.5, 1.5, 3 (corresponding toκ = 1/3, 0.285, 0.187, 0.096) and fork1/µ = 5 andk2 = 0.01.

whereerfi is the imaginary error function andb is the concentration parameter. In fact, a specific

formula can be obtained forκ by using (36) in the definition (12) with the help of Mathematica

[14]. This is

κ =
1

2
+

1

8b
− 1

4

√

2

πb

exp(2b)

erfi(
√
2b)

, (37)

as given in [15], and it can also be obtained from the formula for the out-of-plane dispersion

parameterκop given in equation (2.28) of [5] by replacingb by−b.
We now consider the energy functionΨ specified in (23) and usek1/µ = 5 and k2 =

0.01, and the values ofb = 0, 0.5, 1.5, 3 which correspond toκ = 1/3, 0.285, 0.187, 0.096,

respectively. Figure 3 shows plots of the uniaxial Cauchy stressσ versus the corresponding

stretchλ based on (35) for the four values ofb. The solid curves refer to the model described

here while the dashed curves correspond to the case with no fibers excluded and constantκ. As

can be seen, as the value ofb increases a smaller and smaller proportion of fibers are compressed

and hence the difference between the two models decreases; most of the fibers are then aligned

with the direction of tension, and the response is stiffest,and if b → ∞, then the curves are

identical. For smaller values ofb and hence more dispersion there is a significant difference

between the two models, and in each case the response is stiffest for the new model. This can

be seen from the analytical expression (35) sinceκ̄ is smaller thanκ. As can be seen from Fig. 3

the continuous curve forb = 0.5 crosses over that forb = 1.5. This is because forb = 0.5, κ̄
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Figure 4: Evolution ofΘ0 andθ0 with stretchλ. Coneθ0 = 0.32, 0.184, 0.142 rad of stretched

fibers in the deformed configuration for three representative valuesλ = 10, 30, 50.

grows faster withλ initially than for b = 1.5.

Figure 4 shows the evolution ofΘ0 andθ0 with stretchλ. As can be seen from the plots the

cone of stretched fibers in the deformed configuration is shown for three representative values

of λ (10, 30, 50), and we note that the angle of the cone decreases as the valueof λ increases

(for λ = 10, 30, 50, θ0 = 0.32, 0.184, 0.142 rad, respectively). The corresponding cones for

the fibers in the reference configuration which are stretchedin the deformed configuration are

not shown, but we record that the angles for these cones increase withλ (for λ = 10, 30, 50,

Θ0 = 1.476, 1.538, 1.551 rad, respectively).

2.2 Example: Simple Shear in the(1, 2)-plane

For the second example we consider simple shear in theE1-direction in the(E1,E2)-plane, with

dispersed fibers lying in this plane. The components of the deformation gradient and the right

Cauchy–Green tensors are

[F] =









1 γ 0

0 1 0

0 0 1









, [C] =









1 γ 0

γ 1 + γ2 0

0 0 1









, (38)
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b

Θ0

Figure 5: Depiction of the region in the(1, 2) space traced out by the unit vectorN in (39)

for 0 ≤ Θ ≤ 2π. Within the half-circle−π/2 ≤ Θ ≤ π/2 the shaded regions−π/2 ≤ Θ <

−(π − Θ0) and0 < Θ ≤ π/2 are defined by(CN) · N > 1. The angleΘ0 satisfies (43) and

ranges fromπ/2 for γ = 0 to π for γ → ∞.

respectively, whereγ ≥ 0 is the amount of shear, and we take an arbitrary fiber direction N to

have the form

N = cosΘE1 + sinΘE2 (39)

within a dispersion in the(1, 2)-plane which has mean fiber directionM in that plane given by

M = cosΘME1 + sinΘME2. (40)

Then

(CN) · N = 1 + γ sinΘ(γ sin Θ + 2 cosΘ). (41)

Sinceγ ≥ 0, it follows that (CN) · N = 1 for γ = 0 or Θ = 0 and, providedΘ 6= 0,

(CN) · N > 1 for

sin Θ(γ sin Θ + 2 cosΘ) > 0. (42)

Moreover,(CN) · N = 1 for Θ = Θ0 given by

tanΘ0 = −2

γ
. (43)

If we restrict the attention to the range of valuesΘ ∈ [−π/2, π/2], then(CN) · N > 1 for the

shaded region in Fig. 5, i.e. for−π/2 ≤ Θ < −(π − Θ0) and0 < Θ ≤ π/2. Equivalently,

(CN) · N > 1 for the range0 < Θ < Θ0. Note that this is independent of whether the mean

fiber directionM is compressed or extended.
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Assuming the symmetryρ(Θ+π) = ρ(Θ) for the considered 2D dispersion with orientation

distributionρ(Θ), the normalization condition is

1

π

π/2
∫

−π/2

ρ(Θ)dΘ = 1. (44)

For this case the von Mises distributionρ(Θ) symmetric aboutΘ = 0 is given by

ρ(Θ) =
exp(b cos 2Θ)

I0(b)
, (45)

whereI0 is the modified Bessel function of the first kind of order0. Without omitting any

directions the dispersion parameter is defined by

κ =
1

π

π/2
∫

−π/2

ρ(Θ) sin2ΘdΘ =
1

2

(

1− I1(b)

I0(b)

)

, (46)

whereI1(b) is the modified Bessel function of the first kind of order1. The corresponding

(generalized) structure tensor is

Ĥ = κÎ + (1− 2κ)M ⊗ M (47)

with M = E1, where the hat indicates restriction in the(1, 2) plane. For a general mean fiber

directionM , given in (40), the structure tensor again has the form (47).

Similarly to the three-dimensional case we defineκ1(Θ) according to

κ1(Θ) =
1

π

−(π−Θ)
∫

−π/2

ρ(ξ) sin2 ξdξ +
1

π

π/2
∫

0

ρ(ξ) sin2 ξdξ. (48)

Equivalently, because of the symmetry ofρ, this can be expressed as

κ1(Θ) =
1

π

Θ
∫

0

ρ(ξ) sin2 ξdξ, (49)

with Θ ∈ [0, π], and hence

κ′1(Θ) =
1

π
ρ(Θ) sin2(Θ). (50)

Similarly to the three-dimensional case Eq. (49) can be obtained by settingρ(Θ) = 0 for Θ ∈
[Θ0, π], soρ(Θ0) = 0 and henceκ′1(Θ) = 0 for Θ0 ≤ Θ ≤ π.

14



D
is

pe
rs

io
n

pa
ra

m
et

er̄κ

b = 0

b = 0.5

b = 1

b = 2

b = 10

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1.0 1.5 2.0

Amount of shearγ

Figure 6: Example for simple shear showing the dependence of the dispersion parameter̄κ =

κ1(Θ0) on the amount of shearγ for different values of the concentration parameterb, when

compressed fibers are excluded.

As in the three-dimensional case we use the notationκ̄ = κ1(Θ0). Representative plots of

κ̄ = κ1(Θ0) as a function ofγ for different values of the concentration parameterb are shown

in Fig. 6 based on Eq. (49) withΘ = Θ0 given by (43).

Consider again the modelΨ⋆(I1, I
⋆
4 ) but now with the restriction to plane strain. Then,

similarly to the three-dimensional case, the two-dimensional Cauchy stress is obtained as the

specialization of (30), written as

σ̂ = 2ψ⋆
1B̂ + 2ψ⋆

4 ĥ − pÎ , (51)

where a hat again signifies the restriction to two dimensions, so that̂h = κ̄B̂+ (1− 2κ̄)m⊗m.

For simple shear we have

[m] = [F][M ] =









M1 + γM2

M2

0









, [B] =









1 + γ2 γ 0

γ 1 0

0 0 1









, (52)

where[M ] = [M1,M2, 0] = [cosΘM, sinΘM, 0], and

Î1 = trB̂ = 2 + γ2, Î⋆4 = κ̄(2 + γ2) + (1− 2κ̄)(1 + 2γM1M2 + γ2M2
2 ). (53)

For the considered plane strain the strain-energy function(23) takes on the form

Ψ =
µ

2
(Î1 − 2) +

k1
2k2

{

exp
[

k2(Î
⋆
4 − 1)2

]

− 1
}

, (54)
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and the in-plane Cauchy stress components are derived as

σ̂11 = µ(1 + γ2) + 2ψ⋆
4[κ̄(1 + γ2) + (1− 2κ̄)(M1 + γM2)

2]− p, (55)

σ̂22 = µ+ 2ψ⋆
4[κ̄+ (1− 2κ̄)M2

2 ]− p, (56)

σ̂12 = µγ + 2ψ⋆
4[κ̄γ + (1− 2κ̄)(M1 + γM2)M2]. (57)

Of particular interest is the dependence of the shear stressσ̂12 on the amount of shearγ, and

henceforth we focus on this relationship. First, however, we note that for a general direction

(39) we havêI4 = 1 + γ sin 2Θ + γ2 sin2Θ, which has its maximum value atΘ = Θmax given

by

tan(2Θmax) = −2

γ
, (58)

an equation which should be compared with (43). It follows thatΘmax = Θ0/2 and this ranges

from π/4 at γ = 0 to π/2 asγ → ∞. Thus, the direction in which the stretch is largest is

close toΘ = π/4 for moderate values ofγ and this has a strong influence on the stiffness of

the shear response. In particular, for the rangeγ ∈ [0, 2] considered in the subsequent examples

Θmax ∈ [π/4, 3π/8].

The following four illustrative examples are now considered.

Example 1:ΘM = 0, Î⋆4 − 1 = κ̄γ2, with

σ̂12 = µγ + 2k1κ̄
2γ3 exp(k2κ̄

2γ4). (59)

Example 2:ΘM = π/4, Î⋆4 − 1 = γ + 1
2
γ2 − 2κ̄γ, with

σ̂12 = µγ + k1(I
⋆
4 − 1) exp[k2(I

⋆
4 − 1)2](γ + 1− 2κ̄). (60)

Example 3:ΘM = π/2, Î⋆4 − 1 = (1− κ̄)γ2, with

σ̂12 = µγ + 2k1(1− κ̄)2γ3 exp[k2(1− κ̄)2γ4]. (61)

Example 4:ΘM = 3π/4, Î⋆4 − 1 = −γ + 1
2
γ2 + 2κ̄γ, with

σ̂12 = µγ + k1(Î
⋆
4 − 1) exp[k2(Î

⋆
4 − 1)2](γ − 1 + 2κ̄). (62)

We now compare the shear stressσ̂12 versus the amount of shearγ behavior for the model

in which compressed fibers are omitted with that in which all fibers are included for these four

representative examples. The results are shown in Fig. 7 forb = 0.1, 1, 10, which correspond

to κ = 0.475, 0.277, 0.026, respectively. We choosek1/µ = 5 andk2 = 0.01 and take these
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Figure 7: Shear stresŝσ12 versus amount of shearγ for both the excluded fiber model (contin-

uous curves) and the ‘all fiber’ model (dashed curves) forΘM = 0, π/4, π/2, 3π/4: (a) b = 0.1

(κ = 0.475); (b) b = 1 (κ = 0.277); (c) b = 10 (κ = 0.026). For each casek1/µ = 5 and

k2 = 0.01.
17



values for purposes of illustration but the qualitative nature of the plots is very similar for other

values.

First, forb = 10, we note that there is no essential difference between the plots with or with-

out compressed fibers excluded (and the slight difference disappears altogether asb becomes

larger and larger). This is because there is very little dispersion and the fibers are concentrated

close to the mean fiber direction. ForΘM = 3π/4, in particular, we note that the mean fiber

direction is outside the range of integration for small values ofγ so that the fibers do not con-

tribute to the strain energy or stress initially, which is supported only by the isotropic term. As

γ increases the fiber contribution to the stress is slightly negative for a small range of values of

γ and leads to a maximum in the shear stress versus amount of shear behavior. Thereafter the

fiber contribution becomes positive and increases rapidly with γ > 2 (not shown). Note that for

ΘM = 0 the stress is relatively small since for simple shear there is no stretch in the direction

of shear. On the other hand, forΘM = π/4 andΘM = π/2, which are close to the direction of

maximum stretch, the stress is much larger.

The pattern is similar forb = 1 in respect of the stress magnitudes although they are larger

for ΘM = 0 andΘM = 3π/4 because of the dispersion and there is a difference between the

two models. For these two angles the ‘all fiber’ model has a higher stress than the excluded

fiber model, but forΘM = π/4 andΘM = π/2 it is the other way around. And the situation for

b = 0.1 is similar to that forb = 1 except that the stiffnesses for all four mean fiber directions

are very similar, because this is very close to the isotropicsituation. These differences can be

seen in the Eqs. (59)–(62) since for Examples 1 and 4 theκ̄ terms are positive, while in the

Examples 2 and 3 they are negative. Thus, in contrast to uniaxial extension, for which the

excluded fiber model gives a stiffer response than the all fiber model, in simple shear the stress

can be either stiffer or softer depending on the mean fiber direction.

3 Some comparisons with the AI model

We now compare the GST model with the AI model due to Lanir [3] but without excluding

compressed fibers. For the AI model the energy function is an integral of the form

n

∫

Ω

ρ(Θ,Φ)w(λ) sinΘ dΘdΦ, (63)

whereΩ is the unit sphere{(Θ,Φ) |Θ ∈ [0, π], Φ ∈ [0, 2π]}, the orientation densityρ depends

onΘ andΦ in general, as doesλ, which is defined as
√
I4, whereI4 = N · (CN), with N given

by (7), for a general Cauchy–Green tensorC, andw(λ) is the strain energy of an individual
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fiber in the directionN. Note that (63) does not include an isotropic term associated with the

non-collagenous matrix material.

For purposes of comparison we include a neo-Hookean isotropic term and characterize the

AI model by the strain-energy functionΨAI as

ΨAI =
1

2
µ(I1 − 3) + n

∫

Ω

ρ(Θ,Φ)w(λ) sinΘ dΘdΦ. (64)

The corresponding GST model has the form of (21) and (23), which we now write as

ΨGST =
1

2
µ(I1 − 3) + Ψf(I

⋆
4 ), (65)

whereΨf represents the strain energy of the dispersed fibers, and, for a rotationally symmetric

dispersion,I⋆4 is given by (15). Assuming that no energy or stress is associated with the fibers

in the reference configuration, we have

w(1) = w′(1) = 0, Ψf(1) = Ψ′

f(1) = 0. (66)

In the paper [7] it was attempted to compare the predictions of the above GST model with

the AI model having the same exponential forms (5) and (6) andthe same material constants

c1 = k1 andc2 = k2. The associated Cauchy stress relations are

σAI = µB + 2nc1

∫

Ω

ρ(Θ,Φ)(I4 − 1) exp[c2(I4 − 1)2]n ⊗ n sin Θ dΘdΦ− pI (67)

and

σGST = µB + 2k1(I
⋆
4 − 1) exp[k2(I

⋆
4 − 1)2][κB + (1− 3κ)m ⊗ m]− pI , (68)

where we recall thatn = FN andm = FM .

We now elaborate on this particular point by considering thecase of small strains. The

Green–Lagrange strain tensorE is defined byE = (C − I)/2, so thatI1 = 3 + 2trE and

I4 = 1 + 2N · (EN). These expressions for the invariants are exact but when we expandw(λ)

andΨf(I
⋆
4 ) to the second order inE we obtain

w(λ) ≈ 1

2
(N · EN)2w′′(1), Ψf(I

⋆
4 ) ≈ 2Ψ′′

f (1)(1− 3κ)2[M · (EM)]2, (69)

where the properties (66) have been used. By substituting these approximations into (64) and

(65) we obtain

ΨAI = µtrE +
n

2
w′′(1)

∫

Ω

ρ(Θ,Φ)[N · (EN)]2 sinΘ dΘdΦ, (70)

and

ΨGST = µtrE + 2Ψ′′

f (1)(1− 3κ)2[M · (EM)]2, (71)
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respectively. Note that, since we are considering incompressible materials, expansion of the

incompressibility conditiondetC = 1 to the second order gives trE = tr(E2), which can be

used in (70) and (71). The corresponding linearized Cauchy stresses are deduced from (70) and

(71) according to

σAI = 2µE + nw′′(1)

∫

Ω

ρ(Θ,Φ)[N · (EN)]N ⊗ N sinΘ dΘdΦ− pI (72)

and

σGST = 2µE + 4Ψ′′

f (1)(1− 3κ)2[M · (EM )]M ⊗ M − pI , (73)

respectively.

For definiteness we now consider a uniaxial strain with componentε in the directionM =

E3, with Θ measured fromE3 and withρ independent ofΦ. Then, the dispersion is rotationally

symmetric aboutE3 and, by symmetry and the incompressibility condition, the lateral strains

are, to the first order, each equal to−ε/2. By using the definition (7) andM = E3 it follows

thatM · (EM) = ε andN · (EN) = (3 cos2Θ−1)ε/2. The corresponding uniaxial stresses after

elimination ofp are obtained as

σAI = 3µε+
nπ

2
w′′(1)f(b)ε, σGST = 3µε+ 4Ψ′′

f (1)(1− 3κ)2ε, (74)

where

f(b) =

∫ π

0

ρ(Θ)(3 cos2Θ− 1)2 sin Θ dΘ, (75)

has been introduced, which, on use of Mathematica [14], can be integrated to give

f(b) = 2 +
27

8b2
+

3

b
+

3

2b2

√

b

2π

(4b− 9) exp(2b)

erfi(
√
2b)

, (76)

and then, on use of (37), this can be simplified to

f(b) = 4 + (1− 3κ)(4− 9b−1). (77)

If the two models are to predict the same stress then from (74)we must have

nπw′′(1)f(b) = 8(1− 3κ)2Ψ′′

f (1). (78)

For the exponential model used in (23) we obtainΨ′′

f (1) = k1. If we use the exponential model

in Eq. (5) we obtainw′′(1) = 4c1, and hence the constantsc1 andk1 must be related by

nπc1[4 + (1− 3κ)(4− 9b−1)] = 2k1(1− 3κ)2. (79)
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In the paper [7] the exponential model withk1 = c1 was adopted for the GST and AI models

in order to compare the predictions of the models for severalmodes of deformation for a range

of values ofκ. In view of the formula (37), the above relation would then give two equations

relatingb andκ. The only solutions of these simultaneous equations areκ = 0 andκ = 1/3,

as can easily be verified, so the use of the same exponential models with the same material

constants for other values ofκ in [7] is inappropriate, and the resulting comparisons between the

predictions of the GST and the AI models are therefore misleading. Moreover, for each different

deformation considered a formula relatingc1 andk1 different from (79) would be obtained. This

means that even in the small deformation range the two modelsare not equivalent.

Thus, to compare the predictions of the two models, for each separateκ (or equivalently

b) in uniaxial extension, for example, and for a givenk1 the formula (79) needs to be used

to obtainc1 for eachb separately for the corresponding AI model. To illustrate the point the

plots in Fig. 8 provide comparisons of the predictions of thetwo models for several values of

b for both simple tension and simple shear. For this purpose itsuffices to takec2 = k2 for all

the considered values ofb. The continuous curves correspond to the AI model and the dashed

curves to the GST model. The parameter values have been set sothat the continuous and dashed

curves can be seen separately but by refining these parameters it is possible to arrange for the

plots to be indistinguishable. It is quite clear that the predictions of the two models essentially

coincide. Note that in Case A, where there is very little dispersion,c1 = k1. In Case B, where

there is more dispersion,c1 andk1 are slightly different, while in Case C, where the dispersion

is larger, close to isotropy, the values forc1 andk1 are quite different for both simple extension

and simple shear. Note that for Case C the values ofk1 are different for simple extension and

simple shear because of the role of the mean fiber direction and the different dispersions used

in the two cases. We emphasize that for the plots in Fig. 8 fibers under compression were not

excluded, but similar results can be obtained when compressed fibers are excluded.

4 Summary and Concluding Remarks

In contrast to the claims in the literature that compressed fibers cannot be excluded in the gen-

eralized structure tensor model, in the present paper we have shown that this is not the case

by developing a rather simple and efficient method for excluding fibers under compression for

the GST model. The consequences of this have been illustrated for the cases of simple ten-

sion and simple shear, and the differences between the stress responses under exclusion and

non-exclusion have been highlighted. The theory presentedherein can be used as a basis for a
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Figure 8: AI model (continuous curve) and GST model (dashed curve) forCase A (very little

dispersion), Case B (intermediate dispersion) and Case C (large dispersion, close to isotropy):

(a) simple tension; (b) simple shear forΘM = 60◦. Parameters are for Case A (AI:b = 10,

c1 = 5; GST:κ = 0.026, k1 = 5), Case B (AI:b = 1.5, c1 = 5; GST:κ = 0.15, k1 = 5.2), Case

C (AI: b = 0.1, c1 = 5; GST for (a):κ = 0.26, k1 = 5.7; GST for (b): κ = 0.26, k1 = 4.1),

while for all cases and the two modelsc2 = k2 = 0.01. Note that the factorn in (67) has been

absorbed in the parameterc1.

general implementation into a finite element program in which the dispersion parameter needs

to be evaluated at each Gauss point; details of this will be provided in a subsequent paper. The

present model just constitutes a small extension to the dispersion model developed in [4]. The
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analysis can also be extended to the case of a non-symmetric fiber dispersion involving two

dispersion parameters, as introduced in [5], and will result in two deformation dependent dis-

persion parameters. The GST model has also been used in considering inelastic effects such as

damage in, e.g., [16] and [17]. We emphasize that we have already provided a detailed analysis

of the exclusion of compressed fibers for the AI approach in [10], [11]; however, it seems that

the AI approach has not been implemented in commercially available finite element programs.

In the second part of the present paper we have drawn attention to misleading statements in

the literature concerning the relative values of the two approaches. Unfortunately, statements

which suggest that the AI approach is superior by referring to it as the ‘gold standard’, are

based on erroneous considerations, as we have highlighted at several locations in the preceding

sections. Indeed we have shown that both models have equivalent predictive power in two

examples for which the study [7] and subsequent studies haveindicated significant differences

which are referred to as ‘errors’ therein. As the above examples demonstrate, careful analysis

of the literature is needed, and one should not just accept that what is published is correct.
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