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Abstract 

This paper describes how a program called dup 
can be used to locate instances of duplication or near- 
duplication in a software system. D u p  reports both 

textually identical sections of code and sections that 
are the same textually except for systematic substitu- 
tion of one set of variable names and constants for  
another. Further processing locates longer sections of 
code that are the same except for other small modi- 
fications. Experimental results from running dup on 
millions of lines from two large software systems show 

dup to be both effective at locating duplication and 

fast. Applications could include identifying sections 

of code that should be replaced by  procedures, elimina- 

tion of duplication during reengineering of the system, 
redocumentation to include references to copies, and 
de bugging. 

1 Introduction. 
This paper focuses on locating duplication or near- 

duplication in a large software system as an aid in 

maintenance and reengineering. Duplication can be- 

come a problem within large software systems if pro- 
grammers make modifications by copying and modi- 
fying sections of code. It has long been known that 

copying can make the code larger, more complex, and 
more difficult to maintain. In particular, when a bug 
has been found in one copy, a bug fix may be made in 

the copy where the bug was found, but not in the other 
copies. Nevertheless, copying and modifying code may 
occur for several reasons. First, making a copy and 

modifying it may be simpler than more major revi- 

sions and therefore less likely to introduce new bugs 
immediately, especially when the programmer mak- 
ing the bug fixes is not the one who wrote the orig- 
inal code. Second, if multiple versions are created, 

the interactions between the versions may become in- 
tractable as the versions grow apart over time, and 
eventually it may seem simpler to maintain some of 

the code separately. Third, process management may 

encourage duplication, e.g. if evaluation of program- 

mers’ performance is based in part on how much new 

code they write, so that programmers have little in- 

centive to rewrite old code. Fourth, copies may be 

required because of the need to avoid the overhead of 
a procedure call for efficiency considerations. 

This paper addresses the problem of locating ex- 
act or near-duplication of code that was created by 

copying and modifying code with an editor. When 

code is copied and modified via an editor, the types of 
changes made may include insertions and deletions of 
lines, modifications within lines, and global substitu- 

tions. The goal is to find copies that are substantially 

the same line by line except for global substitutions, 
so that one copy is a variant of the other, rather than 

sections of code that have evolved to be mostly differ- 
ent. In software reuse terminology, the problem is to 
locate instances of ad-hoc black-box or white-box soft- 

ware reuse [16] within a software system. Thus, this is 

a problem in reverse engineering. Moreover, the sys- 

tems to be examined may be legacy systems running 
to millions of lines of code. 

The approach of this paper is to find maximal sec- 

tions of code over a threshold length that are either 
exactly the same, or the same except for a global sub- 
stitution of names of parameters such as variables and 
constants, e.g. all occurrences of x changed to y and 
all occurrences of pchar changed to pc. In the for- 
mer case, we call the two sections of code an exact 
match, and in the latter case, a parameterized match 
(p-match). Thus, the approach is text-based and line- 

based. Comments and white space are ignored. The 
tool to find maximal exact or parameterized matches 
is a program called dup. To find longer sections of code 

that were copied and then changed locally in the mid- 
dle, the exact or parameterized matches can be further 
analyzed to locate pairs or sequences of matches that 
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match sections of code separated by small gaps; al- 

ternatively, such regions can be found by examining 

scatter plots. 

An example of a p-match is given in Figure 1, which 

contains two code fragments taken from the X: Window 

System [18] source code. The fragments are identical 

except for the differing indentation (which is ignored 

by dup) and the correspondence between the vari- 
able names pfi/pfh and the pairs of structure member 
names lbearing/left and rbearing/right . These frag- 
ments are excerpted from two 34-line sections of code 
that are a p-match with these parameter correspon- 
dences. 

Fragment 1: 

copy-number (&pmin, &pmax , 
pfi->min-bounds.lbearing, 

pfi->max-bounds.lbeaing); 
*pmin++ = *pmax++ = J , J ;  

copy-number(&pmin, kpmax, 
pfi->min-bounds.rbearing, 

pf i->max-bounds .rbearing) ; 
*pmin++ = *pmax++ = J , J ;  

Fragment 2: 

copy-number(&pmin, &pmax, 

pfh->min-bounds.left, 

pfh->max-bounds.left); 
*pmin++ = *pmax++ = J , J ;  

copy-number(&pmin, &pmax, 
pfh->min-bounds.right, 
pfh->max-bounds.right); 

*pmin++ = *pmax++ = J , J ;  

Figure 1: Two fragments of code from source for the 

X Window System. 

In addition to finding possibly distant sections of 

code that match, dup finds locally repetitive sections 
of code where the same short section is repeated im- 
mediately with different parameters, typically with 
names ending in a number; if an array were used in- 

stead of the numbered parameters, the repetitive code 

could be replaced by a loop. Such sections coluld have 

been generated automatically by a program1 genera- 
tor, but instances have been found that were created 
by hand from a specification for which the specifica- 
tion language lacked arrays within structures,. 

For programmers, dup describes the matching sec- 
tions of code and the correspondence between the pa- 
rameter names in the two sections. If the pro), Trammer 

wants to turn the multiple copies of the code into calls 
to a new procedure, the correspondences between the 

parameter names in the two sections suggest what the 

formal parameters should be for the procedure. On 

the other hand, if it seems better to leave the duplica- 

tion (e.g. to avoid the overhead of a procedure call or 

the time for rewriting), a profile can be generated that 
shows for each line of code where other copies occur in 

the system, based on the maximal exact or parameter- 
ized matches, so that when a bug occurs in one copy 
of some code, the programmer can fix it in the other 
copies as well. Comments about the location of other 
copies of code could also be added to  redocument the 

code. 

For managers, the postprocessor computes how 

much duplication is present in the system, estimates 

how much code could be saved if the duplication were 

eliminated, and computes which files or pairs of files 
contain the most duplication. This information pro- 
vides a new measure of software quality and if the 
system is reengineered, the information could guide in 
eliminating the duplication. In the case of repetitive 

code, the information from dup identifies code that 

could be rewritten using arrays and loops. For visu- 

alization, a scatter plot of the output makes apparent 

which sections of code contain large amounts of du- 

plication, which sections of code are similar except for 

small gaps, and whether duplication is local or distant. 

Dup and the postprocessor have been applied to 
millions of lines of code from two large software sys- 
tems. In the complete source of the X Window System 
(minus some tables), including 714479 lines of code, 

dup located 2487 matches of at least 30 lines and these 

matches involved 19% of the code; dup estimated that 

12% of the input was duplication that could be elimi- 

nated by rewriting. These matches can be divided into 

976 groups, each of which apparently represents an in- 

stance of copying and editing of code. Dup has also 
been run on subsystems of a 10-million line production 
system. For a production subsystem with 1.1M lines, 
the 5550 parameterized matches of length at least 30 
lines included 20% of the code; dup estimated that 
13% of the subsystem was duplication that could be 

eliminated by rewriting. These matches can be di- 

vided into 2180 groups, each apparently representing 
an instance of copying and editing of code. Some in- 

teresting anomalies have been found in this production 
system via dup. These have included unusually com- 

plex files, an obsolete file, and a place where a bug fix 
was apparently applied to one copy of some code but 

not to another other copy. Two whole directories of 
800 lines were found to be the same except for a sys- 
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tematic change of parameter names and a line break. 

One subsystem contained two 40-line procedures for 
date calculations that were identical except that one 
used shorter identifiers than the other did. 

In dealing with large systems of millions of lines 
of code, it is essential for acto01 to  use efficient tech- 

niques to  attain a reasonable processing speed. Dup 

runs very fast; using one R3000 40MHZ processor, it 

can process a million lines of code in seven minutes. 

The speed comes partly from the choice to  make it 

a text-based, line-based tool and partly from efficient 

algorithms based on a new data structure, called a pa- 

rameterized suffix tree [2,3]. Dup and the postproces- 
sor are implemented in about 2300 non-commentary 
lines of C and Lex [ll] and run under UNIX. 

Experiments on several million lines of production 

code suggest that in practice, for thresholds of more 

than about fifteen lines, the running time of dup on C 
code (excluding tables) is linear in input size, although 
it could be quadratic in the worst case. (On tables, 

depending on the values of the data, the number of 

matches to  be reported might be quadratic in table 
size. Locally repetitive code can also lead locally to 
a quadratic amount of output but this has not been 

found to  be a dominant effect over a whole system.) 

Overall, the data show that production systems can 

contain a large amount of duplication that was appar- 

ently created by copying and editing code. The con- 

cept of maximal p-matches appears to be more useful 

than just exact matches in locating such duplication. 
Dup runs fast enough to  be useful for systems with 

millions of lines of code. Finally, it appears that the 
duplication information should be useful in practice 
for finding previously unknown features of the code 
and for maintenance and reengineering of large sys- 
tems. 

Other researchers have taken different approaches 

to finding commonality in code. These approaches 

have included finding common style or complexity 

measures [5, 8, 14, 121, common parse trees [lo], com- 

mon data flow [l, 71, fingerprints for files [9, 131, the 
UNIX diff command [ll], data compression [17, 193, 

and graphical user interfaces (GUIs) [6]. These meth- 
ods have been deficient for various reasons. Ap- 

proaches based on common style or complexity char- 
acteristics have no guarantees about exactly how the 
code is related. The parse tree method used exhaus- 
tive search and was slow [lo]. The data flow methods 

have only been applied to  toy programming languages. 

The fingerprint approaches were aimed at finding sim- 
ilar files rather than copies of parts of the files. Diff 

and other approaches based on edit distance can take 

quadratic time, are only designed for comparing whole 
files, and are too slow for millions of lines of code. 

Data compression methods find some cases of exact 
duplication but not all maximal matches and certainly 

not parameterized matches or local editing changes. 
Church and Helfman’s GUI, Dotplot, requires that 

the user pick out patterns of similarity by eye, and 

the patterns are often dominated by repetitive code 

structure. 

Section 2 describes how the definition of maximal 

parameterized matches in code leads to  the design of a 
useful tool for finding duplication. Section 3 describes 
the data structure used in dup. Section 4 discusses the 
results of applying dup to  two software systems. The 
last section contains further discussion and directions 
for further work. 

2 Exact and parameterized matches 

The basic tool in identifying duplication in software 

is the program dup for finding maximal exact or pa- 
rameterized matches over a threshold length specified 

by the user. A postprocessor analyzes the matches 
further. Currently, dup processes code written in C ,  
but front ends could be easily written for other input 
languages. This section defines maximal exact and 

parameterized matches and how these definitions are 

adapted in dup to the task of finding interesting du- 

plication or near-duplication in code. 

Two sections of code are said to  be a maximal ex- 
act match if their lines match exactly character by 

character but the preceding lines do not match and 

the following lines do not match. (White space and 
comments are ignored.) 

A scatter plot helps to  visualize maximal exact 
matches. Figure 2 shows a scatter plot of exact 
matches in a production system file of 2846 lines, or 

1761 lines after pruning white space and comments, 

with a minimum match length of 15 lines. Each (ap- 

proximately) diagonal line from (n l ,  n2) to  (n3, n4) 

represents a match between lines n1 to  n3 and n2 

to n4; the lines are not strictly diagonal because the 

white space and comments have been ignored, while 
the line numbers are the original line numbers in the 
file. Only the part of the plot below the main diagonal 

is shown, so that each match corresponds to exactly 
one line segment. The full plot would be symmetric 
around the main diagonal and contain two line seg- 

ments for each match. In this case, there are 18 exact 
matches involving 419 lines, or 24% of the file. 

Two sections of code are a parameterized match ( p -  
match) if there is a one-to-one function that maps the 
set of parameters in one section onto the set of param- 

and the design of dup. 
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Figure 2: Exact matches for a C file. 

eters in the second section, such that the text of the 
first section is transformed into the text of the second 
by textually substituting f(p) for p everywhere that 

p occurs in the first section. (Comments and white 

space are ignored.) For example, in the codle of Fig- 

ure 1, the one-to-one function maps lbearing into left, 

rbearing into right, and pfi into pfh, but is the identity 

on other parameter candidates such as copynumber 

and pmin. Parameters in dup are currently defined 
to include identifiers, constants, field names of struc- 

tures, and macro names. Keywords such as “while” or 
“if” are not candidates for parameters. 

Two sections of code are a maxcimal p-match if they 

are a p-match and the p-match cannot be extended to 

the preceding lines or the following lines. 

Figure 3 shows a scatter plot of the maximal p- 

matches for the same file whose exact matches are 

plotted in Figure 2. With a threshold of 15 lines, there 

are 87 maximal parameterized matches involving 85% 

of the file, compared to 18 exact matches involving 
24% of the file. The maximal parameterized match 
found is 182 lines, compared to 37 lines for the exact 

matches. 

Sections of code that are a p-match generally look 

related. In certain circumstances, such as sequences 

of lines consisting of C “case variable:” statements, 

matches are found between sections of code that don’t 

appear to be related in that arbitrary variable names 
are paired line after line. Experiments have shown 

that an effective way of avoiding such output is to 
report only p-matches where the number of non- 
identical parameter pairs is at most half the number 

of non-commentary lines in the match; more generally, 
this could be turned into a percentage to be set by the 

-”““I 1500 

‘-1 500 A 

/ 

oi------+ 
0 500 1000 1500 2000 2500 

Figure 3: P-matches for the same file as Figure 2. 

user. 
The quality of the output is also improved by prun- 

ing off closing braces at the start of a match. Because 

of the definition of maximality and the frequency of 

lines containing just a closing brace, maximal matches 

often begin with one or more closing braces, but the 

closing braces usually belong to code preceding the 
interesting part of the match. 

Input code can be provided to dup either via the 

standard input or via a list of file names. In the latter 
case, dup does not allow matches to cross file bound- 
aries. It does, however, allow matches to cross proce- 
dure boundaries, so that whole files can be found to 

match. An option to restrict matches from crossing 

procedure boundaries may be added in the future. 

A postprocessor analyzes the p-matches and gener- 

ates statistics and plots. A number of kinds of output 

are available from the postprocessor. 

For each p-match, the program outputs the num- 
ber of matching non-commentary lines, the pairs of 
matching intervals, and a list of the nonidentical pa- 
rameter correspondences for each p-match. Figure 4 

gives an example from the X Window System [18]; 

the match is the one from which the fragments of Fig- 

ure 1 were extracted. The intervals are described as 

a file number, path name, and range of line numbers. 

(The file number is useful visually when path names 
are long and differ by only a character or two.) The 

match length is specified by “34 ncsl” , which means 
“34 non-commentary source lines”, i.e. the number 
of lines in the match excluding comments and blank 
lines. 

The postprocessor calculates summary information 

including the number of matches, number of non- 
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34 ncsl 
1552,mit/clients/xlsfonts/xlsfonts.c:274,3O9 
327,mit/fonts/clients/fslsfonts/fslsfonts.c:384,419 

3 parameters 
1: pfi, pfh 

2: lbearing, left 

3: rbearing, right 

Figure 4: Output for the parameterized match for which Figure 1 is an excerpt. 

commentary lines in the whole system involved in 
the matches, percentage of non-commentary lines in 
the system involved in the matches, and distribution 
of match lengths. These calculations are straightfor- 

ward. 

The postprocessor computes an estimate of the per- 

celltage of lines that could be eliminated if the code 

were rewritten using alternative methods such as pro- 

cedures instead of copying. The estimate is derived us- 

ing the simple assumption that if the same line appears 
in k sufficiently long matching sections of code, then 

k -- 1 of these occurrences could have been avoided. 
For example, for the file whose p-matches are plotted 

in Figure 3, the postprocessor estimates a potential 

shrinkage of 61% if the code were rewritten to  avoid 

parameterized duplication. The computation of the 

estimate is complicated by matches that pair up the 

same lines of code because they overlap in both inter- 
vals. For example, it would be possible for lines 30-60 
and 130-160 to  be a maximal p-match and for lines 40- 
70 and 140-170 to be another maximal p-match, where 
a longer p-match is not possible because a correspon- 
dence of x and y in lines 39 and 139 conflicts with 
a correspondence of x and z in lines 61 and 161. In 

this example, both p-matches match lines 40-60 with 

lines 140-160. The calculations of redundancy han- 

dle this situation by counting this as one extra copy 

of each of the lines in these ranges, rather than two. 

Such situations are caused by conflicting pairings of 
values, often pairings of small integer constants (espe- 
cially zero) that may be used as values for more than 
one variable in one section of code but not the other. 

As an option, the postprocessor prints out a pro- 
file of the code showing how much duplication occurs 

where. In particular, it identifies intervals (sequences 
of lines) in the input that are involved in exactly the 

same set of matches. For each such sequence of lines, 
it prints out the range of line numbers, the number 
of distinct matches, and a list of the match numbers. 
In our above example, lines 30-60 and 130-160 were a 

p-match and lines 40-70 and 140-170 were a p-match, 
and both p-matches match lines 40-60 with lines 140- 
160. In this situation, the postprocessor will identify 
intervals 30-39, 40-60, 61-70, 130-139, 140-160, and 

161-170 as sequences of line numbers within which the 

lines are involved in the same matches. However, it 

does not count the two p-matches as distinct matches 

for the intervals 40-60 and 140-160 in which they over- 

lap, since they pair up the same lines. 

Since a system can contain thousands of files, and 

the duplication may be unevenly distributed among 
them, another postprocessor option is to  calculate the 
percentage redundancy and number of redundant lines 
within each file and between each pair of files in the 

input. For efficiency, these calculations are done by 

intervals participating in the same matches, as defined 

in the preceding paragraph, rather than by individual 

lines. Sorting can be used to identify the files or file 

pairs with the most duplication. 

Further processing of matches can be done to  group 
matches that appear to be related, in the sense that to- 
gether they represent a region of code that was copied 
and then edited. Two classes of these matches arise 

as follows. 

First, there is the case described above of two 
matches that would be one match if not for a param- 

eter conflict in the middle of the code. This is de- 
tected by overlaps in both intervals and identical dis- 

tances between the first and second intervals in the two 

matches. Pairs or sequences of successive p-matches 
with this relationship can be detected and labeled as 
part of a longer match with a conflict in parameters. 

Second, if some code was copied and then modified 
in the middle, what would be detected by dup would 

be a pair of matches pairing up sections of code that 

are close together but not overlapping, e.g. one match 

pairing up lines 30-50 and 500-520, and another match 

pairing up lines 55-75 and lines 530-550. Such pairs 
(or more) of matches can be identified by sorting the 
matches by endpoint and looking for pairs of matches 
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whose intervals are within 6 lines of each other, for 

a 6 specified by the user. They can be grouped and 
labeled as apparently due to copying and modifying a 

section of code. 

Finally, matches that arise from a locally repetitive 

region of code can be identified, grouped, and labeled. 

A repetitive region of code contains short code seg- 

ments that are immediately repeated with a change of 

parameter names. Such repetitions may be generated 

automatically by program generators, but they may 
also be generated by hand as a result of system con- 

ventions. An example is code generated by h<and from 

a specification language that does not permit, fields in 

structures to include arrays. Repetitions can result lo- 

cally in a number of matches quadratic in the number 
of repetitions, and similarly for matches between two 

areas of repetitive code. Thus, it is especially helpful 

to group these matches for the user. 

To see the kinds of maximal matches to expect in a 
repetitive region, consider the exact duplicaition case 

of four successive occurrences of lines abc, where a,  b, 

and c represent lines of code. With a threshold of one 

line, dup will report three matches: one of length 9 

between positions 1-9 and 4-12 representing an over- 

lapping match of abcabcabc with itself, one of length 6 
between positions 1-6 and 7-12 representing a match 

of abcabc with itself, and one of length 3 between po- 
sitions 1-3 and 9-12 representing a match between the 
first copy of abc and the last copy of abc. This is 
in contrast to the natural factorization of ( a l ~ c ) ~  that 
would be desirable. 

From overlapping as in the abcabcabc of the first 

match in the last example, dup deduces that the re- 

gion contains repetitive code, but it does not as yet 

have an algorithm to replace the multiple matches by 

an (ab~)~- type  factorization. However, the matches 
within a repetitive region or between two repetitive 

regions can be grouped and labeled as matches in a 
repetitive region. 

3 How dup finds maximal p-matches 

fast. 
Dup finds p-matches by means of an efficient al- 

gorithm based on a new data structure called the pa- 

rameterized sufix tree. This section gives an overview 

of the algorithm; details and proofs of correctness are 
in [2, 31. 

For each line of input, the lexical analyzer generates 
a string consisting of one “non-parameter symbol” and 
zero or more “parameter symbols”. (Non-parameter 
symbols and parameter symbols are represented by 

disjoint sets of integers.) A line such as x = x + y 

is first transformed into P = P + P and a list 2, x ,  y ;  

Figure 5: A p-suffix tree for the p-string S = 
xbyyxbx$. 

then a non-parameter symbol is generated to represent 

the P = P + P and three parameter symbols are gen- 

erated to represent x , x , y .  In this manner, both the 

parameter candidates and their positions are recorded 

in the resulting string. 

The input to the parameterized matching algorithm 
is the string resulting from concatenating the individ- 
ual strings of non-parameter and parameter symbols 
from all the lines. Such a string is called a parameter- 
ized string or p-string. 

The following encoding of p-strings underlies our 

algorithm. The first occurrence of each parameter 

symbol is replaced by a 0. Each later occurrence of 

a parameter symbol is replaced by the distance in 

the string since the previous occurrence of the same 

parameter symbol. Non-parameter symbols are left 
unchanged. For example, if a and b represent non- 
parameter symbols, and x and y represent parame- 
ter symbols, a p-string axybxay would be encoded as 
a00b3a4. If S is a p-string, the resulting encoding of 

S is called prew(S). 
The significance of this encoding is that a p-string 

S is a p-match for a p-string T if and only if prew(S) = 

prev(T). For example, the p-string T = auwbuaw, with 

parameter symbols U and w, has the same encoding 

pet$?) = a00b3a4 as the p-string S of the preceding 

paragraph, and T and S are a p-match. Therefore, 
the encoding can be used to test for p-matches. 

After the lexical analysis, dup builds a data struc- 
ture called a parameterized suffix tree (p-suffix tree) 
for the p-string S = blbz ... b, representing the input. 

Call Si = bibi+l ... b,, the ith sufix of S. A p-suffix 
tree is a generalization of the suffix tree data struc- 
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ture [15]. Whereas a suffix tree is a compacted trie 

containing the suffixes S, of a string S ,  1 <= a <= n, 

a p-suffix tree for S is a compacted trie containing 

prev(S,) for 1 <= i <= n. Because it is a trie, the 
labels on arcs to  the children of a node all begin with 

distinct symbols; the trie is compacted in the sense 

that labels are allowed to  be strings and each non-leaf 

has at least two children. Each leaf in the p-suffix tree 
represents p e w ( & )  for some i, 1 <= i <= n, in the 

sense that concatenating the labels of the arcs on the 
path from the root to  the leaf yields prev(S,). The 

p-suffix tree can be represented in space linear in in- 
put size provided that at each access, the value of a 
symbol of prev(S,) is calculated dynamically from its 

value in prew(S) and the access depth in the tree. 

Example. Let S = xbyyxbx$, where b and $ are 

non-parameter symbols and z and y are parameter 

symbols. The p-suffixes to  be encoded in the tree are 

Ob014b2$, b010b2$, 010b2$, 00b2$, Ob2$, bo$, 0$, and $. 

Notice that the parameter pointers change to 0 as the 
preceding part of the string is shortened. The p-suffix 

tree for S is shown in Figure 5. 

The algorithms to construct a p-suffix tree and re- 

curse over it to  find the parameterized duplication are 
complicated; for a detailed description, proof of cor- 

rectness, and analysis of worst-case performance, see 

[2, 31. In practice, the overall running time of dup 
has been found experimentally to  be linear in input 

length, although in a worst-case scenario it could be 
quadratic. 

4 Experiments on two production sys- 

t ems 

The experiments described in this section were run 

on the source for the X Window System [18] and a 

subsystem we will call SS from a production system. 

In each case, first dup found all maximal p-matches 

over a threshold length and the postprocessor calcu- 
lated statistics about the amount of duplication. Then 
the matches were grouped as described in Section 2, 
i.e. two matches were placed in the same group if ei- 
ther (1) the two matches overlap and pair the same 
lines, but were separate matches because of a con- 
flict of parameters, or (2) the two matches do not 
overlap, and the first intervals are within 20 lines of 

each other and the second intervals are within 20 lines 

of each other, suggesting that the entire region was 

copied and then edited in the middle. Finally, the 
overlapping matches indicating repetitive regions were 
counted and the number of repetitive regions was com- 
puted. 

' . I  
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' /// , 
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Figure 6: Parameterized matches for X source (minus 
some tables) 

4.1 Extent of Duplication 

The parameterized matches include a substantial 

amount of the code in each case. 

In the complete source of the X Window System 

(minus 13 files of tables), including 714479 lines of 
code (514579 lines after removing white space and 
comments), dup located 2487 matches of at least 30 

lines; these included 19% of the code, and the program 
estimated that 12% of the program was duplication 

that could be eliminated by rewriting. The matches 
are plotted in Figure 6. The longest match was 2585 
non-commentary lines and 60 matches had at least 200 
non-commentary lines. Grouping the 2487 matches 

resulted in 976 groups. There were 463 overlapping 

matches indicating repetitive regions of code and these 

were distributed over 148 repetitive regions. 

In SS, which has almost 1.1M lines, or 605k lines 
after removing white space and comments, dup found 
5550 matches of length at least 30 lines and these in- 
cluded 20% of the codel. Dup estimated that 13% 
of the program was duplication that could be elimi- 
nated by rewriting. The matches are plotted in Figure 
7. The longest match was 553 non-commentary lines; 

there were 51 matches of at least 200 non-commentary 

lines. Grouping the 5550 matches resulted in 2180 

groups. There are 775 overlapping matches indicating 
repetitive code, and these were distributed among 337 

'This subsystem did not include machine-generated code, 
which might be expected to have large amounts of duplication. 
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Figure 7: Parameterized matches for some code from 
a production system. 

regions of repetitive code. 

The following conclusions may be drawn from the 
above data. The systems contained a substantial 

amount of duplication. Grouping matches into regions 
that were apparently copied by an editor and modified 
in the middle made a significant reduction in the num- 

ber of separate pieces of information to be examined 
by the user. There were repetitive regions in the code, 
but the number of matches within each region was 

small on average. Overall, the approach of viewing 

the duplication problem as that of finding code that 

was copied by an editor and modified, rather than just 
as finding p-matches, appears justified by the grouping 
and repetitive code data. 

4.2 Running times 

Dup is quite fast. Processing the almost 1 1M lines 
of the subsystem SS with a threshold of 30 lines took 
7.2 minutes, with an additional time of 7 seconds for 

the postprocessor. These times represent CPU time on 

one 40MHz R3000 processor (primary I and D cache 

64KB, secondary lMB, main 256MB, SGI IRIX 4.1). 

4.3 Effect of Threshold Lengths 

The amount of duplication reported increases dra- 
matically as the match lengths become small. If a 
very small threshold is used, say less than 8 lines, half 
of the lines in a match may be closing braces, which 
have little information value. When the match length 

is reduced to one line, or even several lines, t8he num- 
ber of matches generated grows quadratically in input 

length due to lines consisting of closing braces, and the 

amount of output becomes huge and mostly meaning- 
less. For this reason, threshold lengths of 20 or above 

appear to be most meaningful. (An alternative would 

be to filter out closing braces, in which case smaller 
thresholds might be reasonable.) 

When individual matches of at least 20 lines are 
examined, the matches for C code usually look rea- 
sonable. In particular, the one-to-one correspon- 
dence between parameters usually pairs similar to- 

kens, i.e. small integers with small integers, strings 
with strings, or variables with other variables with re- 
lated names. (Recall that the parameterization al- 
gorithm treats all parameter candidates the same, 

so that in principle it could pair an integer and a 
string, or structure member names with a floating 

point number.) Figure 4 gives an example of match 
of 34 non-commentary lines from the X source, with 
the pairings pfi/pfh, lbearing/left, rbearing/right. In 

SS, the following pairs were found in a match that 
turned out to be two 40-line procedures for convert- 
ing a date to a Julian date: AMydays/AMyeardays, 

AMmdays/AMmodays. Other examples from SS 
are a match of 31 non-commentary lines with the 
pairings b2/bl, 0x9000/9x8000, and “bfcp-i3”/ “bfcp- 
i2”, and 31 non-commentary lines with the pair- 
ings O / l ,  “u46”/“ill” , RCERR14/RCERR10, and 

In practice, many of the parameters found are re- 
lated to error checking and handling, in both of the 
systems that were studied. An example from SS is 

a match of 50 non-commentary lines with five pairs 

of parameters, of which only the first pair is not in- 
volved in error-handling. The remainder are either 

error code numbers or unique strings representing the 
current point of execution for defensive programming 
in case of a fault. 

4.4 Visualization and anomalies 

Plots of large amounts of code as in Figures 6 and 
7 should be useful to managers in visualizing the com- 
plexity and interrelationships of a whole software sys- 

tem. The scatter plots of Figures 6 and 7 appear dense 

near the main diagonal and sparse elsewhere. No line 

segments are plotted exactly on the main diagonal; 
at this scale, they merely appear to be on the main 
diagonal. In fact, the line segments near the main di- 
agonal represent matches of code segments that are 
near each other in the system, e.g. in the same file or 
directory. The apparent density near the main diago- 
nal is somewhat misleading because line segments are 

plotted with a minimum length, so that every match 
corresponds to a visible mark in the plot. Away from 

6CU47”/ “i12” 
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the main diagonal, the matches are quite scattered; 

these would be good candidates to  investigate as to 
the origin of the duplication. 

Three types of interesting features that have been 
found in casual browsing of scatter plots of smaller 

amounts of code have been unusually complex files, 

an obsolete file that had not been deleted, and a place 

where a bug fix was apparently applied to one copy of 

some code but not to  another other copy. The obsolete 
file was found by noticing rather extensive duplication 
between two files in a module. Figure 8 shows a scat- 

ter plot with a gap between two collinear line segments 

representing two long matches. The gap corresponds 

to  two sections of code, one of which has a loop that 

runs off the end of an array, and the other of which 
has a correct loop with a comment describing the cor- 

rection; the latter apparently has a bug fix that was 

not applied to the other copy. 

5 Discussion and directions for further 
work. 

Much duplication has been found using dup. In 

some cases it is very apparent that the copying was 

done by editor, as when two copies have the same 
level of indentation, but in one copy this is the wrong 

amount of indentation for the local control struc- 

ture. (Dup, however, ignores the indentation in any 

case.) Of course, there is no easy way to measure 

how many instances are missed of code sections that 

would be considered duplication by a person but don’t 

get picked up by the maximal p-match search done by 
dup. 

Dup’s estimate of the percentage by which the code 
could be shrunk is optimistic in predicting that any 

number of copies of a section of code could be replaced 

by one copy the same size, since the copies are not gen- 
erally complete semantic units that could be directly 

turned into procedures and in some cases, there may 

be valid reasons for separate copies, such as efficiency. 

An obvious question is whether the output from 

dup couId be used to  generate procedures with param- 
eters automatically from the input to reduce the size 
of the code. Regretfully, the answer appears to be neg- 
ative. Since the code segments identified in matches 
usually do not correspond exactly to subtrees in the 
parse tree for the program, or to any obvious semantic 
unit, a programmer would need to  rewrite the code by 

hand. However, the output from dup would be help- 

ful in determining the scope of the procedures and the 
formal parameters. 

A problem that has been only partially solved by 
dup is how to factor duplication into repetitions of 
short blocks of code, as in factoring abcabcabc into 

500 loo0 

Figure 8: The plot for a file with an anomaly: a small 

gap between two matches. 

  ab^)^, where a,  b, and c represent distinct lines of 
code. (In real code, the copies of abc would have pa- 
rameter changes and not be exactly the same.) Dup 

can identify repetitive regions of code from overlap- 

ping matches, but more work needs to  be done on 

algorithms to  find the factorization. 

Another challenge is how to aid a programmer in 

examining the large amount of output generated from 

a large software system. A graphical user interface 
would probably be useful in this regard. 

Another useful program would be one that searches 

code for a parameterized match to  a particular code 
segment. A programmer making a bug fix could then 
search for other related sections of code that might 
also require the same bug fix, without having to  obtain 
all maximal matches for the whole body of code via 

dup. The author has developed algorithms to  do this 
by a generalization of a Boyer-Moore-type algorithm 

for parameterized pattern matching [4]. 
Finally, if sections of code are reused informally by 

copying, they may be good candidates for more formal 

reuse via a library. This would be especially true if 
they have been copied from one system to another. It 
would be interesting to compare different systems to 
see if any procedures are found in common. 
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