Czechoslovak Mathematical Journal

Ján Jakubík

On filters of ordered semigroups

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 3, 519-522

Persistent URL:
http://dml.cz/dmlcz/128415

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON FILTERS OF ORDERED SEMIGROUPS

Ján Jakubík, Košice ${ }^{1}$

(Received January 8, 1992)

In the present paper we deal with a problem concerning filters of ordered semigroups which has been proposed by N. Kehayopolu [2].

1. Preliminaries

Let S be an ordered (= partially ordered) semigroup (cf. [1]). We recall two definitions from [2].
1.1. Definition. A nonempty subset F of S is said to be a filter of S if it satisfies the following conditions:
(i) Whenever $s_{i} \in S(i=1,2)$ and $s_{1}, s_{2} \in F$, then both s_{1} and s_{2} belong to F.
(ii) If $f \in F, s \in S$ and $f \leqslant s$, then $s \in F$.
1.2. Definition. An equivalence relation σ on S is called a semilattice congruence if the following conditions are satisfied:
(i) Whenever $(a, b) \in \sigma$ and $c \in S$, then $(a c, b c) \in \sigma$ and $(c a, c b) \in \sigma$.
(ii) For each $a, b \in S$ the relations $\left(a, a^{2}\right) \in \sigma$ and $(a b, b a) \in \sigma$ are valid.

For each $a \in S$ we denote by $F(a)$ the filter in S which is generated by the element a. Next, we put

$$
\mathcal{N}=\{(x, y): x, y \in S \text { and } F(x)=F(y)\}
$$

In [2] the question was proposed whether for each ordered semigroup S the following condition is valid:
(*) If σ is a semilattice congruence on S, then $\mathcal{N} \leqslant \sigma$.
We will show that the answer to this question is negative. Namely, it will be shown that there exists a linearly ordered semigroup which does not satisfy the condition (*).

[^0]The notion of regular semilattice congruence on S will be introduced and it will be proved that S satisfies the condition (*) if and only if the least semilattice congruence on S is regular (or, equivalently, if all semilattice congruences on S are regular).

2. The regularity condition

First let us consider the following example.
2.1. Example. Let S be the multiplicative semigroup of all non-negative integers. Let \leqslant be the natural linear order on S; next, let \leqslant^{d} be the linear order on S which is dual to S. Put $S^{d}=\left(S, ., \leqslant^{d}\right)$; then S^{d} is a linearly ordered semigroup. If F is a filter on S^{d}, then $F=S$. Thus $\mathcal{N}=S \times S$. Let σ be the system of all ordered pairs (x, y) of elements of S such that either $x=0=y$ or $x \neq 0 \neq y$. Then σ is a semilattice congruence on S^{d} and $\sigma<\mathcal{N}$. Therefore S^{d} does not satisfy the condition (*).

Again, let S be an ordered semigroup. We denote by \mathcal{S} the set of all semilattice congruences on S. Let σ be a fixed element of \mathcal{S} and $a \in S$. We put $\bar{a}(\sigma)=\{x \in S$: $(x, a) \in \sigma\}$; if no misunderstanding can occur, then we write \bar{a} instead of $\bar{a}(\sigma)$. The symbol S / σ denotes, as usual, the semigroup $\{\bar{a}: a \in S\}$ with the multiplication $\overline{a_{1}} \cdot \overline{a_{2}}=\overline{a_{1} a_{2}}$.
2.2. Definition. A semilattice congruence σ on S will be said to be regular if, whenever $x, y \in S$ and $x \leqslant y$, then $\bar{x}=\overline{x y}$.
2.3. Example. Let S^{d} be as in 2.1. For positive integers x and y write $x \mid y$ if y is divisible by x; in the opposite case we write $\left.x\right|^{\prime} y$. For $a_{1}, a_{2} \in S$ we put (a_{1}, a_{2}) $\in \sigma$ if some of the following conditions is satisfied:
(i) $a_{1}=a_{2}=0$;
(ii) $a_{1} \neq 0 \neq a_{2}$ and whenever p is a positive prime, then either $p \mid a_{i}$ for $i=1,2$, or $\left.p\right|^{\prime} a_{i}$ for $i=1,2$.

Then σ si a semilattice congruence on S^{d} which fails to be regular.
The set \mathcal{S} is partially ordered in the obvious way; then \mathcal{S} is a complete lattice. We denote by σ_{0} the least element of \mathcal{S}.
2.4. Example. Let S^{d} and σ be as in 2.3. Then $\sigma=\sigma_{0}$.

The following assertion is easy to verify.
2.5. Lemma. σ_{0} is regular if and only if all elements of \mathcal{S} are regular.
2.6. Definition. (Cf. [2].) Let $\emptyset \neq I \subseteq S$. Assume that the following conditions are satisfied:
(i) $S I \subseteq I$ and $I S \subseteq I$.
(ii) If $a \in I, b \in S$ and $b \leqslant a$, then $b \in I$.
(iii) If $a, b \in S$ and $a b \in I$, then either $a \in I$ or $b \in I$.

Under these conditions I is said to be a prime ideal of S.
Let $T(S)$ be the set of all prime ideals of S. For each $I \in T(S)$ we put

$$
\sigma_{I}=\{(x, y) \in S \times S: \text { either } x, y \in I \text { or } x, y \notin I\}
$$

2.7. Proposition. (Cf. [2].) For each $I \in T(S), \sigma_{I}$ is a semilattice congruence on S. Next, \mathcal{N} is a semilattice congruence on S and

$$
\mathcal{N}=\bigcap_{I \in T(S)} \sigma_{I}
$$

2.8. Lemma. Let $I \in T(S)$. Then σ_{I} is a regular semilattice congruence.

Proof. In view of $2.7, \sigma_{I}$ is a semilatice congruence. For $x \in S$ we denote $\bar{x}\left(\sigma_{I}\right)=\bar{x}$.

Let $x, y \in S, x \leqslant y$. If $\bar{x}=\bar{y}$; then (since σ_{I} is a semilattice congruence) the relation $\bar{x}=\overline{x y}$ holds.

Asume that $\bar{x} \neq \bar{y}$. Hence $\{x, y\}$ fails to be a subset of I and $\{x, y\} \cap I \neq \emptyset$. If $y \in I$, then x belongs to I as well, which is a contradiction. Hence $x \in I$ and so $x y \in I$; therefore $\bar{x}=I=\overline{x y}$.

Let S_{2} be a two-element semilattice $\{0,1\}$ with $0 \wedge 1=0$; we view S_{2} as a semigroup where the multiplication coincides with the operation \wedge.
2.9. Lemma. Assume that σ_{0} is regular. Then the condition (*) is satisfied.

Proof. Put $S / \sigma_{0}=\bar{S}$. From the fact that σ_{0} is an element of \mathcal{S} we infer that \bar{S} is a semilattice.

If card $\bar{S}=1$, then the condition (*) obviously holds. Suppose that $\operatorname{card} \bar{S}>1$. Then \bar{S} is a subdirect product of semigroups S_{j}, where j runs over an appropriately chosen set J, and for each $j \in J, S_{j}$ is isomorphic to S_{2}. For $\bar{x} \in \bar{S}$ and $j \in J$ we denote by $\bar{x}(j)$ the component of \bar{x} in S_{j}.

Let $j \in J$; we put

$$
\begin{aligned}
& A_{j}=\{\bar{x} \in \bar{S}: \bar{x}(j)=0\}, \quad B_{j}=\{\bar{x} \in \bar{S}: \bar{x}(j)=1\}, \\
& \overline{\sigma_{j}}=\left\{(\bar{x}, \bar{y}) \in \bar{S} \times \bar{S}: \bar{x}, \bar{y} \in A_{j} \quad \text { or } \quad \bar{x}, \bar{y} \notin A_{j}\right\} .
\end{aligned}
$$

In view of the subdirect decomposition of \bar{S} under consideration we infer that

$$
\bigcap_{j \in J} \bar{\sigma}_{j}=\bar{\sigma}_{\min } 1
$$

holds, where $\bar{\sigma}_{\min }$ is the minimal equivalence on \bar{S}.

For $j \in J$ we denote

$$
A_{j}^{\prime}=\left\{x \in S: \bar{x} \in A_{j}\right\}, \quad B_{j}^{\prime}=\left\{x \in S: \bar{x} \in B_{j}\right\}
$$

Then A_{j}^{\prime} is a nonempty subset of S and it satisfies the conditions (i), (iii) of 2.6. Let $a \in A_{j}^{\prime}, b \in S$ and $b \leqslant a$. Since σ_{0} is regular, we obtain $\bar{b}=\bar{a} \bar{b}$. Further we have $\bar{a} \in A_{j}$ and hence $\bar{a} \bar{b} \in A_{j}$. Therefore $\bar{b} \in A_{j}$ and so $b \in A_{j}^{\prime}$. Thus the condition (ii) from 2.6 holds as well; we have verified that A_{j}^{\prime} is an ideal of S. By similar steps we can verify that B_{j}^{\prime} is a filter of S. Clearly $B_{j}^{\prime}=S \backslash A_{j}^{\prime}$.

Put $\sigma_{j}=\sigma_{I}$, where $I=A_{j}^{\prime}$. In view of (1) we get

$$
\bigcap_{j \in J} \sigma_{j}=\sigma_{0}
$$

This yields that

$$
\bigcap_{I \in T(S)} \sigma_{I}=\sigma_{0} .2
$$

Thus by virtue of 2.7 the condition (*) is satisfied.
2.10. Lemma. Assume that the condition (*) is satisfied. Then σ_{0} is regular.

Proof. Since (*) holds, in view of 2.7 the relation (2) is valid. For $x \in S$ and $I \in T(S)$ we put $\bar{x}^{I}=\left\{y \in S:(x, y) \in \sigma_{I}\right\}$.

Let $x, y \in S$ such that $x \leqslant y$. Then according to $2.8, \bar{x}^{I}=\bar{x}^{I} \bar{y}^{I}=\overline{x y}^{I}$. By applying (2) we obtain $\bar{x}=\overline{x y}$ (these symbols concern the semilattice congruence σ_{0}), whence σ_{0} is regular.
2.11. Theorem. Let S be an ordered semigroup. Then the condition (*) holds if and only if the least semilattice congruence on S is regular (or, equivalently, if all semilattice congruences are regular).

Proof. This is a consequence of 2.9, 2.10 and 2.5.
The author is indebted to the referee for pointing out that 2.11 is related to a result of M. Petrich [3].

References

[1] L. Fuchs: Partially ordered algebraic systems, Oxford-London-New York-Paris, 1963.
[2] N. Kahayopulu: Remark on ordered semigroups, Math. Japonica 35 (1990), no. 6, 1061-1063.
[3] M. Petrich: The maximal semilattice decomposition of a semigroup, Math. Zeit. 85 (1964), 68-82.

Author's address: Matematický ústav SAV, dislokované pracovisko, Grešákova 6, 04001 Košice, Slovakia.

[^0]: ${ }^{1}$ Supported by Girant GA SAV 362/91

