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Abstract. A discrete spherical geodesic path between two voxels s and
t lying on a discrete sphere is a/the 1-connected shortest path from s to
t, comprising voxels of the discrete sphere intersected by the real plane
passing through s, t, and the center of the sphere. We show that the
set of sphere voxels intersected by the aforesaid real plane always con-
tains a 1-connected cycle passing through s and t, and each voxel in
this set lies within an isothetic distance of 3

2
from the concerned plane.

Hence, to compute the path, the algorithm starts from s, and iteratively
computes each voxel p of the path from the predecessor of p. A novel
number-theoretic property and the 48-symmetry of discrete sphere are
used for searching the 1-connected voxels comprising the path. The al-
gorithm is output-sensitive, having its time and space complexities both
linear in the length of the path. It can be extended for constructing 1-
connected discrete 3D circles of arbitrary orientations, specified by a few
appropriate input parameters. Experimental results and related analysis
demonstrate its efficiency and versatility.

Keywords: Discrete sphere, geodesic path, geometry of numbers, dis-
crete 3D circles.

1 Introduction

The shortest path between two points on a curved surface is called geodesic.
There exist several works related to geodesics on a 3D triangulated surface,
e.g., the fast marching technique [8]. This technique and Polthier’s straightest
geodesics theory [13] are used in [11] for finding approximate geodesics on tri-
angulated surfaces. For exact geodesics, a cubic-time line-of-sight algorithm is
proposed in [1].

The first algorithm to solve the discrete geodesic problem as the shortest
path (SP) between a source and a destination point on an arbitrarily polyhedral
surface is referred in the literature as MMP [12]. The discrete surface points are
first preprocessed and stored in a suitable data structure in O(n2 logn) time, and
then the actual SP is reported by continuous Dijkstra’s algorithm in O(k+log n)
time, where n = #edges on the surface and k = #faces crossed by SP. Improving
MMP to O(n2) time complexity is done in CH algorithm [4] using a set of
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windows on the polyhedron edges for encoding the shortest paths. However, it
is shown in [14] that MMP, in practice, runs faster than CH. Later, it has been
shown in [16] that CH can be made to run faster than MMP, using priority
queue and filtering out the useless windows. Recently, a parallel version of CH
is proposed in [19]. Further developments with graph-theoretic and numerical
methodologies may be seen in [17, 18].

Problems related to geodesic paths and their characterization in the digital
space have gained significant attention in recent time. In [5], a new geodesic
metric and the A∗ algorithm are used to find the shortest path between a source
and a destination voxel. In [3], rubberband algorithm is proposed for computation
of minimum-length polygonal curves in cube-curves in 3D space. The idea can
be extended to solve various Euclidean shortest path (ESP) problems inside of a
simple cube arc, inside of a simple polygon, on the surface of a convex polytope,
or inside of a simply-connected polyhedron [10].

In R3, a spherical geodesic path is defined between two points p ∈ R3 and
q ∈ R3 lying on a real sphere SR

r of radius r. The path always lies along the
intersection circle of SR

r and the 3D plane passing through p, q, and the center of
SR

r . We make an analogous definition for discrete spherical geodesic path π
Z

r (s, t)
from a point (voxel) s ∈ Z3 to another point t ∈ Z3 lying on the discrete
sphere, SZ

r , of radius r. W.l.o.g., we fix the center of SZ

r at o(0, 0, 0), and consider
r as a positive integer. Then, πZ

r (s, t) is defined as a/the 1-connected shortest
path from s to t, comprising only those voxels of SZ

r which lie sufficiently close
to the real plane ΠR

r (s, t) passing through s, t, and o.
We first show that there always exists a 1-connected cycle in the set IZr (s, t)

comprising the voxels of SZ

r intersected by ΠR

r (s, t). The set IZr (s, t) admits
the characterization that all its voxels lie within an isothetic distance of 3

2 from
ΠR

r (s, t). Subsequently, π
Z

r (s, t) becomes a subset of IZr (s, t), and is efficiently ob-
tained by a prioritized Breadth-First-Search algorithm on the underlying graph
corresponding to IZr (s, t). For computation of IZr (s, t), S

Z

r is defined as the irre-
ducible 2-separable set of voxels (3D integer points) that are uniquely identified
by certain number-theoretic properties. The algorithm computes the set IZr (s, t)
using these properties, without considering the entire set SZ

r . Figure 1 shows a
result of our algorithm, where the search space of BFS, its 18 neighborhood on
SZ

r , and the final geodesic path π
Z

r (s, t) are shown in different colors.
The rest of the paper is organized as follows. Section 2 explains certain el-

ementary number-theoretic properties of a digital sphere, used for computing
IZr (s, t). Section 3 contains characterization of discrete spherical geodesic path
and circle. The algorithm to compute the geodesic path from a point s to a point
t lying on SZ

r is presented in Section 4. Section 5 contains some test results, and
Section 6 the concluding notes.

2 Digital Sphere

We first introduce definitions and properties of digital sphere related to this
work. These are subsequently used to design the algorithms for finding geodesic
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Fig. 1. A geodesic path reported by the proposed algorithm for r = 17. (a)Red:
s(−6,−1, 16) and t(2, 14, 10); blue: IZr (s, t); yellow: 18-neighborhood of the breadth-
first search space. (b)The geodesic path π

Z

r (s, t) shown in red.

paths and 3D circles in Z3. The first point to observe is that, opposed to a real
sphere, a digital sphere has only nine planes of symmetry. Three of these are
the planes containing the great circles parallel to three coordinate planes; and
for each of these three planes, there exist two more planes aligned at +450 and
−450 to it. These nine planes of symmetry give rise to eight coordinate octants,
called c-octants. Each c-octant contains 6 Möbius triangles [7], thus dividing the
sphere into 48 quadraginta octants or q-octants.

2.1 Representation

The c-octants and the q-octants are uniquely represented by 3-tuples (see Ap-
pendix), which are carefully prepared for efficient implementation of our algo-
rithm. Each c-octant Ci is represented by a 3-tuple of signs of coordinate axes,

namely Ci :=
(

c
(1)
i , c

(2)
i , c

(3)
i

)

. For example, C1 = (+,+,+), C2 = (−,+,+),

and so forth. The 3-tuple for each q-octant, on the contrary, represents the

three signed coordinate axes. In particular, in the 3-tuple Qi :=
(

q
(1)
i , q

(2)
i , q

(3)
i

)

representing Qi, each element q
(·)
i has two variables, namely ω and σ. The vari-

able ω contains a literal (name of the coordinate axis) from {x, y, z}, and the
variable σ contains the sign of the corresponding coordinate. With this repre-
sentation, we have Q1 = (+x,+y,+z), Q2 = (+y,+x,+z), Q3 = (+y,+z,+x),
. . . , Q24 = (−x,+z,−y), . . . , Q48 = (−x,−z,−y). That is, for Q24 as an in-

stance, we have ω[q
(1)
48 ] = x, σ[q

(1)
48 ] = ‘−’, ω[q

(2)
48 ] = z, etc. Our representation

ensures the following.

1. Ca = {Qb : b = 6(a− 1) + c, c = 1, 2, . . . , 6}.
2. Two q-octants Qi and Qj lie in the same c-octant if and only if ⌈i/6⌉ = ⌈j/6⌉

(with C⌈i/6⌉ as their common c-octant).
Equivalently, Qi and Qj lie in the same c-octant if and only if σ[qi] = σ[qj ]
∀(qi, qj) ∈ {(q′i, q

′
j) :

(

(q′i, q
′
j) ∈ Qi ×Qj

)

∧
(

ω[q′i] = ω[q′j ]
)

}.
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3. Let w = 0 be one of the three coordinate planes, with w ∈ {x, y, z}. Then
two c-octants Ci and Cj lie in two different half-spaces defined by w = 0 if
and only if the elements in Ci and Cj corresponding to w are different.

Example 1. C1(+,+,+) and C2(−,+,+) have their 1st element different, which implies

they are in two different half-spaces defined by the coordinate plane x = 0; however,

their 2nd and 3rd elements being both ‘+’, either of them lies in the half-space y � 0

and in the half-space z � 0.

2.2 Metrics

We define x-distance and y-distance between two (real or integer) points, p(i, j)
and p′(i′, j′), as dx(p, p

′) = |i − i′| and dy(p, p
′) = |j − j′|, respectively. In R3

or in Z3, we have also z-distance, given by dz(p, p
′) = |k − k′|, for p(i, j, k) and

p′(i′, j′, k′). Using these inter-point distances, we define the respective x-, y-, and
z-distances between a point p(i, j, k) and a surface S as follows. Let dx(p, S) be
the x-distance between a point p(i, j, k) and a surface S. If there exists a point
p′(x′, y′, z′) in S such that (y′, z′) = (j, k), then dx(p, S) = dx(p, p

′); otherwise,
dx(p, S) = ∞. The other two distances, i.e., dy(p, S) and dz(p, S), are defined in
a similar way; note that the metric dz(p, S) is not defined in 2D. These metrics
are used to define the isothetic distance as follows.

Definition 1. Between two points p1(i1, j1) and p2(i2, j2), the isothetic distance
is taken as the Minkowski norm [9], d∞(p1, p2) = max{dx(p1, p2), dy(p1, p2)};
between a point p(i, j) and a curve C, it is d⊥(p, C) = min{dx(p, C), dy(p, C)},
where dx(p, C) and dy(p, C) are defined similar to dx(p, S) and dy(p, S) respec-
tively; between a 3D point p(i, j, k) and a surface S, it is d⊥(p, S) = min{dx(p, S),
dy(p, S), dz(p, S)}.

2.3 Topology

A voxel is an integer point in 3D space, and equivalently, a 3-cell [9]. Two voxels
are said to be 0-adjacent if they share a vertex (0-cell), 1-adjacent if they share
an edge (1-cell), and 2-adjacent if they share a face (2-cell). Thus, two distinct
voxels, p1(i1, j1, k1) and p2(i2, j2, k2) are 1-adjacent if and only if |i1 − i2| +
|j1 − j2| + |k1 − k2| � 2 and max{|i1 − i2|, |j1 − j2|, |k1 − k2|} = 1; 2-adjacent
if and only if |i1 − i2| + |j1 − j2| + |k1 − k2| = 1; and 0-adjacent if and only if
|i1 − i2| = |j1 − j2| = |k1 − k2| = 1. Clearly, 0-adjacent (1-adjacent) voxels are
not considered as adjacent while considering 1-neighborhood (2-neighborhood)
connectivity. Note that the 0-, 1-, and 2-neighborhood notations, as adopted in
this paper and also in [15], correspond respectively to the classical 26-, 18-, and
6-neighborhood notations used in [6].

Based on above definitions, a digital sphere is said to be 2-separating if it does
not contain any 2-tunnel, that is, its interior and exterior are not connected by
a 2-connected path [6]. A 2-separating digital sphere is irreducible if and only if
it does not contain any simple voxel, that is, removal of any voxel violates its
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topological property of 2-separableness [6]. We use SR

r to denote the real sphere
of radius r and centered at o, use SZ1

r to denote the part of SZ

r lying in Q1, and
use p ∈ SZ

r when a voxel p belongs to (voxel set) SZ

r . Our work is based on the
following definition of digital sphere.

Definition 2. A digital sphere SZ

r is an irreducible 2-separating subset of the
voxel set having isothetic distance less than 1

2 from SR

r .

Note that in [15], the only strict k-separating or irreducible digital sphere re-
sults from outer Gaussian digitization, but its voxels are not limited by a maxi-
mum isothetic distance of 1

2 from SR

r . The closed centered 2-separating digitized
sphere is another proposition in [15], which is not necessarily irreducible.

2.4 Characterization

The characterization of SZ

r is required to decide in constant time whether a
particular voxel (i, j, k) belongs to SZ

r . We start with the following lemmas.

Lemma 1. d⊥
(

p, SR

r

)

=
∣

∣

∣
k −

√

r2 − (i2 + j2)
∣

∣

∣
∀ p(i, j, k) ∈ SZ1

r .

Proof. Let p(i, j, k) ∈ SZ1
r , and (x, j, k), (i, y, k), and (i, j, z) be the respective

points on SR

r taken along the lines parallel to x-, y-, and z-axes, and passing
through p. Observe that the points (x, j, k) and (i, y, k) may be nonexistent, but
the point (i, j, z) always exists. If all three exist, then

x2 + j2 + k2 = i2 + y2 + k2 = i2 + j2 + z2 = r2, or, k2 − z2 = j2 − y2 = i2 − x2

or, (k + z)(k − z) = (j + y)(j − y) = (i+ x)(i − x). (1)

In Q1, i � j � k and x � y � z, or, i+ x � j + y � k + z; so, from Eq. 1,

|k − z| � |j − y| � |i− x|. (2)

If one or both (x, j, k) and (i, y, k) do not exist, then also |k − z| remains the

minimum. Hence, from Eq. 2, d⊥
(

p, SR

r

)

= |k − z| =
∣

∣

∣
k −

√

r2 − (i2 + j2)
∣

∣

∣
. ⊓⊔

Lemma 2. d⊥(p, SR

r ) <
1
2 ∀ p ∈ SZ

r .

Proof. If possible, let, w.l.o.g., p(i, j, k) ∈ SZ1
r , such that

∣

∣

∣
k −

√

r2 − (i2 + j2)
∣

∣

∣
=

1
2 , or, w.l.o.g., k −

√

r2 − (i2 + j2) = − 1
2 , which implies SR

r has p′(i, j, k + 1
2 ) as

the point of intersection in Q1 with the 3D straight line (x = i, y = j). Since

(i, j, k+ 1
2 ) lies on SR

r , we have i
2+ j2+

(

k + 1
2

)2
= r2, which is a contradiction,

since r, i, j, k are all integers. ⊓⊔

Lemma 2 helps in characterizing a voxel p ∈ SZ

r , as stated next.

Theorem 1. p(i, j, k) ∈ SZ

r if and only if p is not simple and i2 + j2 + k2 ∈
[

r2 −max{|i|, |j|, |k|}, r2 +max{|i|, |j|, |k|} − 1
]

.
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Proof. Let, w.l.o.g., p ∈ Q1. So, max{|i|, |j|, |k|} = k. Hence, by Lemma 1 and
Lemma 2, p ∈ SZ1

r if and only if p is not simple and

−
1

2
< k −

√

r2 − (i2 + j2) <
1

2
(3)

⇔ k2 − k +
1

4
< r2 − (i2 + j2) < k2 + k +

1

4
. (4)

Since k2 − k, r2 − (i2 + j2), k2 + k are integers, Eq. 4 is true if and only if

k2 − k < r2 − (i2 + j2) � k2 + k

⇔ r2 − k � i2 + j2 + k2 < r2 + k, (5)

and hence the proof for 1st q-octant. For other q-octants, the proof is similar. ⊓⊔

Now, to obtain the necessary and sufficient condition of deciding whether a
voxel is simple, we need the following theorem.

Theorem 2. A voxel p(i, j, k) with d⊥(p, SR

r ) <
1
2 is simple if and only if i2 +

j2+k2 = r2+max{|i|, |j|, |k|}− 1 and mid{|i|, |j|, |k|} = max{|i|, |j|, |k|}, where
mid{·} denotes the median element.

Proof. As in the proof of Theorem 1, let, w.l.o.g., p ∈ Q1; so, mid{|i|, |j|, |k|} = j
and max{|i|, |j|, |k|} = k. Let also, d⊥(p, SR1

r ) < 1
2 , which implies p satisfies Eq. 5

by Lemma 1 and Lemma 2.
Now, we prove that p(i, j, k) lies on SZ1

r and cannot be a simple voxel if j < k.
For this, first observe that (i, j, k − 1) and (i, j, k + 1) lie in Q1, as j � k − 1.
Next, observe that for any (i′, j′) ∈ Z2, there can be at most one integer value
of k′ so that (i′, j′, k′) satisfies Eq. 3. This implies that (i, j, k − 1) lies in the
interior and (i, j, k + 1) in the exterior of SZ

r . Hence, discarding p would violate
the 2-separableness of SZ

r .
Now, the conditions i2+j2+k2 = r2+max{|i|, |j|, |k|}−1 and mid{|i|, |j|, |k|} =

max{|i|, |j|, |k|} imply (i2 + k2 + k2) = (r2 + k − 1), which is true if and only if

(i2 + (k − 1)2 + k2) = (r2 − k)

⇔ (i, k − 1, k) ∈ SZ

r by Theorem 1, and (i, k, k − 1) ∈ SZ

r

⇔ (i, k, k) is simple.

For p lying in some other octant, the proof follows a similar way. ⊓⊔

Using Theorem 1 and Theorem 2, we get a mathematically refined definition of
digital sphere, as stated in the following theorem.

Theorem 3. The voxel set of the digital sphere SZ

r is given by

⎧

⎨

⎩

(i, j, k) ∈ Z3 : r2 −max{|i|, |j|, |k|} � i2 + j2 + k2 < r2 +max{|i|, |j|, |k|}

∧

((

i2 + j2 + k2 �= r2 +max{|i|, |j|, |k|} − 1
)

∨ (mid{|i|, |j|, |k|} �= max{|i|, |j|, |k|})

)

⎫

⎬

⎭

.
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3 Discrete Spherical Geodesic Path and Circle

Theorem 3 is used to decide in constant time whether a voxel p(i, j, k) belongs
to SZ

r . For generating the discrete spherical geodesic path π
Z

r (s, t) from a voxel
s ∈ SZ

r to a voxel t ∈ SZ

r , we consider the real plane Π
R

r (s, t) that passes through
s, t, and the center of SZ

r . Considering voxels as 3-cells, let IZr (s, t) be the set of
voxels of SZ

r intersected by ΠR

r (s, t). We have the following lemma for IZr (s, t).

Lemma 3. d⊥(p,ΠR

r (s, t)) �
3
2 ∀ p ∈ IZr (s, t).

Proof. Let δe := de(p,Π
R

r (s, t)) be the real (Euclidean) distance of the point p

from ΠR

r (s, t). If Π
R

r (s, t) intersects the voxel p, then δe �
√
3
2 .

Now, let δx = dx(p,Π
R

r (s, t)), δy = dy(p,Π
R

r (s, t)), δz = dz(p,Π
R

r (s, t)). Ob-
serve that δx = δe

cos θx
, δy = δe

cos θy
, δz = δe

cos θz
, where, cos2 θx+cos2 θy+cos2 θz = 1.

Here, cos θx is the angle between the x-axis-parallel line through p and the perpen-
dicular on ΠR

r (s, t) dropped from p, etc. So, the supremum of d⊥(p,ΠR

r (s, t)) :=
min{δx, δy, δz} corresponds to the infimum of the largest element
in Cθ := {cos θx, cos θy, cos θz}, and hence to the infimum of the largest element

in C
(2)
θ := {cos2 θx, cos

2 θy, cos
2 θz}, subject to cos2 θx + cos2 θy + cos2 θz = 1.

Clearly, the largest element in C
(2)
θ is at least 1

3 , or, the largest element in Cθ is
at least 1√

3
, whence d⊥(p,ΠR

r (s, t)) � δe/
1√
3
= 3

2 . ⊓⊔

Theorem 4. For any two voxels s ∈ SZ

r and t ∈ SZ

r , there always exist two 1-
connected paths, πZ

r (s, t)
′ ⊂ IZr (s, t) and πZ

r (t, s)
′′ ⊂ IZr (s, t), such that πZ

r (s, t)
′ ∪

πZ

r (t, s)
′′ forms a 1-connected simple cycle in IZr (s, t).

Proof. Given a continuous surface A, there is a unique supercover of A, defined as
the set of all voxels intersecting A [6]. Hence, if ΠZ

r (s, t) denotes the supercover
of ΠR

r (s, t), then all the voxels—conceived as 3-cells—that are intersected by
ΠR

r (s, t), comprise the set ΠZ

r (s, t). As shown in [2], the supercover of a plane is
2-separable.

We define SZ

r− and SZ

r+ as the respective interior and exterior of SZ

r . So, by
Definition 2, the sets SZ

r− and SZ

r+ are disconnected in 2-neighborhood. Also, let
ΠZ

r−(s, t) = ΠZ

r (s, t)∩SZ

r− and ΠZ

r+(s, t) = ΠZ

r (s, t)∩SZ

r+ . Note that Π
Z

r−(s, t) is
a non-empty set and always contains o for r � 1, since ΠR

r (s, t) passes through
o. This yields

ΠZ

r (s, t) = ΠZ

r−(s, t) ∪ IZr (s, t) ∪ΠZ

r+(s, t) (6)

where, ΠZ

r−(s, t), I
Z

r (s, t), and ΠZ

r+(s, t) are pairwise disjoint.
Now, as SZ

r− and SZ

r+ are not 2-connected, their respective subsets ΠZ

r−(s, t)
and ΠZ

r+(s, t) are also not 2-connected. So, by Eq. 6, the set IZr (s, t) forms a
2-separating set between ΠZ

r−(s, t) and ΠZ

r+(s, t), or, equivalently, I
Z

r (s, t) is a
1-connected set that also 2-separates SZ

r . Therefore, there always exists a 1-
connected simple path πZ

r (s, t)
′ ∈ IZr (s, t) from s to t, and another 1-connected

simple path πZ

r (t, s)
′′ ∈ IZr (s, t) from t to s, where πZ

r (s, t)
′ ∩ πZ

r (t, s)
′′ = {s, t}.

Hence, there always exists a 1-connected simple cycle (πZ

r (s, t)
′ ∪ πZ

r (t, s)
′′) in

IZr (s, t) containing any two voxels s ∈ SZ

r and t ∈ SZ

r . ⊓⊔
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From Theorem 4, it is clear that for two given voxels s ∈ SZ

r and t ∈ SZ

r , we
get at least two 1-connected paths, πZ

r (s, t)
′ and πZ

r (s, t)
′′, in IZr (s, t), having no

voxels in common, excepting s and t. The discrete 3D (integer) circle passing
through two given voxels s and t is, therefore, given by CZ

r (s, t) = πZ

r (s, t)
′ ∪

πZ

r (t, s)
′′. Note that specifying only s ∈ SZ

r and t ∈ SZ

r would suffice to get
π

Z

r (s, t), and hence CZ

r (s, t), since a unique value of r would satisfy Theorem 1
for each of s and t.

4 Algorithm DSGP

We define inter-octant distance d
(8)
i,j corresponding to Ci and Cj . With s ∈ Ci

and t ∈ Cj , it is given by the count of q-octants crossed by π
Z

r (s, t) before
entering Cj . Mathematically,

d
(8)
i,j = 1 +

3
∑

u=1

2u−1
(

c
(u)
i ⊕ c

(u)
j

)

(7)

where, c
(u)
i ⊕ c

(u)
j = 1 if c

(u)
i �= c

(u)
j , and 0 otherwise. If i = j, then d

(8)
i,j = 0;

otherwise, the value of d
(8)
i,j lies in the interval [1, 7]. The maximum value d

(8)
i,j =

7 is obtained when Ci and Cj are diametrically opposite, i.e., c
(u)
i �= c

(u)
j for

u = 1, 2, 3. The pair (s, t) becomes antipodal if their c-octants are diametrically
opposite and s, o, t are collinear. Then ΠR

r (s, t) has no fixed orientation, and so
a third point q on SZ

r needs to be specified, which would lie in π
Z

r (s, t).

Similarly, we define the intra-octant distance d
(6)
i,j between two q-octants, Qi

and Qj, when they lie in same c-octant. It provides the count of q-octants con-
taining the geodesic path from any point s ∈ Qi to any point t ∈ Qj. According
to our representation, it is given by one plus the minimum number of swaps
among the elements in Qi, so that, after swaps, the transformed 3-tuple is iden-
tical with Qj . Two elements are swapped in Qi or in any of its intermediate
configurations only if the elements are consecutive in Qi or in that configuration

(i.e., 3-tuple). Using d
(8)
i,j and d

(6)
i,j , we compute the q-octant distance d

(48)
i,j be-

tween s and t. It gives the count of q-octants containing the geodesic path from
s to t, irrespective of their positions on the sphere. Its measure turns out to be

d
(48)
i,j = d

(8)
i,j + d

(6)
i,j − 1. (8)

Combining the above, we simplify the rule of determining the sequence of q-
octants containing π

Z

r (s, t) as follows. Let Qi and Qj be the q-octants containing
s and t, respectively. Then the sequence of q-octants through which π

Z

r (s, t)
passes, is given by a/the minimum-length sequence of transformations applied
on Qi to attain the configuration Qj. Following are the rules of transformation.

T1. Change the sign of the first element q
(1)
i in Qi (or its intermediate configu-

ration) only if σ[q
(1)
i ] �= σ[q

(1)
j ]. This signifies transition from one half-space

(or, c-octant) to another half-space.
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T2. Swap two elements in Qi (or its intermediate configuration) only if they
are consecutive. This signifies transition from one q-octant to its adjacent
q-octant.

From the sequence of q-octants obtained by the required transformations,
we determine the q-octant Qi′ immediately next to the q-octant Qi of s. We
use the 3-tuples corresponding to Qi and Qi′ for computing the direction vector

ds := (d
(1)
s , d

(2)
s , d

(3)
s ) ∈ {+1,−1,±1}3. It is required to find the candidate voxels

that are 1-adjacent to s (A1(s)), belong to IZr (s, t), and is directed towards the
shorter between the two possible geodesics from s to t (Theorem 4). The elements

d
(1)
s , d

(2)
s , d

(3)
s correspond to the moves along x-, y-, z-axes, respectively. The

notation +1 signifies that there can be a unit move or no move (from s) along
the positive axis of the corresponding coordinate; similarly, −1 signifies a unit
move or no move along the negative axis, and ±1 signifies no move or a unit
move along positive or negative axis. In case of more than one minimum-length
sequence of q-octants from Qi to Qj , we consider the q-octant nearest to Qi

and common to these sequences, for computing ds. The rationale is that only
one of these sequences would be intersected by ΠR

r (s, t), and hence the q-octant
common to these sequences is used. The following examples clarify the idea.

Example 2. See Fig. 2. Given s(10,−2, 6) ∈ Q15 and t(−3, 10, 6) ∈ Q12, their respec-

tive 3-tuples are Q15 := (−y,+z,+x) and Q12 := (−x,+z,+y). The minimum-length

sequence of transformations corresponding to π
Z

r (s, t) is:

(−y,+z,+x)
T1−→ (+y,+z,+x)

T2−→ (+y,+x,+z)
T2−→ (+x,+y,+z)

T2−→ (+x,+z,+y)
T1−→ (−x,+z,+y), or, Q15

T1−→ Q3
T2−→ Q2

T2−→ Q1
T2−→ Q6

T1−→ Q12.

Notice that there is another minimum-length sequence: (−y,+z,+x)
T1−→ (+y,+z,+x)

T2−→ (+z,+y,+x)
T2−→ (+z,+x,+y)

T2−→ (+x,+z,+y)
T2−→ (−x,+z,+y), which implies

Q15
T1−→ Q3

T2−→ Q4
T2−→ Q5

T2−→ Q6
T2−→ Q12.

Either of these implies that the q-octant next to Q15 through which π
Z

r (s, t) passes, is

Q3. Since Q15 = (−y,+z,+x) and Q3 = (+y,+z,+x), the y-coordinate of each voxel

p ∈ A1(s)∩IZr (s, t), cannot ever decrease. On the contrary, the x- and the z-coordinates

of p have no such restriction. Hence, the direction vector ds is chosen as (±1,+1,±1).

Example 3. Let s ∈ Q1 and t ∈ Q4. So, Q1 = (+x,+y,+z) and Q4 = (+z,+y,+x). We

have two minimum-length sequence of transformations: (i)Q1
T2−→ Q2

T2−→ Q3
T2−→ Q4;

(ii)Q1
T2−→ Q6

T2−→ Q5
T2−→ Q4.

Contrary to Example 2, here the q-octants following Q1 in two cases are different: Q2

for (i) and Q6 for (ii). So, we look ahead until there is a matching q-octant, i.e., Q4 in

this case. We compute ds as the relative shifts in positions of the coordinate values in

Q4. In Q1, the 1st element is +x, which is shifted to 3rd position in Q4. So, the 1st

element in ds becomes +1, and by similar reasoning with the 2nd and the 3rd elements,

we get ds = (+1,±1,−1).

Analysis. See Algorithm 1 and its demonstration in Fig. 2. The adjacency list
L of the underlying undirected graph G(V,E) is prepared based on 1-adjacency
of the voxels in IZr (s, t). The vertices adjacent to each u ∈ V are inserted in the
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Q1

Q2
Q3

Q4

Q5Q6

Fig. 2. A demonstration of the proposed algorithm for r = 12. (a) s(10,−2, 6) ∈ Q15,
t(−3, 10, 6) ∈ Q12. (b)Yellow: S

Z

r ∩ A1(s). (c)Blue: S
Z

r ∩ A1(s) ∩ IZr (s, t), Yellow: {p ∈
A1(q) : q is Blue}. (d-h)Blue: Progress of Procedure MakeAdjList for IZr (s, t). (i) Red:
π

Z

r (s, t) ⊂ IZr (s, t).

adjacency chain L[u] of u in non-increasing order of their isothetic distances from
ΠR

r (s, t), (MakeAdjList, Line 9). This is needed to maintain locally minimum
isothetic distance from ΠR

r (s, t) while running Prioritized-BFS (Algorithm 1,
Line 3). In Line 8 of MakeAdjList, Theorem 1 is used to determine the voxels
that are 1-adjacent with the current voxel and belong to SZ

r , in constant time.
Thus, MakeAdjList and Prioritized-BFS consumes O(n) time each, where n is
the number of voxels comprising π

Z

r (s, t). The direction vector ds is computed
from the sequence(s) in no more than O(n) time complexity. Hence, the total
time complexity of Algorithm DSGP is linear in the length of πZ

r (s, t).

5 Results

The proposed algorithm is implemented in C in Ubuntu 12.04 32-bit, Kernel
Linux 3.2.0-31-generic-pae,GNOME 3.4.2, Intel R© Core

TM

i5-2400 CPU 3.10GHz.
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Algorithm 1: DSGP (Discrete Spherical Geodesic Path).

Input: voxel s ∈ SZ

r , voxel t ∈ SZ

r , such that (s, t) is not an antipodal pair
Output: πZ

r (s, t) as a voxel sequence
1 ds ← FindDirection(s, t)
2 L ← MakeAdjList(s, t,ds)

3 π
Z

r (s, t) ← Prioritized-BFS(s, t, L)

Procedure FindDirection(voxel s, voxel t)

Output: Direction vector ds

1 Qi ← FindQoct(s), Qj ← FindQoct(t)
2 Si,j ← minimum-length q-octant sequence from Qi to Qj

3 if Si,j is unique then

4 Qi′ ← 2nd element (q-octant) in Si,j

5 else

6 Qi′ ← common element in the sequences {Si,j} nearest to Qi

7 Compute ds from positions of the corresponding elements in Qi and Qi′

8 return ds

Procedure MakeAdjList(voxel s, voxel t, ds)

Output: Adjacency list L of IZr (s, t)
1 visited[s] ← True

2 Q ← {q :
(

q ∈ SZ

r

)

∧
(

q ∈ ΠZ

r (s, t)
)

∧ ((s, q) conforms ds)}
3 for each q ∈ Q do

4 visited[q] ← False

5 while Q �= ∅ do

6 voxel p ← Dequeue(Q), visited[p] ← True

7 for each voxel q in 1-neighborhood of p do

8 if
(

q ∈ SZ

r

)

∧
(

q ∈ ΠZ

r (s, t)
)

then

9 insert q in L[p] in non-increasing order of d⊥(q,Π
R

r (s, t))

10 if visited[q] = False then

11 Enqueue(Q, q)

12 return L

As the algorithm is of linear time complexity and readily implementable with
primitive operations in the integer space, it computes the spherical geodesic
paths and 3D circles in Z3 quite fast and efficiently. To demonstrate this, a sum-
mary of some experimental results is given in Appendix. For radius r ranging
from 10 to 1000, different source and destination points are chosen, and their
geodesic paths are computed. For each path π

Z

r (s, t), its length |πZ

r (s, t)|, mea-
sured in terms of number of voxels comprising the path, is shown, along with the

corresponding q-octant distance, d
(48)
i,j . The CPU time, measured in milliseconds,

reflects the linear-time behavior of the algorithm, as explained in Section 4.
The figure in Appendix shows a set of discrete spherical geodesics and their

corresponding circles produced by the algorithm. Note that a discrete geodesic
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circle can be obtained by taking the union of the path π
Z

r (s, t) with its comple-
mentary path, i.e., πZ

r (t, s), taken in the same order of cyclic movement. Clearly,
such a circle would always include s and t. However, the inclusion of t is not en-
sured if we ignore t during Prioritized-BFS and moves forward until the traversal
returns to s, although the resultant geodesic circle would comprise voxels lying
within an isothetic distance of 3

2 from ΠR

r (s, t).

6 Conclusion

We have shown how number-theoretic characterization helps in developing effi-
cient algorithms related to discrete geodesics on a spherical surface. The prob-
lems of finding iso-contours and of geodesic distance query, defined and at-
tempted in 3D real space [17, 18], are also pertinent in 3D digital space. The
technique introduced in this paper may be extended to solve such problems with
efficiency and theoretical guarantee.
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Appendix

Table. C-octants and Q-octants
C-oct Q-octants Notation

C1 Q1, . . . ,Q6 +++

C2 Q7, . . . ,Q12 −++

C3 Q13, . . . ,Q18 +−+

C4 Q19, . . . ,Q24 −−+

C5 Q25, . . . ,Q30 ++−
C6 Q31, . . . ,Q36 −+−
C7 Q37, . . . ,Q42 +−−
C8 Q43, . . . ,Q48 −−−

Q-oct Notation

Q1 (+x,+y,+z)

Q7 (−x,+y,+z)

Q13 (+x,−y,+z)

Q19 (−x,−y,+z)

Q25 (+x,+y,−z)

Q31 (−x,+y,−z)

Q37 (+x,−y,−z)

Q43 (−x,−y,−z)

Q-oct Notation

Q2 (+y,+x,+z)

Q8 (+y,−x,+z)

Q14 (−y,+x,+z)

Q20 (−y,−x,+z)

Q26 (+y,+x,−z)

Q32 (+y,−x,−z)

Q38 (−y,+x,−z)

Q44 (−y,−x,−z)

Q-oct Notation

Q3 (+y,+z,+x)

Q9 (+y,+z,−x)

Q15 (−y,+z,+x)

Q21 (−y,+z,−x)

Q27 (+y,−z,+x)

Q33 (+y,−z,−x)

Q39 (−y,−z,+x)

Q45 (−y,−z,−x)

Q-oct Notation

Q4 (+z,+y,+x)

Q10 (+z,+y,−x)

Q16 (+z,−y,+x)

Q22 (+z,−y,−x)

Q28 (−z,+y,+x)

Q34 (−z,+y,−x)

Q40 (−z,−y,+x)

Q46 (−z,−y,−x)

Q-oct Notation

Q5 (+z,+x,+y)

Q11 (+z,−x,+y)

Q17 (+z,+x,−y)

Q23 (+z,−x,−y)

Q29 (−z,+x,+y)

Q35 (−z,−x,+y)

Q41 (−z,+x,−y)

Q47 (−z,−x,−y)

Q-oct Notation

Q6 (+x,+z,+y)

Q12 (−x,+z,+y)

Q18 (+x,+z,−y)

Q24 (−x,+z,−y)

Q30 (+x,−z,+y)

Q36 (−x,−z,+y)

Q42 (+x,−z,−y)

Q48 (−x,−z,−y)
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Table. Summary of results

r s and its q-octant t and its q-octant |πZ

r (s, t)| d
(48)
i,j Time (µs)

10 (0, 3, 10) Q1 (4, 6, 7) Q1 7 0 53
10 (4,−4, 8) Q13 (2,−9, 4) Q18 8 1 61
10 (7, 1, 7) Q2 (−3, 7,−6) Q36 21 6 81
20 (1, 5, 19) Q1 (11, 12, 12) Q1 16 0 111
20 (−4, 10, 17) Q7 (−20, 3, 2) Q10 24 3 145
20 (−7, 3,−18) Q32 (4,−10, 17) Q13 52 8 330
50 (0,−12, 49) Q13 (8,−18, 46) Q13 11 0 84
50 (30, 1, 40) Q2 (46, 18, 8) Q4 40 2 261
50 (35,−35,−4) Q41 (−12,−13, 47) Q19 81 4 445

100 (24, 61,−76) Q25 (57, 58,−58) Q25 34 0 167
100 (−39,−48,−79) Q43 (−88,−17,−45) Q45 66 2 315
100 (−11, 78, 61) Q12 (98,−17, 7) Q16 170 6 1000
200 (116, 115, 115) Q3 (176, 62, 73) Q3 93 0 392
200 (33, 33, 194) Q1 (199, 14, 11) Q4 242 3 1292
200 (46, 161, 110) Q6 (−87,−2, 180) Q20 230 4 1677
500 (−13, 406, 291) Q12 (−250, 340, 268) Q12 239 0 1178
500 (50,−494, 58) Q18 (171,−226, 412) Q13 439 1 2925
500 (−31, 433, 248) Q12 (117,−171,−455) Q37 1142 8 33347
1000 (25,−929, 368) Q18 (539,−637, 551) Q18 628 0 5159
1000 (384, 917,−104) Q29 (110, 504,−857) Q25 892 2 7771
1000 (932, 300,−204) Q28 (−637, 705, 311) Q11 1889 5 61852

Figure. Discrete spherical geodesics and their corresponding circles for r = 30. The
sequence of red voxels is π

Z

r (s, t) with s(8, 25, 14) ∈ Q6 and t(29, 3, 6) ∈ Q3, which,
when combined with π

Z

r (t, s), shown in yellow, yields the discrete 3D geodesic circle
passing through s, t, and centered at o. Shown in blue are 16 longitude circles produced
by extending the geodesics from source points taken from the discrete great circle on
zx-plane to destination point t(0, 30, 0) for each.
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