
On Finding Duplication and Near-Duplicat ion

in Large Software Systems

Brenda S. Baker

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hill, NJ 07974
bsbQresearch. a t t . com

Abstract

This paper describes how a program called dup
can be used to locate instances of duplication or near-
duplication in a software system. D u p reports both

textually identical sections of code and sections that
are the same textually except for systematic substitu-
tion of one set of variable names and constants for
another. Further processing locates longer sections of
code that are the same except for other small modi-
fications. Experimental results from running dup on
millions of lines from two large software systems show

dup to be both effective at locating duplication and

fast. Applications could include identifying sections

of code that should be replaced by procedures, elimina-

tion of duplication during reengineering of the system,
redocumentation to include references to copies, and
de bugging.

1 Introduction.
This paper focuses on locating duplication or near-

duplication in a large software system as an aid in

maintenance and reengineering. Duplication can be-

come a problem within large software systems if pro-
grammers make modifications by copying and modi-
fying sections of code. It has long been known that

copying can make the code larger, more complex, and
more difficult to maintain. In particular, when a bug
has been found in one copy, a bug fix may be made in

the copy where the bug was found, but not in the other
copies. Nevertheless, copying and modifying code may
occur for several reasons. First, making a copy and

modifying it may be simpler than more major revi-

sions and therefore less likely to introduce new bugs
immediately, especially when the programmer mak-
ing the bug fixes is not the one who wrote the orig-
inal code. Second, if multiple versions are created,

the interactions between the versions may become in-
tractable as the versions grow apart over time, and
eventually it may seem simpler to maintain some of

the code separately. Third, process management may

encourage duplication, e.g. if evaluation of program-

mers’ performance is based in part on how much new

code they write, so that programmers have little in-

centive to rewrite old code. Fourth, copies may be

required because of the need to avoid the overhead of
a procedure call for efficiency considerations.

This paper addresses the problem of locating ex-
act or near-duplication of code that was created by

copying and modifying code with an editor. When

code is copied and modified via an editor, the types of
changes made may include insertions and deletions of
lines, modifications within lines, and global substitu-

tions. The goal is to find copies that are substantially

the same line by line except for global substitutions,
so that one copy is a variant of the other, rather than

sections of code that have evolved to be mostly differ-
ent. In software reuse terminology, the problem is to
locate instances of ad-hoc black-box or white-box soft-

ware reuse [16] within a software system. Thus, this is

a problem in reverse engineering. Moreover, the sys-

tems to be examined may be legacy systems running
to millions of lines of code.

The approach of this paper is to find maximal sec-

tions of code over a threshold length that are either
exactly the same, or the same except for a global sub-
stitution of names of parameters such as variables and
constants, e.g. all occurrences of x changed to y and
all occurrences of pchar changed to pc. In the for-
mer case, we call the two sections of code an exact
match, and in the latter case, a parameterized match
(p-match). Thus, the approach is text-based and line-

based. Comments and white space are ignored. The
tool to find maximal exact or parameterized matches
is a program called dup. To find longer sections of code

that were copied and then changed locally in the mid-
dle, the exact or parameterized matches can be further
analyzed to locate pairs or sequences of matches that

0-8186-7111-4/95 $4.00 0 1995 IEEE

86

match sections of code separated by small gaps; al-

ternatively, such regions can be found by examining

scatter plots.

An example of a p-match is given in Figure 1, which

contains two code fragments taken from the X: Window

System [18] source code. The fragments are identical

except for the differing indentation (which is ignored

by dup) and the correspondence between the vari-
able names pfi/pfh and the pairs of structure member
names lbearing/left and rbearing/right . These frag-
ments are excerpted from two 34-line sections of code
that are a p-match with these parameter correspon-
dences.

Fragment 1:

copy-number (&pmin, &pmax ,
pfi->min-bounds.lbearing,

pfi->max-bounds.lbeaing);
*pmin++ = *pmax++ = J , J ;

copy-number(&pmin, kpmax,
pfi->min-bounds.rbearing,

pf i->max-bounds .rbearing) ;
*pmin++ = *pmax++ = J , J ;

Fragment 2:

copy-number(&pmin, &pmax,

pfh->min-bounds.left,

pfh->max-bounds.left);
*pmin++ = *pmax++ = J , J ;

copy-number(&pmin, &pmax,
pfh->min-bounds.right,
pfh->max-bounds.right);

*pmin++ = *pmax++ = J , J ;

Figure 1: Two fragments of code from source for the

X Window System.

In addition to finding possibly distant sections of

code that match, dup finds locally repetitive sections
of code where the same short section is repeated im-
mediately with different parameters, typically with
names ending in a number; if an array were used in-

stead of the numbered parameters, the repetitive code

could be replaced by a loop. Such sections coluld have

been generated automatically by a program1 genera-
tor, but instances have been found that were created
by hand from a specification for which the specifica-
tion language lacked arrays within structures,.

For programmers, dup describes the matching sec-
tions of code and the correspondence between the pa-
rameter names in the two sections. If the pro), Trammer

wants to turn the multiple copies of the code into calls
to a new procedure, the correspondences between the

parameter names in the two sections suggest what the

formal parameters should be for the procedure. On

the other hand, if it seems better to leave the duplica-

tion (e.g. to avoid the overhead of a procedure call or

the time for rewriting), a profile can be generated that
shows for each line of code where other copies occur in

the system, based on the maximal exact or parameter-
ized matches, so that when a bug occurs in one copy
of some code, the programmer can fix it in the other
copies as well. Comments about the location of other
copies of code could also be added to redocument the

code.

For managers, the postprocessor computes how

much duplication is present in the system, estimates

how much code could be saved if the duplication were

eliminated, and computes which files or pairs of files
contain the most duplication. This information pro-
vides a new measure of software quality and if the
system is reengineered, the information could guide in
eliminating the duplication. In the case of repetitive

code, the information from dup identifies code that

could be rewritten using arrays and loops. For visu-

alization, a scatter plot of the output makes apparent

which sections of code contain large amounts of du-

plication, which sections of code are similar except for

small gaps, and whether duplication is local or distant.

Dup and the postprocessor have been applied to
millions of lines of code from two large software sys-
tems. In the complete source of the X Window System
(minus some tables), including 714479 lines of code,

dup located 2487 matches of at least 30 lines and these

matches involved 19% of the code; dup estimated that

12% of the input was duplication that could be elimi-

nated by rewriting. These matches can be divided into

976 groups, each of which apparently represents an in-

stance of copying and editing of code. Dup has also
been run on subsystems of a 10-million line production
system. For a production subsystem with 1.1M lines,
the 5550 parameterized matches of length at least 30
lines included 20% of the code; dup estimated that
13% of the subsystem was duplication that could be

eliminated by rewriting. These matches can be di-

vided into 2180 groups, each apparently representing
an instance of copying and editing of code. Some in-

teresting anomalies have been found in this production
system via dup. These have included unusually com-

plex files, an obsolete file, and a place where a bug fix
was apparently applied to one copy of some code but

not to another other copy. Two whole directories of
800 lines were found to be the same except for a sys-

87

tematic change of parameter names and a line break.

One subsystem contained two 40-line procedures for
date calculations that were identical except that one
used shorter identifiers than the other did.

In dealing with large systems of millions of lines
of code, it is essential for acto01 to use efficient tech-

niques to attain a reasonable processing speed. Dup

runs very fast; using one R3000 40MHZ processor, it

can process a million lines of code in seven minutes.

The speed comes partly from the choice to make it

a text-based, line-based tool and partly from efficient

algorithms based on a new data structure, called a pa-

rameterized suffix tree [2,3]. Dup and the postproces-
sor are implemented in about 2300 non-commentary
lines of C and Lex [ll] and run under UNIX.

Experiments on several million lines of production

code suggest that in practice, for thresholds of more

than about fifteen lines, the running time of dup on C
code (excluding tables) is linear in input size, although
it could be quadratic in the worst case. (On tables,

depending on the values of the data, the number of

matches to be reported might be quadratic in table
size. Locally repetitive code can also lead locally to
a quadratic amount of output but this has not been

found to be a dominant effect over a whole system.)

Overall, the data show that production systems can

contain a large amount of duplication that was appar-

ently created by copying and editing code. The con-

cept of maximal p-matches appears to be more useful

than just exact matches in locating such duplication.
Dup runs fast enough to be useful for systems with

millions of lines of code. Finally, it appears that the
duplication information should be useful in practice
for finding previously unknown features of the code
and for maintenance and reengineering of large sys-
tems.

Other researchers have taken different approaches

to finding commonality in code. These approaches

have included finding common style or complexity

measures [5, 8, 14, 121, common parse trees [lo], com-

mon data flow [l, 71, fingerprints for files [9, 131, the
UNIX diff command [ll], data compression [17, 193,

and graphical user interfaces (GUIs) [6]. These meth-
ods have been deficient for various reasons. Ap-

proaches based on common style or complexity char-
acteristics have no guarantees about exactly how the
code is related. The parse tree method used exhaus-
tive search and was slow [lo]. The data flow methods

have only been applied to toy programming languages.

The fingerprint approaches were aimed at finding sim-
ilar files rather than copies of parts of the files. Diff

and other approaches based on edit distance can take

quadratic time, are only designed for comparing whole
files, and are too slow for millions of lines of code.

Data compression methods find some cases of exact
duplication but not all maximal matches and certainly

not parameterized matches or local editing changes.
Church and Helfman’s GUI, Dotplot, requires that

the user pick out patterns of similarity by eye, and

the patterns are often dominated by repetitive code

structure.

Section 2 describes how the definition of maximal

parameterized matches in code leads to the design of a
useful tool for finding duplication. Section 3 describes
the data structure used in dup. Section 4 discusses the
results of applying dup to two software systems. The
last section contains further discussion and directions
for further work.

2 Exact and parameterized matches

The basic tool in identifying duplication in software

is the program dup for finding maximal exact or pa-
rameterized matches over a threshold length specified

by the user. A postprocessor analyzes the matches
further. Currently, dup processes code written in C ,
but front ends could be easily written for other input
languages. This section defines maximal exact and

parameterized matches and how these definitions are

adapted in dup to the task of finding interesting du-

plication or near-duplication in code.

Two sections of code are said to be a maximal ex-
act match if their lines match exactly character by

character but the preceding lines do not match and

the following lines do not match. (White space and
comments are ignored.)

A scatter plot helps to visualize maximal exact
matches. Figure 2 shows a scatter plot of exact
matches in a production system file of 2846 lines, or

1761 lines after pruning white space and comments,

with a minimum match length of 15 lines. Each (ap-

proximately) diagonal line from (n l , n2) to (n3, n4)

represents a match between lines n1 to n3 and n2

to n4; the lines are not strictly diagonal because the

white space and comments have been ignored, while
the line numbers are the original line numbers in the
file. Only the part of the plot below the main diagonal

is shown, so that each match corresponds to exactly
one line segment. The full plot would be symmetric
around the main diagonal and contain two line seg-

ments for each match. In this case, there are 18 exact
matches involving 419 lines, or 24% of the file.

Two sections of code are a parameterized match (p -
match) if there is a one-to-one function that maps the
set of parameters in one section onto the set of param-

and the design of dup.

88

0 500 1000 1500 2000 2500

Figure 2: Exact matches for a C file.

eters in the second section, such that the text of the
first section is transformed into the text of the second
by textually substituting f(p) for p everywhere that

p occurs in the first section. (Comments and white

space are ignored.) For example, in the codle of Fig-

ure 1, the one-to-one function maps lbearing into left,

rbearing into right, and pfi into pfh, but is the identity

on other parameter candidates such as copynumber

and pmin. Parameters in dup are currently defined
to include identifiers, constants, field names of struc-

tures, and macro names. Keywords such as “while” or
“if” are not candidates for parameters.

Two sections of code are a maxcimal p-match if they

are a p-match and the p-match cannot be extended to

the preceding lines or the following lines.

Figure 3 shows a scatter plot of the maximal p-

matches for the same file whose exact matches are

plotted in Figure 2. With a threshold of 15 lines, there

are 87 maximal parameterized matches involving 85%

of the file, compared to 18 exact matches involving
24% of the file. The maximal parameterized match
found is 182 lines, compared to 37 lines for the exact

matches.

Sections of code that are a p-match generally look

related. In certain circumstances, such as sequences

of lines consisting of C “case variable:” statements,

matches are found between sections of code that don’t

appear to be related in that arbitrary variable names
are paired line after line. Experiments have shown

that an effective way of avoiding such output is to
report only p-matches where the number of non-
identical parameter pairs is at most half the number

of non-commentary lines in the match; more generally,
this could be turned into a percentage to be set by the

-”““I 1500

‘-1 500 A

/

oi------+
0 500 1000 1500 2000 2500

Figure 3: P-matches for the same file as Figure 2.

user.
The quality of the output is also improved by prun-

ing off closing braces at the start of a match. Because

of the definition of maximality and the frequency of

lines containing just a closing brace, maximal matches

often begin with one or more closing braces, but the

closing braces usually belong to code preceding the
interesting part of the match.

Input code can be provided to dup either via the

standard input or via a list of file names. In the latter
case, dup does not allow matches to cross file bound-
aries. It does, however, allow matches to cross proce-
dure boundaries, so that whole files can be found to

match. An option to restrict matches from crossing

procedure boundaries may be added in the future.

A postprocessor analyzes the p-matches and gener-

ates statistics and plots. A number of kinds of output

are available from the postprocessor.

For each p-match, the program outputs the num-
ber of matching non-commentary lines, the pairs of
matching intervals, and a list of the nonidentical pa-
rameter correspondences for each p-match. Figure 4

gives an example from the X Window System [18];

the match is the one from which the fragments of Fig-

ure 1 were extracted. The intervals are described as

a file number, path name, and range of line numbers.

(The file number is useful visually when path names
are long and differ by only a character or two.) The

match length is specified by “34 ncsl” , which means
“34 non-commentary source lines”, i.e. the number
of lines in the match excluding comments and blank
lines.

The postprocessor calculates summary information

including the number of matches, number of non-

89

34 ncsl
1552,mit/clients/xlsfonts/xlsfonts.c:274,3O9
327,mit/fonts/clients/fslsfonts/fslsfonts.c:384,419

3 parameters
1: pfi, pfh

2: lbearing, left

3: rbearing, right

Figure 4: Output for the parameterized match for which Figure 1 is an excerpt.

commentary lines in the whole system involved in
the matches, percentage of non-commentary lines in
the system involved in the matches, and distribution
of match lengths. These calculations are straightfor-

ward.

The postprocessor computes an estimate of the per-

celltage of lines that could be eliminated if the code

were rewritten using alternative methods such as pro-

cedures instead of copying. The estimate is derived us-

ing the simple assumption that if the same line appears
in k sufficiently long matching sections of code, then

k -- 1 of these occurrences could have been avoided.
For example, for the file whose p-matches are plotted

in Figure 3, the postprocessor estimates a potential

shrinkage of 61% if the code were rewritten to avoid

parameterized duplication. The computation of the

estimate is complicated by matches that pair up the

same lines of code because they overlap in both inter-
vals. For example, it would be possible for lines 30-60
and 130-160 to be a maximal p-match and for lines 40-
70 and 140-170 to be another maximal p-match, where
a longer p-match is not possible because a correspon-
dence of x and y in lines 39 and 139 conflicts with
a correspondence of x and z in lines 61 and 161. In

this example, both p-matches match lines 40-60 with

lines 140-160. The calculations of redundancy han-

dle this situation by counting this as one extra copy

of each of the lines in these ranges, rather than two.

Such situations are caused by conflicting pairings of
values, often pairings of small integer constants (espe-
cially zero) that may be used as values for more than
one variable in one section of code but not the other.

As an option, the postprocessor prints out a pro-
file of the code showing how much duplication occurs

where. In particular, it identifies intervals (sequences
of lines) in the input that are involved in exactly the

same set of matches. For each such sequence of lines,
it prints out the range of line numbers, the number
of distinct matches, and a list of the match numbers.
In our above example, lines 30-60 and 130-160 were a

p-match and lines 40-70 and 140-170 were a p-match,
and both p-matches match lines 40-60 with lines 140-
160. In this situation, the postprocessor will identify
intervals 30-39, 40-60, 61-70, 130-139, 140-160, and

161-170 as sequences of line numbers within which the

lines are involved in the same matches. However, it

does not count the two p-matches as distinct matches

for the intervals 40-60 and 140-160 in which they over-

lap, since they pair up the same lines.

Since a system can contain thousands of files, and

the duplication may be unevenly distributed among
them, another postprocessor option is to calculate the
percentage redundancy and number of redundant lines
within each file and between each pair of files in the

input. For efficiency, these calculations are done by

intervals participating in the same matches, as defined

in the preceding paragraph, rather than by individual

lines. Sorting can be used to identify the files or file

pairs with the most duplication.

Further processing of matches can be done to group
matches that appear to be related, in the sense that to-
gether they represent a region of code that was copied
and then edited. Two classes of these matches arise

as follows.

First, there is the case described above of two
matches that would be one match if not for a param-

eter conflict in the middle of the code. This is de-
tected by overlaps in both intervals and identical dis-

tances between the first and second intervals in the two

matches. Pairs or sequences of successive p-matches
with this relationship can be detected and labeled as
part of a longer match with a conflict in parameters.

Second, if some code was copied and then modified
in the middle, what would be detected by dup would

be a pair of matches pairing up sections of code that

are close together but not overlapping, e.g. one match

pairing up lines 30-50 and 500-520, and another match

pairing up lines 55-75 and lines 530-550. Such pairs
(or more) of matches can be identified by sorting the
matches by endpoint and looking for pairs of matches

90

whose intervals are within 6 lines of each other, for

a 6 specified by the user. They can be grouped and
labeled as apparently due to copying and modifying a

section of code.

Finally, matches that arise from a locally repetitive

region of code can be identified, grouped, and labeled.

A repetitive region of code contains short code seg-

ments that are immediately repeated with a change of

parameter names. Such repetitions may be generated

automatically by program generators, but they may
also be generated by hand as a result of system con-

ventions. An example is code generated by h<and from

a specification language that does not permit, fields in

structures to include arrays. Repetitions can result lo-

cally in a number of matches quadratic in the number
of repetitions, and similarly for matches between two

areas of repetitive code. Thus, it is especially helpful

to group these matches for the user.

To see the kinds of maximal matches to expect in a
repetitive region, consider the exact duplicaition case

of four successive occurrences of lines abc, where a, b,

and c represent lines of code. With a threshold of one

line, dup will report three matches: one of length 9

between positions 1-9 and 4-12 representing an over-

lapping match of abcabcabc with itself, one of length 6
between positions 1-6 and 7-12 representing a match

of abcabc with itself, and one of length 3 between po-
sitions 1-3 and 9-12 representing a match between the
first copy of abc and the last copy of abc. This is
in contrast to the natural factorization of (a l ~ c) ~ that
would be desirable.

From overlapping as in the abcabcabc of the first

match in the last example, dup deduces that the re-

gion contains repetitive code, but it does not as yet

have an algorithm to replace the multiple matches by

an (ab~)~- type factorization. However, the matches
within a repetitive region or between two repetitive

regions can be grouped and labeled as matches in a
repetitive region.

3 How dup finds maximal p-matches

fast.
Dup finds p-matches by means of an efficient al-

gorithm based on a new data structure called the pa-

rameterized sufix tree. This section gives an overview

of the algorithm; details and proofs of correctness are
in [2, 31.

For each line of input, the lexical analyzer generates
a string consisting of one “non-parameter symbol” and
zero or more “parameter symbols”. (Non-parameter
symbols and parameter symbols are represented by

disjoint sets of integers.) A line such as x = x + y

is first transformed into P = P + P and a list 2, x , y ;

Figure 5: A p-suffix tree for the p-string S =
xbyyxbx$.

then a non-parameter symbol is generated to represent

the P = P + P and three parameter symbols are gen-

erated to represent x , x , y . In this manner, both the

parameter candidates and their positions are recorded

in the resulting string.

The input to the parameterized matching algorithm
is the string resulting from concatenating the individ-
ual strings of non-parameter and parameter symbols
from all the lines. Such a string is called a parameter-
ized string or p-string.

The following encoding of p-strings underlies our

algorithm. The first occurrence of each parameter

symbol is replaced by a 0. Each later occurrence of

a parameter symbol is replaced by the distance in

the string since the previous occurrence of the same

parameter symbol. Non-parameter symbols are left
unchanged. For example, if a and b represent non-
parameter symbols, and x and y represent parame-
ter symbols, a p-string axybxay would be encoded as
a00b3a4. If S is a p-string, the resulting encoding of

S is called prew(S).
The significance of this encoding is that a p-string

S is a p-match for a p-string T if and only if prew(S) =

prev(T). For example, the p-string T = auwbuaw, with

parameter symbols U and w, has the same encoding

pet$?) = a00b3a4 as the p-string S of the preceding

paragraph, and T and S are a p-match. Therefore,
the encoding can be used to test for p-matches.

After the lexical analysis, dup builds a data struc-
ture called a parameterized suffix tree (p-suffix tree)
for the p-string S = blbz ... b, representing the input.

Call Si = bibi+l ... b,, the ith sufix of S. A p-suffix
tree is a generalization of the suffix tree data struc-

91

ture [15]. Whereas a suffix tree is a compacted trie

containing the suffixes S, of a string S , 1 <= a <= n,

a p-suffix tree for S is a compacted trie containing

prev(S,) for 1 <= i <= n. Because it is a trie, the
labels on arcs to the children of a node all begin with

distinct symbols; the trie is compacted in the sense

that labels are allowed to be strings and each non-leaf

has at least two children. Each leaf in the p-suffix tree
represents p e w (&) for some i, 1 <= i <= n, in the

sense that concatenating the labels of the arcs on the
path from the root to the leaf yields prev(S,). The

p-suffix tree can be represented in space linear in in-
put size provided that at each access, the value of a
symbol of prev(S,) is calculated dynamically from its

value in prew(S) and the access depth in the tree.

Example. Let S = xbyyxbx$, where b and $ are

non-parameter symbols and z and y are parameter

symbols. The p-suffixes to be encoded in the tree are

Ob014b2$, b010b2$, 010b2$, 00b2$, Ob2$, bo$, 0$, and $.

Notice that the parameter pointers change to 0 as the
preceding part of the string is shortened. The p-suffix

tree for S is shown in Figure 5.

The algorithms to construct a p-suffix tree and re-

curse over it to find the parameterized duplication are
complicated; for a detailed description, proof of cor-

rectness, and analysis of worst-case performance, see

[2, 31. In practice, the overall running time of dup
has been found experimentally to be linear in input

length, although in a worst-case scenario it could be
quadratic.

4 Experiments on two production sys-

t ems

The experiments described in this section were run

on the source for the X Window System [18] and a

subsystem we will call SS from a production system.

In each case, first dup found all maximal p-matches

over a threshold length and the postprocessor calcu-
lated statistics about the amount of duplication. Then
the matches were grouped as described in Section 2,
i.e. two matches were placed in the same group if ei-
ther (1) the two matches overlap and pair the same
lines, but were separate matches because of a con-
flict of parameters, or (2) the two matches do not
overlap, and the first intervals are within 20 lines of

each other and the second intervals are within 20 lines

of each other, suggesting that the entire region was

copied and then edited in the middle. Finally, the
overlapping matches indicating repetitive regions were
counted and the number of repetitive regions was com-
puted.

' . I

P
' /// ,

0 200000 400000 600000

Figure 6: Parameterized matches for X source (minus
some tables)

4.1 Extent of Duplication

The parameterized matches include a substantial

amount of the code in each case.

In the complete source of the X Window System

(minus 13 files of tables), including 714479 lines of
code (514579 lines after removing white space and
comments), dup located 2487 matches of at least 30

lines; these included 19% of the code, and the program
estimated that 12% of the program was duplication

that could be eliminated by rewriting. The matches
are plotted in Figure 6. The longest match was 2585
non-commentary lines and 60 matches had at least 200
non-commentary lines. Grouping the 2487 matches

resulted in 976 groups. There were 463 overlapping

matches indicating repetitive regions of code and these

were distributed over 148 repetitive regions.

In SS, which has almost 1.1M lines, or 605k lines
after removing white space and comments, dup found
5550 matches of length at least 30 lines and these in-
cluded 20% of the codel. Dup estimated that 13%
of the program was duplication that could be elimi-
nated by rewriting. The matches are plotted in Figure
7. The longest match was 553 non-commentary lines;

there were 51 matches of at least 200 non-commentary

lines. Grouping the 5550 matches resulted in 2180

groups. There are 775 overlapping matches indicating
repetitive code, and these were distributed among 337

'This subsystem did not include machine-generated code,
which might be expected to have large amounts of duplication.

92

l e a

500000

0

.. ..

I I I

0 ,500000 1 e t 0 6

Figure 7: Parameterized matches for some code from
a production system.

regions of repetitive code.

The following conclusions may be drawn from the
above data. The systems contained a substantial

amount of duplication. Grouping matches into regions
that were apparently copied by an editor and modified
in the middle made a significant reduction in the num-

ber of separate pieces of information to be examined
by the user. There were repetitive regions in the code,
but the number of matches within each region was

small on average. Overall, the approach of viewing

the duplication problem as that of finding code that

was copied by an editor and modified, rather than just
as finding p-matches, appears justified by the grouping
and repetitive code data.

4.2 Running times

Dup is quite fast. Processing the almost 1 1M lines
of the subsystem SS with a threshold of 30 lines took
7.2 minutes, with an additional time of 7 seconds for

the postprocessor. These times represent CPU time on

one 40MHz R3000 processor (primary I and D cache

64KB, secondary lMB, main 256MB, SGI IRIX 4.1).

4.3 Effect of Threshold Lengths

The amount of duplication reported increases dra-
matically as the match lengths become small. If a
very small threshold is used, say less than 8 lines, half
of the lines in a match may be closing braces, which
have little information value. When the match length

is reduced to one line, or even several lines, t8he num-
ber of matches generated grows quadratically in input

length due to lines consisting of closing braces, and the

amount of output becomes huge and mostly meaning-
less. For this reason, threshold lengths of 20 or above

appear to be most meaningful. (An alternative would

be to filter out closing braces, in which case smaller
thresholds might be reasonable.)

When individual matches of at least 20 lines are
examined, the matches for C code usually look rea-
sonable. In particular, the one-to-one correspon-
dence between parameters usually pairs similar to-

kens, i.e. small integers with small integers, strings
with strings, or variables with other variables with re-
lated names. (Recall that the parameterization al-
gorithm treats all parameter candidates the same,

so that in principle it could pair an integer and a
string, or structure member names with a floating

point number.) Figure 4 gives an example of match
of 34 non-commentary lines from the X source, with
the pairings pfi/pfh, lbearing/left, rbearing/right. In

SS, the following pairs were found in a match that
turned out to be two 40-line procedures for convert-
ing a date to a Julian date: AMydays/AMyeardays,

AMmdays/AMmodays. Other examples from SS
are a match of 31 non-commentary lines with the
pairings b2/bl, 0x9000/9x8000, and “bfcp-i3”/ “bfcp-
i2”, and 31 non-commentary lines with the pair-
ings O / l , “u46”/“ill” , RCERR14/RCERR10, and

In practice, many of the parameters found are re-
lated to error checking and handling, in both of the
systems that were studied. An example from SS is

a match of 50 non-commentary lines with five pairs

of parameters, of which only the first pair is not in-
volved in error-handling. The remainder are either

error code numbers or unique strings representing the
current point of execution for defensive programming
in case of a fault.

4.4 Visualization and anomalies

Plots of large amounts of code as in Figures 6 and
7 should be useful to managers in visualizing the com-
plexity and interrelationships of a whole software sys-

tem. The scatter plots of Figures 6 and 7 appear dense

near the main diagonal and sparse elsewhere. No line

segments are plotted exactly on the main diagonal;
at this scale, they merely appear to be on the main
diagonal. In fact, the line segments near the main di-
agonal represent matches of code segments that are
near each other in the system, e.g. in the same file or
directory. The apparent density near the main diago-
nal is somewhat misleading because line segments are

plotted with a minimum length, so that every match
corresponds to a visible mark in the plot. Away from

6CU47”/ “i12”

93

the main diagonal, the matches are quite scattered;

these would be good candidates to investigate as to
the origin of the duplication.

Three types of interesting features that have been
found in casual browsing of scatter plots of smaller

amounts of code have been unusually complex files,

an obsolete file that had not been deleted, and a place

where a bug fix was apparently applied to one copy of

some code but not to another other copy. The obsolete
file was found by noticing rather extensive duplication
between two files in a module. Figure 8 shows a scat-

ter plot with a gap between two collinear line segments

representing two long matches. The gap corresponds

to two sections of code, one of which has a loop that

runs off the end of an array, and the other of which
has a correct loop with a comment describing the cor-

rection; the latter apparently has a bug fix that was

not applied to the other copy.

5 Discussion and directions for further
work.

Much duplication has been found using dup. In

some cases it is very apparent that the copying was

done by editor, as when two copies have the same
level of indentation, but in one copy this is the wrong

amount of indentation for the local control struc-

ture. (Dup, however, ignores the indentation in any

case.) Of course, there is no easy way to measure

how many instances are missed of code sections that

would be considered duplication by a person but don’t

get picked up by the maximal p-match search done by
dup.

Dup’s estimate of the percentage by which the code
could be shrunk is optimistic in predicting that any

number of copies of a section of code could be replaced

by one copy the same size, since the copies are not gen-
erally complete semantic units that could be directly

turned into procedures and in some cases, there may

be valid reasons for separate copies, such as efficiency.

An obvious question is whether the output from

dup couId be used to generate procedures with param-
eters automatically from the input to reduce the size
of the code. Regretfully, the answer appears to be neg-
ative. Since the code segments identified in matches
usually do not correspond exactly to subtrees in the
parse tree for the program, or to any obvious semantic
unit, a programmer would need to rewrite the code by

hand. However, the output from dup would be help-

ful in determining the scope of the procedures and the
formal parameters.

A problem that has been only partially solved by
dup is how to factor duplication into repetitions of
short blocks of code, as in factoring abcabcabc into

500 loo0

Figure 8: The plot for a file with an anomaly: a small

gap between two matches.

 ab^)^, where a, b, and c represent distinct lines of
code. (In real code, the copies of abc would have pa-
rameter changes and not be exactly the same.) Dup

can identify repetitive regions of code from overlap-

ping matches, but more work needs to be done on

algorithms to find the factorization.

Another challenge is how to aid a programmer in

examining the large amount of output generated from

a large software system. A graphical user interface
would probably be useful in this regard.

Another useful program would be one that searches

code for a parameterized match to a particular code
segment. A programmer making a bug fix could then
search for other related sections of code that might
also require the same bug fix, without having to obtain
all maximal matches for the whole body of code via

dup. The author has developed algorithms to do this
by a generalization of a Boyer-Moore-type algorithm

for parameterized pattern matching [4].
Finally, if sections of code are reused informally by

copying, they may be good candidates for more formal

reuse via a library. This would be especially true if
they have been copied from one system to another. It
would be interesting to compare different systems to
see if any procedures are found in common.

Acknowledgments

The author would like to thank Brian Kernighan for

calling her attention to the code duplication problem

and for suggesting part of the encoding done by the

lexical analyzer. She would also like to thank William
Chang for providing his code for suffix tree construc-
tion, which she modified to generate p-suffix trees.
She is appreciative of many useful discussions with

94

Ken Church, Ken Clarkson, Bryan Ewbanlc, Raffaele

Giancarlo, Eric Grosse, Jon Helfman, Andrew Hume,

Brian Kernighan, and Eric Sumner, Jr..

[12] L. Malmi, M. Henrichson, T. Karras, J. Saarhelo,

and S. Saerkilahti. Detecting plagiarism in Pascal

and C programs. Technical report, Helsinki Univ.

of Technology, Espoo (Finland). Lab. of Informa-

tion Processing Science, 1992.
References
[l] B. Alpern, M. Wegman, and F.K. Zadeck. De-

tecting equality of variables in programs. In 15th
ACM Symposium on Principles of Programming
Languages, pages 1-1 1, 1988.

[13] Udi Manber. Finding similar files in a large file
system. In Proc. 1994 Winter Usenix Technical
Conference, pages 1-10, Jan 1994.

[2] Brenda S. Baker. A theory of parameterized pat-

tern matching: algorithms and applicattions (ex-

tended abstract). In Proceedings of the 25th An-

nual ACM Symposium on Theory of Computing,
pages 71-80, May 1993.

[3] Brenda S. Baker. Parameterized pattern match-

ing: Algorithms and applications. J. Comput.
Syst. Sci., 1995. To appear.

[4] Brenda S. Baker. Parameterized pattern match-
ing via boyer-moore-type algorithms. In Proc.
Sixth Annual ACM-SIAM Symposiums on Dis-
crete Algorithms, pages 541-550, January 1995.

[5] H.L. Berghel and D.L. Sallach. Measurements

of program similarity in identical task environ-
ments. SIGPLAN Notices, 9(8):65-76, August

1984.

[14] T. J . McCabe. Reverse engineering, reusability,
redundancy: the connection. American Program-

mer, 3(10):8-13, Oct. 1990.

[15] E.M. McCreight. A space-economicaLsuffix-tree
construction algorithm. J. A CM, 23(2) :262-272,

1976.

[16] Ruben Prieto-Diaz. Status report: Software
reusability. IEEE Software, pages 61-66, May

1993.

[17] M. Rodeh, V. R. Pratt, and S. Even. Linear algo-
rithms for data compression via string matching.

J. AGM, 28(1):16-24, 1981.

[18] R.W. Scheifler and J. Gettys. The X window sys-

tem. ACM Transactions on Graphics, 5(2):79-

109, 1986.

[6] Kenneth Ward Church and Jonathan Isaac Helf- [19] J. Ziv and A. Lempel. A universal algorithm for
man. Dotplot: A program for exploring self- sequential data compression. IEEE Trans. Inf.

similarity in millions of lines of text and code.

Journal of Computational and Graphical Statis-
tics, 2(2):153-174, June 1993.

[7] Susan Horwitz. Identifying the semantic and tex-
tual differences between two versions of a pro-
gram. In Proc. ACM SIGPLAN Confi- vence on
Programming Language Design and Implementa-
tion, pages 234-245, June 1990.

Theory, IT-23:337-343, 1977.

[8] H.T. Jankowitz. Detecting plagiarism i n student
PASCAL programs. Computer Journal, 31(1):1-

8, 1988.

[9] J. Howard Johnson. Substring matching for clone
detection and change tracking. In Proc. Inter-

national Conf. on Software Maintenance, pages
120-126,1994.

[lo] Ralph Johnson, October 1991. personal commu-
nication.

[ll] Brian W. Kernighan and Rob Pike. The UNIX

Programming Environment. Prentice-Ha& Engle-

wood Cliffs, New Jersey, 1984.

95

