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Abstract. Modularity is a recently introduced quality measure for
graph clusterings. It has immediately received considerable attention in
several disciplines, and in particular in the complex systems literature,
although its properties are not well understood. We study the problem
of finding clusterings with maximum modularity, thus providing theo-
retical foundations for past and present work based on this measure.
More precisely, we prove the conjectured hardness of maximizing modu-
larity both in the general case and with the restriction to cuts, and give
an Integer Linear Programming formulation. This is complemented by
first insights into the behavior and performance of the commonly applied
greedy agglomaration approach.

1 Introduction

Graph clustering is a fundamental graph-theoretic problem in data and, more
specifically, network analysis [1]. Studied for decades and applied in many set-
tings, it is currently popular as the problem of partitioning networks into commu-
nities. In this line of research, a novel graph clustering index called modularity
has been proposed recently [2]. The rapidly growing interest in this measure
prompted a series of follow-up studies on various applications and possible ad-
justments (see, e.g., [3,4,5,6]). Moreover, an array of heuristic algorithms has
been proposed to optimize modularity. These are based on a greedy agglomer-
ation [7], on spectral division [8,9], simulated annealing [10], or extremal opti-
mization [11] to name but a few prominent examples. While these studies often
provide subjective plausibility arguments in favor of the resulting partitions, we
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know of only one attempt to characterize properties of clusterings with maxi-
mum modularity [3]. In particular, none of the proposed algorithms has been
shown to produce partitions that are optimal with respect to modularity.

In this paper we study the problem of finding clusterings with maximum
modularity, thus providing theoretical foundations for past and present work
based on this measure. More precisely, we proof the conjectured hardness of
maximizing modularity both in the general case and the restriction to cuts, and
give an integer linear programming formulation to facilitate optimization without
enumeration of all clusterings. Since the most commonly employed heuristic to
optimize modularity is based on greedy agglomeration, we investigate its worst-
case behavior. In fact, we give a graph family for which the greedy approach
yields an approximation factor no better than two. In addition, our examples
indicate that the quality of greedy clusterings may heavily depend on the tie-
breaking strategy utilized. In fact, in the worst case, no approximation factor
can be provided. These performance studies are concluded by partitioning some
previously considered networks optimally, which does yield further insight.

This paper is organized as follows. Section 2 contains brief preliminaries, for-
mulations of modularity and an ILP formulation of the problem. Basic and
counterintuitive properties of modularity are observed in Sect. 3. Our NP-
completeness proofs are given in Sect. 4, followed by an analysis of the greedy
approach in Sect. 5. Our work is concluded by characterizations of revisited
examples from previous work in Sect. 6 and a brief discussion in Sect. 7.

2 Preliminaries

Throughout this paper, we will use the notation of [1]. More precisely, we assume
that G = (V, E) is an undirected connected graph with n := |V | vertices, m :=
|E| edges. Denote by C = {C1, . . . , Ck} a partition of V . We call C a clustering
of G and the Ci, which are required to be non-empty, clusters; C is called trivial
if either k = 1 or k = n. We denote the set of all possible clusterings of a
graph G with A (G). In the following, we often identify a cluster Ci with the
induced subgraph of G, i. e., the graph G[Ci] := (Ci, E(Ci)), where E(Ci) :=
{{v, w} ∈ E : v, w ∈ Ci}. Then E(C) :=

⋃k
i=1 E(Ci) is the set of intra-cluster

edges and E \ E(C) the set of inter-cluster edges. The number of intra-cluster
edges is denoted by m(C) and the number of inter-cluster edges by m(C). The
set of edges that connect Ci and Cj is denoted by E(Ci, Cj).

2.1 Definition of Modularity

Modularity is a quality index for clusterings. Given a simple graph G = (V, E),
we follow [2] and define the modularity q (C) of a clustering C as

q (C) =
∑

C∈C

[
|E(C)|

m
−

(∑
v∈C deg(v)

2m

)2
]

. (1)
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This formula reveals an inherent trade-off: to maximize the first term, many
edges should be contained in clusters, whereas the minimization of the second
term is achieved by splitting the graph into many clusters with small total de-
grees. Note that the first term |E(C)|/m is also known as coverage [1].

2.2 Maximizing Modularity Via Integer Linear Programming

The problem of maximizing modularity can be cast into a very simple and in-
tuitive integer linear program (ILP). Given a graph G = (V, E) with n :=
|V | nodes, we define n2 decision variables Xuv ∈ {0, 1}, one for every pair of
nodes u, v ∈ V . The key idea is that these variables can be interpreted as an
equivalence relation (over V ) and thus form a clustering. In order to ensure
consistency, we need the following constraints, which guarantee

reflexivity ∀ u : Xuu = 1 ,

symmetry ∀ u, v : Xuv = Xvu , and

transitivity ∀ u, v, w :

⎧
⎨

⎩

Xuv + Xvw − 2 · Xuw ≤ 1
Xuw + Xuv − 2 · Xvw ≤ 1
Xvw + Xuw − 2 · Xuv ≤ 1

.

The objective function of modularity then becomes

1
2m

∑

(u,v)∈V 2

(

Euv − deg(u) deg(v)
2m

)

Xuv ,

with Euv =

{
1 , if (u, v) ∈ E

0 , otherwise
.

Note that this ILP can be simplified by pruning redundant variables and con-
straints, leaving only

(
n
2

)
variables and

(
n
3

)
constraints.

3 Fundamental Observations

In the following, we identify basic structural properties that clusterings with
maximum modularity fulfill. We first focus on the range of modularity, for which
Lemma 1 gives the lower and upper bound.

Lemma 1. Let G be an undirected and unweighted graph and C ∈ A (G). Then
−1/2 ≤ q (C) ≤ 1 holds.

Lemma 1 is proven by minimizing modularity, for details see [12]. As a result,
any bipartite graph Ka,b with the canonic clustering C = {Ca, Cb} yields the
minimum modularity of −1/2. The upper bound is obvious from our reformula-
tion in Equation (1), and has been observed previously [3,4,13]. It can only be
attained in the specific case of a graph with no edges, where coverage is com-
monly defined to be 1. The following four results strongly characterize the rough
structure of a clustering with maximum modularity.
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Corollary 1. Isolated nodes have no impact on modularity.
Corollary 1 directly follows from the fact that modularity depends on edges and
degrees, thus, an isolated node does not contribute, regardless of its association
to a cluster.

Lemma 2. A clustering with maximum modularity has no cluster that consists
of a single node with degree 1.

Lemma 3. There is always a clustering with maximum modularity, in which
each cluster consists of a connected subgraph.

The proofs of Lemmas 2 and 3 can be found in [12] and are straightforward.
Both rely on the fact that a strict increase in modularity is possible, if they are
violated.
Corollary 2. A clustering of maximum modularity does not include discon-
nected clusters.
Corollary 2 follows from Lemma 3 and Equation (1). In the following, we exclude
isolated nodes from further consideration, i. e., all nodes are assumed to be of
degree greater than zero. Thus, the search for an optimum can be restricted to
clusterings, in which clusters are connected subgraphs and there are no clusters
consisting of nodes with degree 1.

3.1 Counterintuitive Behavior

In the last section, we listed some intuitive and desirable properties like connec-
tivity within clusters for clusterings of maximum modularity. However, due to
the enforced balance between coverage and the sums of squared cluster degrees,
counter-intuitive situations arise. These are non-locality, scaling behavior, and
sensitivity to satellites.

(a) (b)

Fig. 1. Non-local behavior. Clus-
ters are represented by colors.

Non-Locality. At a first view, modularity
seems to be a local quality measure. Recalling
Equation (1), each cluster contributes sepa-
rately. However, the example presented in Fig-
ures 1(a) and 1(b) exhibit a typical non-local
behavior. In these figures, clusters are rep-
resented by colors. By adding an additional
node connected to the leftmost node, the op-
timal clustering is altered completely. Accord-
ing to Lemma 2 the additional node has to be clustered together with the leftmost
node. This leads to a shift of the leftmost white node from the white cluster to
the black cluster, although locally its neighborhood structure has not changed.

Sensitivity to Satellites. A clique with leaves is a graph of 2n nodes that consists
of a clique Kn and n leaf nodes of degree one, such that each node of the clique
is connected to exactly one leaf node. For a clique, the trivial clustering with
k = 1 has maximum modularity. For a clique with leaves, however, the optimal
clustering changes to k = n clusters, in which each cluster consists of a connected
pair of leaf and clique nodes. Figure 2(a) shows such an example.
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(a) (b)

Fig. 2. Scaling behavior.
Clustering by colors.

Scaling Behavior. Figures 2(a) and 2(b) display the
scaling behavior of modularity. By simply doubling
the graph presented in Figure 2(a), the optimal clus-
tering is altered completely. While in Figure 2(a) we
obtain three clusters each consisting of the minor K2,
the clustering with maximum modularity of the graph
in Figure 2(b) consists of two clusters, each being a
graph equal to the one in Figure 2(a). This behavior is
in line with the previous observations in [3,5], where it was observed that size and
structure of clusters in the optimum clustering depend on the total number of
links in the network. Hence, clusters that are identified in smaller graphs might
be combined to a larger cluster in a optimum clustering of a larger graph. The
formulation of Equation 1 mathematically explains this observation as modular-
ity optimization strives to optimize the trade-off between coverage and degree
sums. This provides a rigorous understanding of the observations made in [3,5].

4 NP-Completeness

It has been conjectured that maximizing modularity is hard [7], but no formal
proof was provided to date. We next show that decision version of modularity
maximization is indeed NP-complete.

Problem 1 (Modularity). Given a graph G and a number K, is there a
clustering C of G, for which q (C) ≥ K?

Note that we may ignore the fact that, in principle, K could be a real number
in the range [0, 1], because 4m2 · q (C) is integer for every partition C of G and
polynomially bounded in the size of G. Our hardness result for Modularity is
based on a transformation from the following decision problem.

Problem 2 (3-Partition). Given 3k positive integer numbers a1, . . . , a3k such
that the sum

∑3k
i=1 ai = kb and b/4 < ai < b/2 for an integer b and for all

i = 1, . . . , 3k, is there a partition of these numbers into k sets, such that the
numbers in each set sum up to b?

We show that an instance A = {a1, . . . , a3k} of 3-Partition can be transformed
into an instance (G(A), K(A)) of Modularity, such that G(A) has a clustering
with modularity at least K(A), if and only if a1, . . . , a3k can be partitioned into
k sets of sum b = 1/k ·

∑k
i=1 ai each. It is crucial that 3-Partition is strongly

NP-complete [14], i.e. the problem remains NP-complete even if the input is
represented in unary coding. This implies that no algorithm can decide the
problem in time polynomial even in the sum of the input values, unless P = NP .
More importantly, our transformation need only be pseudo-polynomial.

The reduction is defined as follows. Given an instance A of 3-Partition, con-
struct a graph G(A) with k cliques (completely connected subgraphs) H1, . . . , Hk

of size a =
∑3k

i=1 ai each. For each element ai ∈ A we introduce a single element
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node, and connect it to ai nodes in each of the k cliques in such a way that each
clique member is connected to exactly one element node. It is easy to see that
each clique node then has degree a and the element node corresponding to ele-
ment ai ∈ A has degree kai. The number of edges in G(A) is m = k/2 · a(a+ 1).
Note that the size of G(A) is polynomial in the unary coding size of A, so that
our transformation is indeed pseudo-polynomial. Before specifying bound K(A)
for the instance of Modularity, we will show three properties of maximum
modularity clusterings of G(A). Together these properties establish the desired
characterization of solutions for 3-Partition by solutions for Modularity.

Lemma 4. In a maximum modularity clustering of G(A), none of the cliques
H1, . . . , Hk is split.

Lemma 5. In a maximum modularity clustering of G(A), every cluster contains
at most one of the cliques H1, . . . , Hk.

The proofs of Lemmas 4 and 5 can be found in [12]. Both are based on the fact
that modularity can be increased by a modification of the clustering, if either
Lemma is violated. Next, we observe that the optimum clustering places at most
one clique completely into a single cluster.

The previous two lemmas show that any clustering can be strictly improved
to a clustering that contains k clique clusters, such that each one completely
contains one of the cliques H1, . . . , Hk (possibly plus some additional element
nodes). In particular, this must hold for the optimum clustering as well. Now
that we know how the cliques are clustered we turn to the element nodes. As they
are not directly connected, it is never optimal to create a cluster consisting only
of element nodes. Splitting such a cluster into singleton clusters, one for each
element node, reduces the squared degree sums but keeps the edge coverage
at the same value. Hence, such a split yields a clustering with strictly higher
modularity. The next lemma shows that we can further strictly improve the
modularity of a clustering with a singleton cluster of an element node by joining
it with one of the clique clusters.

Lemma 6. In a maximum modularity clustering of G(A), there is no cluster
composed of element nodes only.

Closely following the proofs of the previous two lemmas, we obtain the proof
of Lemma 6 in [12]. We have shown that for the graphs G(A) the clustering
of maximum modularity consists of exactly k clique clusters, and each element
node belongs to exactly one of the clique clusters. Combining the above results,
we now state our main result:

Theorem 3. Modularity is strongly NP-complete.

Proof. For a given clustering C of G(A) we can check in polynomial time whether
q (C) ≥ K(A), so clearly Modularity ∈ NP . For NP-completeness we trans-
form an instance A={a1, . . . , a3k} of 3-Partition into an instance (G(A), K(A))
of Modularity. We have already outlined the construction of the graph G(A)
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above. For the correct parameter K(A) we consider a clustering in G(A) with
the properties derived in the previous lemmas, i. e., a clustering with exactly k
clique clusters. Any such clustering yields exactly (k − 1)a inter-cluster edges,
so the edge coverage is given by

∑

C∈C

|E(C)|
m

=
m − (k − 1)a

m
= 1 − 2(k − 1)a

ka(a + 1)
= 1 − 2k − 2

k(a + 1)
.

Hence, the clustering C = (C1, . . . , Ck) with maximum modularity must mini-
mize deg(C1)2 + deg(C2)2 + . . . + deg(Ck)2. This requires a distribution of the
element nodes between the clusters which is as even as possible with respect to
the sum of degrees per cluster. In the optimum case we can assign each cluster
element nodes corresponding to elements that sum to b = 1/k ·a. In this case the
sum of degrees of element nodes in each clique cluster is equal to k · 1/k · a = a.
This yields deg(Ci) = a2 + a for each clique cluster Ci, i = 1, . . . , k, and gives

deg(C1)2 + . . . + deg(Ck)2 ≥ k(a2 + a)2 = ka2(a + 1)2.

Equality holds only in the case, in which an assignment of b to each cluster is
possible. Hence, if there is a clustering C with q (C) of at least

K(A) = 1 − 2k − 2
k(a + 1)

− ka2(a + 1)2

k2a2(a + 1)2
=

(k − 1)(a − 1)
k(a + 1)

then we know that this clustering must split the element nodes perfectly to the
k clique clusters. As each element node is contained in exactly one cluster, this
yields a solution for the instance of 3-Partition. With this choice of K(A) the
instance (G(A), K(A)) of Modularity is satisfiable only if the instance A of
3-Partition is satisfiable.

Otherwise, suppose the instance for 3-Partition is satisfiable. Then there is
a partition into k sets such that the sum over each set is 1/k ·a. If we cluster the
corresponding graph by joining the element nodes of each set with a different
clique, we get a clustering of modularity K(A). This shows that the instance
(G(A), K(A)) of Modularity is satisfiable if the instance A of 3-Partition is
satisfiable. This completes the reduction and proves the theorem. ��
This result naturally holds also for the straightforward generalization of maxi-
mizing modularity in weighted graphs [15]. Instead of using the numbers of edges
the definition of modularity employs the sum of edge weights for edges within
clusters, between clusters and in the total graph.

4.1 Special Case: Modularity with a Bounded Number of Clusters

A common clustering approach is based on iteratively identifying cuts, see for
example [16,17,18]. The general problem being NP-complete, we now complete
our hardness results by proving that the restricted optimization problem is hard
as well. More precisely, we consider the two problems of computing the clustering
with maximum modularity that splits the graph into exactly or at most two
clusters. Although these are two different problems, our hardness result holds
for both versions, hence, we define the problem cumulatively.
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Problem 4 (2-Modularity). Given a graph G and a number K, is there a
clustering C of G into exactly/at most 2 clusters, for which q (C) ≥ K?

Our proof uses a reduction similar to the one for showing the hardness of the
“MinDisAgree[2]” problem of correlation clustering [19]. The reduction is from
Minimum Bisection for Cubic Graphs (MB3).

Problem 5 (Minimum Bisection for Cubic Graphs). Given a 3-regular
graph G with n nodes and an integer c, is there a clustering into two clusters of
n/2 nodes each such that it cuts at most c edges?

This problem has been shown to be strongly NP-complete in [20]. We construct
an instance of 2-Modularity from an instance of MB3 as follows. For each
node v from the graph G = (V, E) we attach n − 1 new nodes and construct
an n-clique. We denote these cliques as cliq(v) and refer to them as node clique
for v ∈ V . Hence, in total we construct n different new cliques, and after this
transformation each node from the original graph has degree n + 2. Note that
a cubic graph with n nodes has exactly 1.5n edges. In our adjusted graph there
are exactly m = (n(n − 1) + 3)n/2 edges.

We will show that an optimum clustering C∗ of 2-Modularity in the ad-
justed graph has exactly two clusters. Furthermore, such a clustering corresponds
to a minimum bisection of the underlying MB3 instance. In particular, we give
a bound K such that the MB3 instance has a bisection cut of size at most c if
and only if the corresponding graph has 2-modularity at least K. We begin by
noting that there is always a clustering C with q (C) > 0. Hence, C∗ must have
exactly two clusters, as no more than two clusters are allowed. This serves to
show that our proof works for both versions of 2-modularity, in which at most
or exactly two clusters must be found.

Lemma 7. For every graph constructed from a MB3 instance, there exists a
clustering C = {C1, C2} such that q (C) > 0. In particular, the clustering C∗ has
two clusters.

The proof of Lemma 7 can be found in [12]. Next, we show that in an optimum
clustering, all the nodes of one node clique cliq(v) are located in one cluster.
The proof is also published in [12]

Lemma 8. For every node v ∈ V a cluster C ∈ C∗ exists, such that cliq(v) ⊆ C.

The final lemma before defining the appropriate input parameter K for the 2-
Modularity and thus proving the correspondence between the two problems
shows that the clusters in the optimum clusterings have the same size. The proof
can be found in [12].

Lemma 9. In C∗, each cluster contains exactly n/2 complete node cliques.

Finally, we can state theorem about the complexity of 2-Modularity:
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Theorem 6. 2-Modularity is strongly NP-complete.

Proof. Let (G, c) be an instance of Minimum Bisection for Cubic Graphs,
then we construct a new graph G′ as stated above and define K := 1/2 − c/m.

As we have shown in Lemma 9 that each cluster of C∗ that is an optimum
clustering of G′ with respect to 2-Modularity has exactly n/2 complete node
cliques, the sum of degrees in the clusters is exactly m. Thus, it is easy to see
that if the clustering C∗ meets the following inequality

q (C∗) ≥ 1 − c

m
− 2m2

4m2 =
1
2

− c

m
= K ,

then the number of inter-cluster edges can be at most c. Thus the clustering C∗

induces a balanced cut in G with at most c cut edges. ��

This proof is particularly interesting as it highlights that maximizing modularity
in general is hard due to the hardness of minimizing the squared degree sums
on the one hand, whereas in the case of two clusters this is due to the hardness
of minimizing the edge cut.

5 The Greedy Algorithm

In contrast to the abovementioned iterative cutting strategy, another commonly
used approach to find clusterings with good quality scores is based on greedy
agglomeration.In the case of modularity, this approach is particularly wide-
spread [7]. It starts with the singleton clustering and iteratively merges those
two clusters that yield a clustering with the best modularity, i. e., the largest
increase or the smallest decrease is chosen. After n − 1 merges the clustering
that achieved the highest modularity is returned. Note that n − 1 is an upper
bound on the number of iterations and that one can terminate the algorithm as
soon as no further increase in modularity is possible. This is due to a property
called single-peakedness, proven in [7].

Since it is NP-hard to maximize modularity in general graphs, it is unlikely
that this greedy algorithm is optimal. In fact, we sketch a graph family, where
the above greedy algorithm has an approximation factor of 2, asymptotically
(Theorem 8). While the former result relies on a deterministic procedure of the
algorithm, in the following we even point out instances where a specific way of
breaking ties of equally attractive merges yield a clustering with modularity of
0, while the optimum clustering has a strictly positive score (Theorem 7).

Modularity is defined such that it takes values in the interval [−1/2, 1] for any
graph and any clustering (Lemma 1). In particular the modularity of a trivial
clustering placing all vertices into a single cluster has a value of 0. We exploit
this technical peculiarity to show that the greedy algorithm has an unbounded
approximation ratio.

Theorem 7. There is no finite approximation factor for the greedy algorithm
for finding clusterings with maximum modularity.
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The full proof can be found in [12]. The key observation is a worst-case scenario
in the sense that greedy is in each iteration supposed to pick exactly the ”worst”
merge choice of several equivalently attractive alternatives. As mentioned ear-
lier, this negative result is due to the formulation of modularity, which yields
values from the interval [−1/2, 1]. For instance, a linear remapping of the range
of modularity to the interval [0, 1], the greedy algorithm yields a value of 1/3
compared to the new optimum score of 2/3. In this case the approximation fac-
tor would be 2. Next, we provide a weaker lower bound for a different class of
graphs, but making no assumptions on random choices of the algorithm.

Theorem 8. The approximation factor of the greedy algorithm for finding clus-
terings with maximum modularity is no better than 2.

Fig. 3. Clique with
attached paths

The founding idea of the proof of Theorem 8 is a special
graph family which is constructed by attaching a path to
each node of a clique. An example is given in Figure 3.
We show that greedy algorithm always yields n clusters,
each of which includes a vertex v and the attached path.
The clustering with maximal modularity, however, seper-
ates the clique from the paths. The approximation factor
asymptotically approaches 2 for n going to infinity with
paths of length 1/2

√
n attached to a clique of size n. See [12] for details.

6 Examples Revisited

Applying our results about maximizing modularity gained so far, we revisit two
example networks that were used in related work [21,2,8]. More precisely, we
compare published greedy solutions with respective optima, thus revealing two
peculiarities of modularity. First, we illustrate a behavioral pattern of the greedy
merge strategy and, second, we relativize the quality of the greedy approach.

The first instance, Figure 4, is the karate club network of Zachary originally
introduced in [21] and used for demonstration in [2]. The real-world partition of
the club is given by the shape of the nodes, while the colors indicate the clustering
calculated by the greedy algorithm and blocks refer to a optimum clustering
maximizing modularity, that has been obtained by solving the above ILP. The
corresponding scores of modularity are 0.431 for the optimum clustering, 0.397
for the greedy clustering, and 0.383 for the clustering given by the split. Observe
the following peculiarity: Due to the attempt to balance the squared sum of
degrees (over the clusters), a node with large degree (white square) and one with
small degree (white circle) are merged relatively soon. Using the same argument,
such a cluster will unlikely be merged with another one. As a result, a cluster
rarely has only one node, but relative small clusters still occur, featuring skew
distribution of node degrees.

The second instance, Figure 5, is a network of books on politics, compiled by
V. Krebs and used for demonstration in [8]. Nodes represent books on American
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Fig. 4. The network of a Karate club in-
troduced by Zachary [21]

Fig. 5. The networks of books on politics
compiled by V. Krebs

politics and edges join pairs of books that are frequently purchased together
bought from Amazon.com. The optimum clustering maximizing modularity is
given by the shapes of nodes, the colors of nodes indicate a clustering calculated
by the greedy algorithm and the blocks show a clustering calculated by Geomet-
ric MST Clustering (GMC) which is introduced in [22] using the geometric mean
of coverage and performance, both of which are quality indices discussed in the
same paper. The corresponding scores of modularity are 0.527 for the optimum
clustering, 0.502 for the greedy clustering, and 0.510 for the GMC clustering.
A key observation is that GMC outperforms the greedy algorithm although it
does not consider modularity in its calculations. Moreover, the comparison of
the structure of the calculated clusterings reveals that several clusterings close
to the optimum one still have relative large modularity score. Thus, the good
performance of the greedy approach comes as no surprise.

7 Conclusion

We provide the first formal assessments of a popular clustering index known as
modularity. We have settled the open question about the complexity status of
modularity maximization by proving its NP-completeness in the strong sense.
We show that this even holds for the restricted version with a bound of two on
the number of clusters. This justifies the further investigation of approximation
algorithms and heuristics, such as the widespread greedy approach. For the lat-
ter we prove a first lower bound on the approximation factor. Our analysis of the
greedy algorithm also includes a brief comparison with the optimum clustering
which is calculated via ILP on some real-world instances, thus encouraging a
reconsideration of previous results. For the future we plan an extended analy-
sis and the development of a clustering algorithm with provable performance
guarantees. The special properties of the measure, its popularity in application
domains and the absence of fundamental theoretical insights hitherto, render
further mathematically rigorous treatment of modularity necessary.
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