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Abstract 

An algorithm for locating transition states on a potential energy 

surface is described. The most important feature of the algorithm, 

which makes explicit use of the second derivative matrix of the 

potential surface, is that it is able to "walk uphill" from the 

minimum on a potential surface to the transition state essentially 

automatically. The method is illustrated by application to a two 

dimensional model problem, to the vinylidene-acetylene rearrangement 

(H
2

C=C: ++ Hc=CH), and to the dissocation and rearrangement of 

formaldehyde (H
2
co ++ Hz+CO, HCOH). The algorithm is also seen to 

provide an improved way of following a reaction path from a transition 

state down to reactants or products. 
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I. Introduction 

Continuing developments in the computational methodology of quantum 

chemistry make the~ priolidescription of chemical reaction dynamics an 

increasingly practical possibility. The object of such calculations 

is the Born-Oppenheimer potential energy surface (or surfaces) which 

govern the dynamical process of interest. 

For reactions involving more than 3 or 4 atoms, however, knowledge 

of the complete potential surface as a function of all 3N-6 nuclear 

coordinates (N = number of atoms) is usually out of the question, and 

effort is most often focused on determining special features of the 

potential surface, e.g., absolute and local minima on the surface, and 

the saddle points (i.e., transition states) that separate them. Because 

methods are now available for the efficient calculation of the gradient
1 

of the potential with respect to nuclear coordinates, it is also 

2 
becoming feasible to follow the reaction path (the steepest descent 

path in mass-weighted cartesian coordinates) from a saddle point down 

to the minima on the surface. On the basis of the reaction path, and 

the matrix of force constants along it, one can construct a dynamical 

model which describes many attributes of the polyatomic reaction 

3 
dynamics. 

The purpose of this paper is to suggest and illustrate a systematic 

algorithm for finding transition states on potential surfaces and also 

for generating the reaction path connecting a transition state and a 

local (or absolute) minimum on the surface. The basic element of the 

algorithm is to make a local quadratic approximation to the potential 
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surface at each point along the reaction path, and its most important feature 

is that it is a stable algorithm for walking uphill from a minimum on the 

potential surface to a transition state. 

Previous attempts to locate transition states have concentrated on 

di t 
. . . t. 4 '5 . . . . 6 gra en norm m1n1m1za 10n or energy m1n1m1zat1on. The norm minimization 

technique has several disadvantages which arise because it is basically a 

root search technique, so that convergence to a transition state is not 

assured--only convergence to a zero of the potential gradient. This point 

may be a minimum or maximum, and not a stationary point. Associated with 

the convergence difficulty is the requirement that a good initial guess 

must be supplied, otherwise a large number of steps may be required for 

convergence. Also, in cases where chemical intuition fails, there is no 

systematic presciption for searching for a transition state. Similarly, 

energy minimization will have stability difficulties if the surface is 

complicated, and may also require a large number of energy evaluations 

to be effective. 

Section II first discusses the qualitative ideas of the algorithm 

and also develops it in general form. Since the approach requires at 

each step the force constant (i.e., second derivative) mat~ix of the 

potential as well as the gradient (i.e., first derivative}, an efficient 

method for direct calculation of the force constant matrix, as well as 

the gradient, is necessary for it to be a truly practical approach. 

Pople, et al.,
7 

have in fact reported the development of such methods 

within the SCF approximation, and there is intense work in several 

groups on extending such capabilities to more general, e.g., MC-SCF 

and general CI, wavefunctions. The present paper is thus looking 

ahead to the availability of such techniques. 
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Applications of the algorithm of Section II to "walking uphill" from 

a minimum to a transition state are described in Section III; the problems 

chosen are a model problem which has some particularly pathological 

features, and two molecular systems, c
2
H

2 
and H

2
co. It is also shown, 

by application to the HNC + HCN reaction, that the algorithm provides a 

much more efficient and accurate procedure for following the reaction 

path from a transition state down to a minimum than by simply following 

the gradient vector itself. 
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II. Theoretical Considerations 

a. Qualitative Discussion 

To motivate the development below consider a potential surface 

as sketched in Figure 1; there are F=2 degrees of freedom, and x
1 

and 

x
2 

are the two mass-weighted cartesian coordinates of the system. The 

point ~ = (a
1

,a
2

) at the center of the circle is near, but not on, 

the steepest descent path (i.e., the reaction path). 

The goal is to step from position a to a new position x that is 

on (or at least very close to) the reaction path in the up hill direction; 

i.e., we wish to march uphill along the reaction path toward a transition 

state. (There may, of course, exist no transition state, but if there 

does then it will be reached in this manner.) 

First consider the situation if one makes a linear approximation 

to the potential about the point~. 

(2.1) 

where 

D.(a) = (8V(@)) 
l - axi x=a 

6x. = x.-a. 
l l l 

If we consider a step ~ of fixed length 6, the radius of the circle 

about a in Figure 1, then the increment 6x can be parameterized as 

(2.2a) 

(2.2b) 
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where e is the angle which specifies the direction of the increment ~x. 

As a function of e the linearized approximation to the potential is 

V(8)-V(a) = ~(Dl cos8 + D
2 

sin8) (2.3) 

i.e., a simple harmonic as sketched in Figure 2a. The angle 8 for 
X 

which V(8) is a maximum is 

tan e = 
X 

which leads to a step ~x proportional to the gradient, 

(2.4) 

As is clear from Figure 1, if the point a were exactly on the reaction 

path, then the gradient vector would indeed point in the correct 

direction, i.e., uphill along the reaction path, but if it is only 

slightly off the reaction path then the gradient direction diverges from 

the reaction path. This de-focusing nature of trying to follow the 

gradient vector uphill is well known. 

If, however, the second derivative matrix of Vat point a is 

available, then a second-order Taylor's series expansion is possible, 

(2.5) 

where 



K .. (a) 
1J ~ 
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Again considering a step ~x of fixed length, as parameterized by 

Eq. (2.2), the variation of the piential with the direction of the 

step, i.e., with 8, has second as well as first harmonics: 

V(8) = V(a) + ~(D 1 cos8 + D
2 

sin8) 

~ 2 2 2 
+ :f (K

11 
cos 8 + K

22 
sin 8 + 2K

12 
sin8 cos8) 

the last term in the above equation can also be written as 

(2. 6a) 

(2.6b) 

Figure 2h shows the qualitative behavior of V(8), the most important 

feature being that the quadratic terms in the expansion of V (i.e., 

the second harmonics in 8) lead to four extrema of V(8), two local 

maxima and two local minima. It is clear that the direction of 

interest is the angle 8 indicated in Figure 2b which corresponds to 
X 

the local minimum of V(8) which is not the absolute minimum (which is 
~ 

the downhill direction). The angles e corresponding to the two local 

maxima in Figure 2b are the directions up the sides of the harmonic 

valley about the reaction path. 

For the above arguments to be applicable the length of the step ~ 

cannot be too small, or else the quadratic terms in Eq. (2.6) will be 

too small compared to the linear terms to produce a V(8) with four 

extrema. Too large a step size will be bad, however, for the quadratic 
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approximation to V would be poor. It is intuitively clear, therefore, 

that an intermediate value of ~ is required--not too large, not too 

small--for the algorithm to be meaningful. Furthermore, since the 

direction 8 in Figure 2b is sandwiched between the two local maxima, 
X 

which are the directions up the sides of the valley, it is also intuitively 

clear that choosing the increment ~X in the direction 8 provides a 
X 

stable algorithm for walking uphill to the transition state. 

b. General Development 

To implement these ideas more generally we approximate V(x) about 

the point a quadratically, 

V(x) - V(~x) 

where, as before, 

D 

K 

ClV(a) 

Cla 

a
2v<al 

Cla aa 

(2.7a) 

(2.8a) 

(2.8b) 

(2.8c) 

and then look for extrema of V(~x) subject to the constraint of a fixed 

step size ~. 

~x·~x ~2 (2.9) 

This is most easily carried out in general with the use of a Lagrange 

multiplier. 

Thus consider the Lagrange function L(~,A), 
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(2.10) 

A being the Lagrange multiplier. The equations determining the extrema 

are 

which gives 

Eq. (2.1la) gives 

81 
allx 

81 

= 

dA. = 

0 

0 

0 = D + K • Llx - ALlx 

Llx = (Al-K)-
1

•D 

and then Eq. (2.llb) reads 

2 -1 
Ll = D•(Al-K) •D 

(2.lla) 

(2.llb) 

(2.12) 

(2.13a) 

Eq. (2.13a) is an algebraic equation for A, and once A is determined 

from it for a given value of 11, Eq. (2.12) gives the step size Llx. 

The value of V(Llx) with Llx given by Eq. (2.12) is 

V(Llx) ::: V(A) 

1 -1 -1 
+- D•(A1-K) •K•(A1-K) •D 

2 ~ ~ ~ % ~ ~ -
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or 

-1 1 -1 
V(A.)-V =D•(A1-K) •(Al--K)•(Al-K) •D 

0 'V ~:::;: ~ 2~ ~~ -
(2.13b) 

Eq. (2.13) takes a simpler form if one introduces the unitary 

matrix U that diagona1izes K, 
~ ~ 

where k is diagonal. If d is defined by 
::::: 

then Eq. (2.13) reads 

F 

- 2:: 
i=l 

d 2 
i 

Figure 3 shows a sketch of the functions ~ 2 (>..) and V(A.)-v
0 

[defined by Eq. (2.15)] for F=2 and for the case that the initial 

(2.14) 

(2.15a) 

(2.15b) 

point a is close enough to the minimum of the potential for both eigen-

values of the force constant matrix, k
1 

and k
2 

to be positive. Consistent 

with the discussion in Section IIa, if the step size ~ is sufficiently 

large, there will be four roots to the equation 

(2.16) 
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i.e., four extrema of the potential. Varying the step-size 6 varies the 

values of A that satisfy Eq. (2.16), and we wish tochoose the smallest 

(i.e., safest) value of 6 for which there are still four roots to Eq. 

(2.16). This value of 6
2 

is clearly the local minimum of the function 

6
2

(A) in Figure 3, and the corresponding value of A is A
0

, as indicated 

in the Figure. One can easily show that AO also corresponds to the local 

minimum of V(A) (cf. Figure 3), and that V(A
0
)-v

0 
is positive; i.e., 

the step~ generated by choosing A=A0 is indeed uphill. 

As one moves away from the absolute minimum of the potential toward 

the saddle point of the potential surface, the lowest eigenvalue of 

K will become negative--this is the imaginary frequency corresponding 

to the reaction coordinate at the transition state--and the value AO 

can become negative. Figure 4 sketches the form of the functions 6
2

(A) 

arid V(A)-v
0 

for this .case. One can show that in this case AO is a 

local maximum of V(A), as indicated in Figure 4, and will thus not 

produce the desired step. A=O does, however, correspond to a local 

minimum of V(A) and is the choice in this case. For A=O the increment 

~ of Eq. (2.12) is 

-1 
= -K •D (2.17) 

which is recognized as the Newton-Raphson step and known to be the 

most efficient choice once one is close enough to the saddle point. 

To summarize, the step 6x for walking up hill to a transition state 

from the minimum of the potential surface is given by Eq. (2.12), where 

A= A
0 

if A
0 

> 0. A
0 

is the local minimum of the function 6
2

(A), i.e., 

the root of the equation 
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F d. 
2 

J!_ ~2(A) -2 L 
~ 

0 (2.18) = = 
dA 

i=1 (A-kf)3 

If A
0 

< 0, then one takes A=O. In practice the length of the step ~x. 

2 
~ (A

0
), determined in this manner may be overly conservative, i.e., 

smaller than necessary, or unreasonably large, and in both cases we 

use the direction of the vector ~x but scale it to obtain a more 

reasonable step-size. 

For the general case F > 2, the function ~ 2 (A) will have F-1 local 

minima (cf. Figure 5), and the normal prescription is to choose A to 

be the smallest root of Eq. (2.18). As will be seen in some of the 

following examples, though, it is sometimes possible to find other 

transition states by following other roots of Eq. (2.18). 
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III. Applications 

As a first example, the two dimensional model potential 

V(x,y) 
2 

-x + c 2 
e 2Y (3.1) 

was studied. The minimum of the potential is located at (x,y)=(O,O) 

and the two symmetrically placed transition states are located on the 

x-axis at (x,y)=(±l,O). To provide a severe test for the algorithm, 

the constants a, b, and c were chosen so that at the potential minimum 

the eigenfrequency of the y-direction is less than that for the x-direction, 

and the initial step was taken in predominantly the y-direction. 

(Because of symmetry the potential has vanishing gradient in the 

x-direction along the y-axis, so an initial step in exactly the 

y-direction will never lead to steps in other than the y-direction.) 

The results of the calculations are shown in Figure 

6, and they illustrate the power of the algorithm: starting at the 

potential minimum and in essentially the wrong direction, the method 

marches in an efficient manner to the saddle point. 

The second example examined was the vinylidene-acetylene 

isomerization, H
2

c=C: + Hc=cH. The transition state for this reaction 

5 6 
has been studied by Poppinger and Muller and Brown using other search 

techniques, and it thus provides a useful comparison test for the 

present method. Here, the starting geometry was chosen to be 

vinylidene and the initial step was taken along the direction of the 

lowest eigenfrequency. The energy evaluations were performed at 

the ST0-2G level, using the values 
B 

tabulated by Pople, et al. The 
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minimum and transition state obtained from the perturbing state are given 

in Table I. An analytic first derivative program was used to generate 

the gradients, and the Hessian ·(i.e., second derivative·matrix) was 

obtained from these by finite differencing. 

The transition state was reached after 8 increments, and agrees 

to all significant figures to those of Poppinger~ By way of comparison, 

the norm minimization method used by Poppinger required a reasonable 

guess at the transition state geometry and, in the most favorable case, 

21 gradient evaluations starting from that guess. Our present calcula-

tions actually required more than 21 gradient evaluations since we 

determined the second derivative matrix K by finite differencing the 
~ 

gradients. The purpose of this paper and these example calculations, 

however, is to look ahead to the time that one has available the 

computational methodology for the direct (i.e., analytic) evaluation 

of second derivatives, and the point is that with the second derivative 

matrix, as well as the gradient, one can find transition states with 

considerably few steps. (Since it will undoubtedly require more 

computer time to evaluate first and second derivatives th?n just the 

first derivatives, though, one will have to weigh the trade off of 

fewer steps with more computer time per step.) This example illustrates 

the other obvious advantage of this algorithm, namely that a chemically 

intuitive starting point is not required to reach the transition state. 

This advantage would be especially pronounced in more complex molecules 

in which chemical intuition would fail to predict an adequate initial 

step, and there would be no stable systematic way to search for a 

transition state. Other techniques, such as the constrained simplex 
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optimization,
6
is not competitive with the present Lagrange multiplier 

technique in terms of accuracy and efficiency. 

For the last example, the potential surface for H
2
co was examined 

at the ST0-2G level to see if the present technique could predict both 

the dissociative transition state H
2
co ~ H

2 
+ CO and the isomerization 

9 
transition state H

2
co ~ HCOH. In this instance, slightly different 

perturbing steps were taken away from the minimum geometry and different 

eigenfrequencies followed along the ascent path. The values at the 

minimum, transition states, and perturbing steps are shown in Table II. 

By following the lowest lying acceptable root for A, the 

dissociative transition state was reached first, since the eigen-

frequency frequency producing this state is initially lower in energy. 

For the isomerization transition state, the second lowest acceptable 

value was chosen, which eventually gave the second transition state. 

The dissociative transition state was achieved after 11 increments from 

the perturbing step, and the isomerization transition state after 9 

increments from the perturbing step. For the rearrangement reaction, 

4 increments along the higher lying eigenfrequency was ne~essary before 

the lowest eigenfrequency started to decrease and the second and third 

lowest roots interchanged. Some of the intermediate steps are given 

in Figures 7 and 8 for the dissociation and rearrangement processes 

respectively. Generally speaking, both transition states are approached 

in qualitatively the same manner. The largest steps are taken 

initially in the movement of the hydrogen atoms around the heavy 

atom bond, and then the bond distances relax to the transition state 

values. Physically this behavior is reasonable since the potential 
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surface is likely to be shallowest for changes in angular 

orientation. 

These results indicate that this technique is both efficient 

and stable. Provided that the appropriate value of the Lagrange 

multiplier is chosen, different regions of the potential energy 

surface are sampled, which, in the case of H
2
co, led to another 

transition state. It should be emphasized that nothing in the 

present method insures the existence of any transition state--this 

is impossible for any method--but it is also clear that the Lagrange 

multiplier technique provides a routine way of searching for 

transition state. 

Finally, we note that second derivative information can also 

provide a more efficient way of following the reaction path from a 

transition state downhill to reactants or products. If one tries to 

follow the negative gradient vector itself, large oscillations about 

. 10 
the desired reaction path can result. Present techniques to avoid 

these oscillations require additional gradient evaluations and smaller 

step sizes than otherwise necessary. 

As an example, HCN isomerization was examined using the straight-

forward gradient procedure and the presently proposed alternative, which 

is essentially the algorithm described above in reverse. The results 

are shown in Figure 9. With the known transition state geometry as a 

. ·
9 

1 1 h d h start~ng po~nt , severa steps a ong t e steepest escent pat were 

determined on both sides of the saddle point, and these do not display 

the instabilities of the gradient method. A more dramatic instance is 

provided farther "downhill" where the oscillations about the true path 
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0 

have become more pronounced. With the choice ~ = .075 A lamu (point 1 

in the Figure) several steps taken toward the HNC minimum effectively 

interpolate the oscillations in the gradient calculations. It appears 

likely, then, that the use of the second derivative information will 

also be useful in generating intrinsic reaction coordinates. 
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IV. Concluding Remarks 

The algorithm described and illustrated above for finding transition 

states has several extremely desirable features: it is stable, efficient, 

and a good initial guess for the transition state geometry is not required 

(although such a guess would of course reduce the number of steps needed). 

Its practical application to complex systems of interest, however, 

requires efficient computer codes for the analytic evaluation of the 

second derivative matrix of the potential surface, but it appears that 

these will be readily available soon. 
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Figure Captions 

1. Contour plot of a potential surface V(x
1

,x
2
). The heavy curve is the 

reaction path, and the point ~ = (a
1

,a
2

) is close to it. The circle 

of radius 6 about a indicates the locus of possible steps x-a. 

2. (a) Variation of the potential as a function of 8 (i.e., along the 

circle about a in Fig. 1) for the linear approximation to the potential, 

Eq. (2. 3). 

(b) Same as a, but for the quadratic approximation to the potential, 

Eq. (2. 6) • 

3. Qualitative sketch of the functions ~ 2 (A) and V(A) defined by Eq. (2.15), 

for F=2. 

4. Same as Fig. 3 except for the case k
1

<0. 

5. Sketch of the function ~ 2 (A) for an arbitrary number of degrees of 

freedom F. 

6. Contour plot of the two-dimensional potential surface of Eq. (3.1). 

The points are the steps taken in walking from the minimum at (x,y)=(O,O) 

to the transition state at (x,y)=(l,O). 

7. Geometries for various steps in walking from the formal~ehyde minimum 

on the potential surface to the transition state for dissociation (H
2
+eo). 

8. Same as Fig. 7, except the transition state is for isomerization to 

HCOH. 

9. Coordinates of the H atom in the HNC~HCN isomerization. The solid 

line connects points obtained by simply following the gradient vector 

down from the transition state, and the solid points are the steps 

obtained by the present algorithm. Points to the right of "point 111 

show the path obtained by starting at "point 1". 
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Table I. Geometries for Vinylidene-Acetylene Rearrangementa 

Vinylidene Perturbing Step Transition State 

r = 
1 

2.48688 2.48768 2.38823 

r2 = 2.05224 2.05224 2.71439 

r3 = 2.05224 2.05224 2.04870 

el = 121.4° 121.4 ° 52.73° 

e2 -121.4 ° -121.8° -178.158° 

E = -73.53956 -73.53955 -73.48891 

aA11 values are in atomic units. 
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Table II. Geometries for Formaldehyde Rearrangement and Dissociation 
a 

Pert. Step Pert. Step Disso. Is om. 
Formaldehyde for Dissoc. for Isom. Tr. St. Tr. St. 

,, 

rl = 2.30629 2.30629 2.30629 2.26561 2.45074 

r2 = 2. 09716 2.09716 2.07000 2.12082 2.12532 

r = 
3 

2.09716 2.09716 2.07000 2.90372 2.27089 

e = 
1 

123.442° 123.442° 121.442° 156.648° 117.072° 

82 
::::; 123.442° 122.442° 122.942° +107. 927° - 57.962° 

E = -109.02436 -109.02430 -109.02374 -108.79256 -108.80808 

a 
All values are in atomic units 
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Figure 4 



-27-

:v:v: • • • 

I I I 
I I I 
I I I 

k, k2 k3 kF-1 kF 

A 

Figure 5 



-28-

Figure 6 
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Figure 8 
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